
1



Global Illumination at DreamWorks Animation consists in simulating one bounce of diffuse
interreflection as well as ambient occlusion and environment map image based lightinginterreflection, as well as ambient occlusion and environment-map image-based lighting.

We use a proprietary renderer to render all our films. GI has been used extensively at DreamWorks
Animation to light and render many animated films since “Shrek 2”. Many implementation details of
our global illumination system are published in our 2004 Siggraph paper [Tabellion and Lamorlette
2004] as well as in our more recent course notes [Krivanek et al. 2008].

First we review the GI requirements for animated film production. We then briefly describe our ray-
t i b d t d d ib h i di hi fit ithi d i i li d htracing based system, and describe how irradiance caching fits within our rendering pipeline and how
it integrates within a production renderer. We will show how specific solutions can help make IC up
to an order of magnitude faster compared to final gathering at every pixel. We then describe the
specifics of our point-based global illumination (PBGI) system, which is based on [Christensen
2008], and finally compare the strengths and weaknesses of both systems.

2



Here is a simple example to illustrate direct and indirect illumination. In this image, direct
illumination is coming from the left side of the image as indicated by the white arrow Any surfaceillumination is coming from the left side of the image as indicated by the white arrow. Any surface
area not exposed to the light directly is completely dark.

3



Once we let light bounce on the geometry in the scene, we get this image. We call indirect
illumination the secondary lighting that naturally fills up the dark areas and produces very softillumination the secondary lighting that naturally fills up the dark areas and produces very soft-
looking images. Notice also the color bleeding effects alongside the walls. You can compare by
flipping back and forth between both slides.

One very nice feature bounce lighting provides for free, is the ability to control the lighting on a
subject using distant off-screen bounce cards or reflectors. This offers a similar control to what a
director of photography would expect on a live action set.

4



Here are some recent examples from images rendered with GI, from the movie “How To Train Your
Dragon”Dragon .

Lighting credit:

Left image: Dan Levy, Melva Young, Mark Edwards

Right image: Jung Jin Song, Michel Kinfoussia

5



Here are some recent examples of images rendered with GI, from the movie “How To Train Your
Dragon ”Dragon .

Lighting credit: Liang-Yuan Wang, Mike McNeill

6



Here are some recent examples of images rendered with GI, from the movie “Shrek Forever After”.

Lighting credit : Benjamin Venancie, Archie Donato, Betsy Nofsinger

7



The requirements for GI in animated film production are quite drastic.

The resulting images have to be noise-free. There should be no buzzing or popping of any kind in the
resulting animations. The tools should offer a good physically correct starting point for the indirect
illumination. The tools also need to be very flexible. Lighters should be able to address all art-
direction comments from their supervisors or from the director and remain in control of the image
creation process. There must be a quick feedback loop when making adjustments, otherwise lighters
shy away from using GI in their shots, and fall back to alternate lighting techniques (using many fake
lights).lights).

In our system, GI is rendered through a global bounce light shader. Its parameters affect the overall
GI simulation, and provide global color correction controls that apply to the indirect illumination.
Our toolset also contains bounce filter light shaders which can further control the indirect
illumination coming from the main shader using a set of spatial and angular falloffs. There are also
additional parameters in our surface shaders that control how much each surface bounces indirect
light. The lighters can also add off-screen bounce cards or include a distant HDR environment map in
the lighting simulation.

The scene complexity is usually not bounded in film production. The scene geometry, texture and
other associated data created by many departments funnels down in the hands of lighters who need to
get many shots lit and rendered. The scenes are not necessarily tuned for rendering performance or
memory efficiency.

8



Using GI in film production has a non negligible impact on many departments.

Models with parts that don’t join properly or interpenetrate each other are not acceptable as global
illumination will tend to reveal these issues. Surfacing needs to sometimes define the bouncing
characteristics of surfaces, and all surfacing must be tested with plausible indirect illumination
scenarios. Particle or volumetric effects (i.e. fire and explosions) created by the FX department often
should cast indirect light onto the neighboring hard surfaces or occlude indirect light passing-by.

