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Point‐based global illumination is now a standard tool for film‐quality renderers. Since it
started out as a real‐time technique it is only natural to consider using it in video games
too.
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I hope that relating what I learned from the efforts of adding PBGI to three different game
engines will be useful. I would like you to come away with an idea of the results you can
achieve and what it takes to add PBGI to a game engine (or other real‐time application).
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For all three projects there were some very ambitions goals. All projects needed GI in
dynamic environments and deformable geometry. One had destructible environments.
Also, we wanted to use the same lighting for characters and the environment. Since 1996
when lightmaps were introduced in he video game “Quake”, artists have had to deal with
trying to match dynamic lighting on characters to the pre‐baked lighting of the
environment. It’s a lot of work and it never looks quite right.
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We wanted indirect lighting, of course, but we also wanted area lights. Unlike film
renderers, real‐time renders don’t usually support area lights because of computation cost.
We threw in subsurface scattering because we knew we could use the same sample points
for it. We knew we could use standard real‐time techniques to handle the short scatter
distances, but they don’t handle light traveling through the surface. We wanted to handle
light shining though ears, fingers, wings etc.

Normal mapping support is a must. Practically everything is normal mapped in games these
days. Also we wanted to support specular material properties without using environment
mapping.
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This slide illustrates one of the major features: indirect lighting. The image on the left is lit
with direct light only. The one on the right adds indirect lighting. See the color bleeding
from the balls to the character’s face.
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Area lights is another major feature. If you can handle indirect lighting then area lights of
any shape are simple. You just set the material to emit light regardless of what light it
receives.
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Subsurface Scattering is the third major feature. The hand on the left has no SSS. The SSS
results rendered in the center image are added to get the image on the right. We specify
the subsurface scatter using a per‐component distance value. It may not be as precise as
other methods, but the end result is better because it is easy to understand and control.
Hand sampled at only 225 points.
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The PBGI approach we take is based on disk‐to‐disk radiance transfer. We save the
irradiance results so we can avoid recomputing them in static areas. Also, it allows us to
use them as a starting point when solving for irradiance for the next frame.

We don’t compute ambient occlusion since it takes just as much time as indirect lighting
and we can achieve the same results with area lights. Ambient occlusion is only used to
pre‐compute occlusion data related to normal mapping.

Also, point‐based ambient occlusion is prone to artifacts that are noticeable whenAlso, point based ambient occlusion is prone to artifacts that are noticeable when
animated. Doing the necessary work to remove the artifacts is computationally expensive.
Disk‐to‐disk radiance transfer, on the other hand, does not have that problem because it
includes a cosine falloff term. A point crossing into or out of the visible hemisphere of
another point will not cause “popping”.
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A major difference between our real‐time approach and a film based approach to GI is the
use of negative emittance. It’s a very inexpensive way to avoid explicit visibility calculations.
Each sample point’s emittance is positive in the direction of its normal and negative in the
opposite direction. We get a GI result by solving a set of simultaneous equations.
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It may seem like an exaggeration to suggest an infinite bounce solution. However, in
practice the GI solution converges vary quickly. Here we see that GI for a fairly complex
data converges in only 5 iterations. After one iteration we see only direct light (from sky
light) and no shadows.
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After a second iteration we start to see shadows, but they are too dark. The indirect
reflection is too bright in spots too.
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The difference between 4 iterations and 5 is barely visible.
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6 iterations yields the same result as 5 except for some LSB difference. The results
converged at 5 iterations.
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The biggest obstacle that we had to face is that we only have 5 milliseconds to compute the
GI for each sample point. We were working on a game engine not a tech demo. We could
not afford to take up all the processing power/time just for GI. There are lots of other
things the game engine has to do: physics, animation, running scripts, etc. not to mention
rendering the frame.

5 ms only lets us solve for the irradiance (amount of light received) at about 10k samples
points, depending on the target hardware and other factors. (assuming that we use frame‐
to‐frame coherence to speed up the solve). That’s not a lot of time. Using a light‐mapping
type approach was out of the question. We would need orders of more samples to do that.