For GI-beginners and sometimes more advanced users too, it is not always intuitive how to control a
partic lar lighting effect since light can be coming from all possible directions On the positi e sideparticular lighting effect, since light can be coming from all possible directions. On the positive side,
using GI produces much simpler lighting rigs that require very few lights. The rigs tend to propagate
very well to other shots within a sequence or across sequences, and provide an excellent lighting
continuity across shots. This tends to be much harder with many “local / manual” indirect lights,
especially as characters move around within an environment.

9



10



Our system is built around a proprietary micropolygon scanline renderer. It produces a deep frame
buffer that can be used in an interactive lighting tool to shade an image multiple times whilebuffer that can be used in an interactive lighting tool to shade an image multiple times while
adjusting shader parameters. The deep frame buffer itself acts as a primary visibility rasterization
cache and is also used when rendering images in batch for final quality renders.

11



We enhanced our renderer with single-bounce global illumination capability by using a ray-tracing
engine (also proprietary) We use it to perform final gathering calculations as well as renderengine (also proprietary). We use it to perform final gathering calculations, as well as render
reflections and refractions. To accelerate the expensive light gathering process, we implemented
Irradiance Caching. The irradiance caching approach fits naturally into our rendering pipeline, which
is using many other stages of caching. This strategy comes in handy when only a few steps need to be
run again in the user’s workflow to accomplish a task. Irradiance caching also helps by speeding up
ambient occlusion calculations.

To further accelerate final gathering the user has the ability to pre-compute a set of radiosity textureTo further accelerate final gathering, the user has the ability to pre compute a set of radiosity texture
maps. These “baked” textures are called radiosity textures not because they have been computed
using the radiosity algorithm, but rather because they contain a radiometric quantity known as
radiosity. The textures essentially look like the result of shadowed direct lighting on purely diffuse
textured surfaces. They are used to accelerate the shading of each gathering ray-intersection by
replacing potentially complex shader network evaluations by a simple texture lookup. They can be
thought of as the equivalent of a photon map, simplified to the context of a single bounce of diffuse
i fl iinter-reflections.

It is important to notice that using radiosity textures is optional in our system and shaders can be run
instead at each ray intersection. In practice radiosity maps are always used for batch final quality
rendering and are almost never used during daily interactive lighting workflow. In our lighting tool,
the user can move lights and immediately re-run the “Gathering” and “Shading” of the image (or of
small regions of the image). The lighters don’t have to wait while re-baking the radiosity textures,
which would otherwise slow down the feedback loop

12

which would otherwise slow down the feedback loop.

The lighters can also decide to only “re-shade” the image to fine-tune the position of a direct light.
This avoids incurring the extra cost of re-gathering for small minor adjustments. Irradiance caching
also provides a convenient way to accelerate this workflow.



This example from the movie “Shrek 2” illustrates final gathering using irradiance caching. This
image contains shadowed direct lighting onlyimage contains shadowed direct lighting only.

13



Without using Irradiance Caching, gathering calculations would happen for each pixel in the image
where we want to compute indirect illumination At each pixel we send several hundred rays from thewhere we want to compute indirect illumination. At each pixel we send several hundred rays from the
surface seen through that pixel, with a cosine-weighted directional distribution over the hemisphere
above it. The intersection of each ray is then shaded and the result of these evaluations are averaged
together, producing an irradiance value.

This image illustrates a few of the rays cast to compute the irradiance for a single pixel on Shrek’s
arm. The image was intentionally rendered using the pre-computed radiosity textures that are used to
shade each ray Notice the overall blurry low-quality of the textures These textures don’t need to beshade each ray. Notice the overall blurry low quality of the textures. These textures don t need to be
pre-computed at very high resolution. In the background, there is also a textured sky-dome that rays
can also intersect, as well as an off-screen ground plane.

Radiosity maps pros/cons:

- Shaded with direct illumination only

- Sets a limit to a single bounce

D ’ fli k i i i lik h- Doesn’t flicker in animation like photon maps

- Each ray radiance estimate is very cheap (a direct texture lookup vs. a kd-tree nearest neighbor
search)

14



Here is the image shaded only with indirect lighting, using the irradiance computed as described in
the previous slidethe previous slide.

15



And again, adding the direct lighting back in the equation.

16



We describe here one of the main ways in which we deal with geometric complexity. When rays are
cast we do not attempt to intersect the geometry that is finely tessellated down to pixel sizecast, we do not attempt to intersect the geometry that is finely tessellated down to pixel-size
micropolygons - this would be very expensive and use a lot of memory. Instead we tessellate
geometry using a coarser simplified resolution and the raytracing engine only needs to deal with a
much smaller set of polygons. This greatly increases the complexity of the scenes that can be
rendered with a given memory footprint, and also helps increase ray-tracing efficiency.

To avoid artifacts due to the offset between the two geometries, we use a “smart bias” algorithm
described in the next slidesdescribed in the next slides.

17



Since rays originate from positions on the micropolygon tessellation of the surface and can
potentially intersect a coarser tessellation of the same surface self intersection problems can happenpotentially intersect a coarser tessellation of the same surface, self intersection problems can happen.
The image above illustrates cross-section examples of a surface tessellated both into micropolygons
and into a coarse set of polygons. It also shows a few rays that originate from a micropolygon whith
directions distributed over the hemisphere. To prevent self intersection problems to happen, we use a
ray origin offsetting algorithm. In this algorithm, we adjust the ray origin to the closest intersection
before / after the ray origin along the direction of the ray, within a user-specified distance. The ray
intersection returned as a result of the ray intersection query is the first intersection that follows the
adjusted ray origin. The full algorithm is described in [Tabellion and Lamorlette 2004].

18



Here is a comparison between a reference image that was rendered while raytracing the
micropolygons The image in the center was rendered with our technique while raytracing the coarsermicropolygons. The image in the center was rendered with our technique while raytracing the coarser
polygon tessellation illustrated in the image on the right.

19



It has been shown in [Christensen 2003] that it is possible to use even coarser and coarser
tessellations of the geometry to intersect rays with larger ray footprints This approach is also basedtessellations of the geometry to intersect rays with larger ray footprints. This approach is also based
on using only coarser tessellation and is not able to provide very coarse tessellations with much fewer
polygons than there are primitives (fur, foliage, many small overlapping surfaces, etc.), which would
be ideal for large ray footprints.

This problem is one of the main limitations of ray-tracing based GI in very complex scenes and is
addressed by the clustering approach used in point-based GI, as discussed in later slides.

20



When we use irradiance caching, the expensive GI calculations are only performed at the “white
dots” in this image and are cached for reuse In between the white dots we use the irradiance and itsdots in this image and are cached for reuse. In between the white dots, we use the irradiance and its
gradients from several neighbor cache records to smoothly interpolate the irradiance.

21



Here are is an example of Melman with and without global illumination, as well as the
corresponding irradiance cachecorresponding irradiance cache.

22



As described in our paper [Tabellion and Lamorlette 2004], we use a different error metric than the
one proposed by [Ward and Heckbert 1992] It allows us to control the record spacing with a screenone proposed by [Ward and Heckbert 1992]. It allows us to control the record spacing with a screen-
space metric which allows us to bound the minimum and maximum screen-space distance between
cache records. This has many advantages especially in scenes with wide depth range or when
considering the world-space scale invariance of the metric. We also use a slightly more intuitive
normal error metric, normalized once the normal deviation reaches a specific maximum angle.

The error metric is also enhanced to add or remove constraints. In [Krivanek et al. 2008] we describe
how we can modify the error metric further to maintain a sparse record spacing distribution onhow we can modify the error metric further to maintain a sparse record spacing distribution on
surfaces that have bump, are displacement mapped, or even objects with fur.

23



The main challenge in implementing irradiance caching is providing a good record spacing quality.

It is possible to render stable non-flickering animations using irradiance caching, even though the
underlying cache record distribution changes as can be seen in playbacks of images rendered with
irradiance cache dots. At first, it is in fact hard to imagine that a stable result is possible with such
flickering distributions.

Stable results require accurate irradiance values and stable gradients, and in turn may require more
rays per cache record than might be needed per pixel if we were not using irradiance caching. Using
i di hi ff l th d i i h t ff t thi tirradiance caching pays off as long as the record spacing remains sparse enough to offset this cost.

24



Here is the record spacing distribution we can achieve, even on displaced objects like Shrek’s vest.

25



Here is the result of bounce lighting + environment lighting applied to the displaced un-textured
surfacessurfaces…

26



Which is what was used to render this final image.

27



Similarly it is possible to keep the record spacing distribution sparse and on the surface of the object
growing the fur as in this example The irradiance is then used to illuminate the fur growing from thatgrowing the fur as in this example. The irradiance is then used to illuminate the fur growing from that
surface.

28



This technique works quite well in practice for medium to short fur and captures occlusion / bounce
from surrounding objects onto the hair Unfortunately there doesn’t seem to be a generic coherencefrom surrounding objects onto the hair. Unfortunately, there doesn t seem to be a generic coherence
we can exploit similarly with longer hair.

Also this technique doesn’t capture fur self-occlusion. We will see in later slides how we use point-
based ambient occlusion to “bake” the fur self-occlusion, which is then used in this type of ray
tracing-based bounce lighting render.

29



Here are some render times for the various image examples shown. They were all achieved on an
AMD Opteron 2 14 GHz workstation running on a single coreAMD Opteron 2.14 GHz workstation running on a single core.

We also provide a comparison with/without using irradiance caching. In this comparison, we visually
adjusted the number of rays per micropolygon (MP) to achieve a similarly noise-free image than
when using irradiance caching.

Notice the right-most column of the table, which indicates the average number of indirect rays used
to compute indirect illumination for each micropolygon during final quality rendering. It is the result
f l ti l hi h b f h d ti d i l i dof a relatively high number of rays per cache records, amortized over many pixel-sized

micropolygons.

30



31



We also enhanced our renderer with a Point-Based GI system (PBGI), following some of the
implementation basics described in [Christensen 2008].

We use the same light shader integration as our raytracing-based system, which makes it easy to
switch between ray-tracing and point-based global illumination.

The dense point cloud represents the lit geometry that affects indirect illumination. It is enhanced
before shading starts, by a clustered representation of the point cloud at many coarser levels of detail.
The clustering can aggregate points that originate from different primitives / objects and is therefore
much more powerful at reducing complexity for very coarse representations than a tessellation-based
approach. This is the main advantage of point-based over raytracing-based GI.

Being also the analog to the radiosity maps used in our ray-tracing system, the point cloud must be re-
shaded every time the lighters move a light. The point cloud data is not optional like the radiosity
maps are and re-shading the whole point cloud can seriously slow down the interactive workflow.

32



Here is an example of a dense point cloud for a robot model. Since we process dense points over the
surface of the geometry the technique is well suited to adding fine surface detail with displacementsurface of the geometry, the technique is well suited to adding fine surface detail with displacement
maps.

33



Here is an example of PBGI bounce lighting, using also a distant environment map. The cost of
adding the environment to the point based simulation is virtually free as described in [Christensenadding the environment to the point-based simulation is virtually free as described in [Christensen
2008]. It is also possible to render large textured area lighting with soft shadows, by generating lit
points on the surface of the area light.

34



Here is an example of ambient occlusion rendered with the same point cloud data. By adjusting the
surface normal and spread of directions that we use to compute the ambient occlusion integral wesurface normal and spread of directions that we use to compute the ambient occlusion integral, we
can easily render directional ambient occlusion or glossy reflection occlusion passes.

35



Generating point clouds appropriate for PBGI with good density poses interesting challenges.
Like in [Christensen 2008], we use the camera-adaptive micropolygon tessellator of our renderer and
generate one point per micropolygon This allows us to achieve if desired a one to one mappinggenerate one point per micropolygon. This allows us to achieve, if desired, a one-to-one mapping
between micropolygons and points.
Our solution however, is able to generate points everywhere in the scene: inside and outside the
camera view-frustum. This removes the need for manually placing an alternate distant camera that
encompasses the entire scene. It also produces points in-view that are pixel-sized considering the size
of the pixels from the actual rendering camera (and not considering the alternate distant camera). Our
solution also produces much fewer and bigger points outside the camera view-frustum and ensures
that occlusion or indirect light coming from off-screen surfaces is still faithfully represented.
Inside the camera frustum, using pixel-sized points is necessary to model indirect-lighting and surface
self-occlusion with pixel-size surface detail. In practice, using points approximately 1.5 times the size
of a pixel produces roughly half the point count. It also maintains enough detail and doesn’t cause
self-occlusion artifacts.
Outside of the camera frustum, we want to achieve an optimal point count and respect the LOD
“max-solid angle” metric that will be used to pick appropriate distant point clusters. This means we
need to generate points that are no smaller than the size of a valid cluster that would be used to
illuminate any point inside the camera frustum In order to generate micropolygons / points outsideilluminate any point inside the camera frustum. In order to generate micropolygons / points outside
the view frustum at all, we are also required to disable view-frustum culling from the REYES “split
and dice” tessellation algorithm. In turn, this means the tessellator can no longer use the perspective
projection to project objects onto pixels and evaluate their size. The perspective divide would
otherwise cause numerical issues and produce points with infinite density for surfaces close to the
camera focal plane – also called the eye plane. Working in projected / screen space also causes “point
holes” on surfaces at grazing angle, which can help reduce the point count but can cause very
undesirable light / occlusion leaks.
T dd th bl dif t ll ti t k ith f i

36

To address these problems, we modify tessellation to work with surfaces in camera space.



To compute the size (and density) of surface elements that are in-view, we first compute the distance:
d = MAX(distance(camera focal point, surface element), near plane distance)

Using the solid angle of the “center pixel”, and making the approximation that all pixels have the
same solid angle, we can solve for the desired pixel-size point area. To avoid point holes at grazing
angles, we can ignore surface orientation by ignoring the cosine term from the solid angle formula:
solidAngle = area / d2. Using the desired point area and an estimate of the surface size, it is then
trivial to derive a corresponding dice rate that will produce pixel-size points / micropolygons.
To compute the size (and density) of surface elements that are out-of-view, we apply the same
reasoning using the distance to the closest point on the camera frustum, and the “max-solid angle”
used later in the LOD cut picking algorithm. Computing the closest point on the camera frustum canused later in the LOD cut picking algorithm. Computing the closest point on the camera frustum can
be done very efficiently for many successive surface elements that are spatially coherent. An
amortized constant-time algorithm is described in [Mirtich 1998] and can be special-cased for a
camera frustum that forms a convex polyhedra.
The resulting point density is illustrated in the image on top for the simple scene rendered in the
image on the bottom. The top image intentionally does not show the size of each point in order to
better represent the overall point density. Notice that the tessellator’s “split and dice” algorithm
adapts discretely to the variations in desired point size / density. Surface patches in-view are
tessellated into almost pixel-size points Patches out-of-view are tessellated with fewer and fewertessellated into almost pixel-size points. Patches out-of-view are tessellated with fewer and fewer
points based on distance to the camera frustum, with a rate of decay that is proportional to the LOD
cut picking metric. This metric guarantees a faithful maximum possible level of detail outside of the
camera frustum with an optimal number of points and consequently does not introduce any flickering
in animations.

37



To compute the size (and density) of surface elements that are in-view, we first compute the distance:
d = MAX(distance(camera focal point, surface element), near plane distance)

Using the solid angle of the “center pixel”, and making the approximation that all pixels have the
same solid angle, we can solve for the desired pixel-size point area. To avoid point holes at grazing
angles, we can ignore surface orientation by ignoring the cosine term from the solid angle formula:
solidAngle = area / d2. Using the desired point area and an estimate of the surface size, it is then
trivial to derive a corresponding dice rate that will produce pixel-size points / micropolygons.
To compute the size (and density) of surface elements that are out-of-view, we apply the same
reasoning using the distance to the closest point on the camera frustum, and the “max-solid angle”
used later in the LOD cut picking algorithm. Computing the closest point on the camera frustum canused later in the LOD cut picking algorithm. Computing the closest point on the camera frustum can
be done very efficiently for many successive surface elements that are spatially coherent. An
amortized constant-time algorithm is described in [Mirtich 1998] and can be special-cased for a
camera frustum that forms a convex polyhedra.
The resulting point density is illustrated in the image on top for the simple scene rendered in the
image on the bottom. The top image intentionally does not show the size of each point in order to
better represent the overall point density. Notice that the tessellator’s “split and dice” algorithm
adapts discretely to the variations in desired point size / density. Surface patches in-view are
tessellated into almost pixel-size points Patches out-of-view are tessellated with fewer and fewertessellated into almost pixel-size points. Patches out-of-view are tessellated with fewer and fewer
points based on distance to the camera frustum, with a rate of decay that is proportional to the LOD
cut picking metric. This metric guarantees a faithful maximum possible level of detail outside of the
camera frustum with an optimal number of points and consequently does not introduce any flickering
in animations.

38



During the course we show animations of a camera-traveling scene rendered with PBGI and the point
generation technique described in the previous slides We also show the point distributions generatedgeneration technique described in the previous slides. We also show the point distributions generated
with this technique animated over time. This slide shows the point distribution for two different
frames. The camera is in solid red and the camera frustum is semi-transparent red.

39



To support stereo cameras, the algorithm must be applied for each eye since the camera frustum of a
stereo camera may be non-convex (due to stereo convergence).

Since we are generating points, we don’t need to generate water-tight tessellated surfaces and any
operations related to stitching, if any, can be disabled during tessellation. This may avoid unnecessary
tessellation constraints required to enforce stitching, and help reduce further the point count.

Our point generation technique will produce at least one point per primitive. In cases where less
points than primitives are desired, it is possible to apply “russian roulette” and kill points
probabilistically (ex: small primitives really far from the camera). In our system we also modify our
geometry generators to output less primitives and larger points according to user settings (ex: fur,
grass, foliage).

In our pipeline, the effects animators also generate point cloud animations containing bright fire or
explosion particles. These are used to light the scene geometry and greatly help integrate fire effects
dynamic illumination within the overall scene lighting.

40



Point clustering works by sorting points into an octree and projecting each point’ directional
representation into spherical harmonics (SH) bases. The projection can be expensive with many

i d f h l d h li h ’ kfl F l h i i d l dpoints and further slow down the lighter’s workflow. Fortunately, each point is represented as a scaled
and oriented “cosine lobe”, which is a radially symmetric function around the point normal. This
function can therefore be projected into SH with just a few multiplications by using Zonal Harmonics
rotation, as described in [Sloan et al. 2005].

In our system we also keep track per cluster of the average position of the underlying points. This is
more accurate than considering the octree-cell center, and can produce smaller cuts when shading
convex objects as less clusters will bleed “above the horizon”convex objects as less clusters will bleed above the horizon .

41



Here is an example from “Shrek forever after” rendered using PBGI. During the course we show a
video with this shot in animation as well as the animated point distribution that was used to rendervideo with this shot in animation, as well as the animated point distribution that was used to render
this shot.

Lighting credit: Pablo Valle, William Arias

42



PBGI was used extensively on “How To Train Your Dragon” to bake fur ambient-occlusion. The
baked occlusion is then used to compensate for the lack of fur occlusion when using ray tracingbaked occlusion is then used to compensate for the lack of fur occlusion when using ray-tracing
based bounce lighting, when fur-less character geometry is ray-traced. This pipeline adds a lot of
detail in all the characters hair, beards and furs and leverages the strengths of both GI systems.
During the course we will show a few shots from the film that illustrate the technique.

43



The technique can also be extended to foliage. This is an example of PBGI ambient-occlusion on a
complex large scale forest scenecomplex large-scale forest scene.

44



This is an example of dynamic fire particles, lighting the scene geometry. During the course we will
show the shot in animation with the fire particles falling down and producing a very consistentshow the shot in animation with the fire particles falling down and producing a very consistent
lighting.

Lighting credit: Onny Carr, Igor Lodeiro, Udai Haraguchi, Mark Edwards

45



This is another example of fire lighting and occlusion using PBGI. The yellow lighting inside the
dragon’s mouth on the crowd on the rocks and on the boats is mostly coming from the FX firedragon s mouth, on the crowd, on the rocks and on the boats is mostly coming from the FX fire
particles. During the course we will show the sequence in animation.

Lighting credit: Igor Lodeiro, Bert Poole

46



We compare the performance of both of our systems on two test scenes. The scenes have a mix of flat
surfaces where ray tracing with irradiance caching performs really well and higher frequency detailsurfaces where ray-tracing with irradiance caching performs really well and higher frequency detail
where PBGI is better suited. Both PBGI and ray-tracing quality settings were adjusted to achieve
comparable visual quality.

Render times are provided for the frame total render time on a single Intel Xeon core 2.93 Ghz, and
includes all the pre-processing steps required by each technique, for an image resolution of 2k x 1k
pixels. The total render time is usually much faster when using many cores, but providing results on a
single core offer a better reference for comparison.single core offer a better reference for comparison.

47



Notice how with PBGI the front of the car is slightly over-occluded compared to the raytraced image. 
The over occlusion is due to the approximate PBGI clustering but doesn’t represent an objectionableThe over-occlusion is due to the approximate PBGI clustering, but doesn t represent an objectionable 
artifact. PBGI is about 2x faster than ray-tracing In this case.

48



Similarly, here is the bounce lighting example showed earlier in the slides.

49



PBGI is more than 4x faster than ray-tracing in this example.

50



Finally, we summarize the advantages (Pros) and drawbacks (Cons) of PBGI compared to ray-tracing 
based GIbased GI

51



PBGI at lower quality settings generates a biased solution, whereas ray-tracing based GI generates
noise At high quality the bias will be reduced and may shift lighting intensities unexpectedly Noisenoise. At high quality, the bias will be reduced and may shift lighting intensities unexpectedly. Noise
on the other end is more predictable as it will consistently converge to the same noise-free estimate.
This makes it less predictable to work interactively with low quality settings with PBGI.

It is not obvious if it is possible to efficiently generate lazily the point or cluster representation for a
specific octree-cell and a specific LOD level. So far we rely on pre-processing of all the geometry
and therefore need to output points according to the maximum needed LOD. This is not optimal and
potentially we need to deal with too many points for surfaces that may be back-facing or occlusion-potentially we need to deal with too many points for surfaces that may be back facing or occlusion
culled.

Order 3 Spherical Harmonics can only faithfully represent low frequency directional information.
Rotating each point before the projection or clustering several points together with different
orientations and power might create ringing problems that may show as errors in the reconstructed
signal. Additionally, using HDR

environment maps with small hot spots (i e a sun light) or assigning high power to small objects inenvironment maps with small hot spots (i.e. a sun light) or assigning high power to small objects in
the scene creates spikes of light. Since the cut picking algorithm does not use bi-linear or tri-linear
interpolation across octree cells or levels, this can result in "cluster jumps" along the cut that show as
circular banding artifacts in the indirect illumination. This happens only occasionally in the most
extreme lighting cases.

With PBGI, the fundamental decision is to treat geometry as colored pixel-sized points. In many
cases with flat surfaces or with less surface texture detail, the point representation can use much more

52

p p
memory than a coarse polygonal representation, as mentioned in earlier slides. The need for an out-
of-core implementation appears with simpler scenes with PBGI than it does with raytracing. This is
not a serious limitation though, especially since production scenes tend to have a lot of high
frequency surface detail. Furthermore, to PBGI’s credit, ray-tracing-based GI does also rely on out-
of-core access of the texture data and in some implementations of the geometry and acceleration
structures.



Besides harsh requirements, GI remains very valuable for animated film production lighting. We’ve
analyzed both ray tracing and point based GI approaches and provided insights on the tradeoffs andanalyzed both ray-tracing and point-based GI approaches and provided insights on the tradeoffs and
example usage of both techniques in a production environment.

Overall, ray-tracing is more appropriate for applications seeking higher accuracy or when scenes
have large flat surfaces without too much high-frequency texture detail. Points offer a close
approximation and are a very appealing alternative for film production. Both approaches produce
images that are visually very similar, but point-based GI produces very stable images more efficiently
while handling higher scene complexity.while handling higher scene complexity.

Even if all diffuse and semi-glossy GI effects are rendered using PBGI, ray-tracing is still needed for
rendering sharp reflections, refractions or shadows. With this in mind, production rendering engineers
might find it a good choice to implement a ray-tracer that is especially optimized at tracing packets of
very coherent rays.

53



[Christensen et al. 2003]: Per H. Christensen, David M. Laur, Julian Fong, Wayne L. Wooten, Dana 
Batali "Ray Differentials and Multiresolution Geometry Caching for Distribution Ray Tracing inBatali, "Ray Differentials and Multiresolution Geometry Caching for Distribution Ray Tracing in 
Complex Scenes", pp. 543-552 in Computer Graphics Forum (Eurographics 2003 Conference 
Proceedings), Blackwell Publishers, September 2003

[Christensen 2008]: Per H. Christensen, "Point-Based Approximate Color Bleeding", Pixar Technical 
Memo #08-01, July 2008

[Křivánek et al. 2008]: Jaroslav Křivánek, Pascal Gautron, Greg Ward, Henrik Wann Jensen, Eric 
Tabellion Per H Christensen "Practical Global Ill mination With Irradiance Caching" ACMTabellion, Per H. Christensen, "Practical Global Illumination With Irradiance Caching", ACM 
SIGGRAPH 2008 Class, Los Angeles, August 2008

[Mirtich 1998]: Brian Mirtich, "V-Clip: fast and robust polyhedral collision detection", ACM 
Transactions on Graphics (TOG), v.17 n.3, p.177-208, July 1998

[Sloan et al. 2005]: Peter-Pike Sloan, Ben Luna, John Snyder, "Local, deformable precomputed 
radiance transfer", ACM Transactions on Graphics (TOG), v.24 n.3, July 2005

[Tabellion and Lamorlette 2004]: Eric Tabellion, Arnauld Lamorlette, “An approximate global 
illumination system for computer generated films”, ACM Transactions on Graphics (TOG), v.23 n.3, 
August 2004

[Ward and Heckbert 1992]: Greg Ward, Paul Heckbert, "Irradiance gradients", Third Eurographics 
Workshop on Rendering, 1992, pages 85--98.

54



I would like to acknowledge the people listed on this slide, who have contributed to valuable ideas or
helped with the development of our GI systems A large part of the credit also goes to the lighters andhelped with the development of our GI systems. A large part of the credit also goes to the lighters and
CG supervisors who have used and pushed the limits of our tools in production and with them
produced the beautiful images we can find in these slides and in DreamWorks’ movies.

Monsters vs. Aliens, Kung Fu Panda, Shrek, Shrek The Third, Madagascar, Madagascar: Escape To
Africa®, Shrek 2, How To Train Your Dragon, Shrek Forever After TM & © 2010 DreamWorks
Animation LLC. All Rights Reserved.

55