Even creating one sample per vertex of each surface’s mesh is impossible. The game
renders hundreds of thousands of triangles per frame.
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One of the engines uses subdivision surfaces for everything and they are tessellated on the
fly. An easy solution is to create samples on the subdivision surface control mesh and
interpolate the GI results with the tessellator.

The other 2 engines used polygons for everything. They had LOD support, but it was based
on decimating a high‐resolution mesh. Typical characters in the game were 4k to 8k
triangles at the highest LOD. We ended up using a sample proxy mesh scheme. We could
use a low detail version of the mesh to sample and then interpolate the results for the
render mesh.

We could not afford to subdivide floors enough to get good contact (or near contact)
shadows from small items (like feet) without blowing our sample budget. We chose a per‐
pixel technique to handle that scenario.
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The per‐pixel GI technique works by running a code in the surface shader that looks at the
sample points and calculates the radiance transfer from them. It looks at the sample data
after the GI solution is solved so it knows how much light is reaching each sample. Since it
is run on every pixel (of the desired surface) it cannot afford to traverse the entire sample
hierarchy. Instead we require the artist to indicate what parts of surfaces will come in close
contact and only the corresponding samples are considered in the shader.

In the image on the left the samples on the floor are good enough to receive proper
lighting except around the feet, which seem to be ignored. In the image on the right the
floor is rendered with per pixel GI enabled creating a nice contact shadow under the feet.
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Instead of computing a single irradiance value per sample we calculate three, looking in
three different directions around the normal. Using multiple irradiance values lets us
extrapolate an irradiance value for any direction. (Yes, extrapolate. The weighting values
can be less than 0 and greater than 1).

Having 3 irradiance values lets us support normal mapping (one of our requirements). It’s
also used for upsampling from the sample mesh so we can take into account the render
mesh’s normals.

Also, it lets use a cheap and easy hack to support specular material properties without
having to resort to environment maps.
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For engine integration we basically treat the PBGI system like a physics simulator. We set all
the sample information in world space. We don’t allow geometry instancing (since each
version of an object needs its own attributes and results). Also, we need to work with the
entire environment, not just what is visible. Light reflecting off a red wall should not
disappear just because the wall is not visible.

Once the GI solver is run we up‐sample (or tessellate for subds) the 3 irradiance values (3
components each) and the SSS value into the vertex stream for render.
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All attributes of each sample (position, normal, tangent, area, reflection color etc.) are
cached along with the last irradiance result. That way only the attributes that change each
frame need to be written into the sample hierarchy.

Since the results are cached portions of the samples can be skipped to improve
performance. Generally only used for static parts of the scene.

Caching the results lets the solver start with an approximation closer the final solution than
all black. Generally it takes 4‐5 passes for convergence, but one pass is generally fine whenall black. Generally it takes 4 5 passes for convergence, but one pass is generally fine when
starting from a previous solution.
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Computing the diffuse term in the surface shader using the three irradiance values at that
point is pretty straightforward. If there is no normal map then average the three values and
multiply them by the diffuse color. If there is a normal map then convert the normal to
three irradiance coefficients using a fixed texture map like the one pictured in this slide.
The coefficients need to multiplied by 2 and biased by ‐1/3 then multiplied by their
corresponding irradiance value and summed together then multiplied by the diffuse color.
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The specular term is created using the same 3 irradiance values. In this case they are
treated as the intensities of 3 directional lights oriented around the normal. Specular
lighting is computed using the Phong reflection model’s specular term for each of the
“lights” added together.
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We use the raw normal map data to look up the irradiance coefficients. The diffuse result is
simply the diffuse color times the sum of the irradiance values multiplied by their
corresponding coefficient.

The irradiance direction vectors are constant in tangent space. We consider them to be
pointing away from the surface so we negate their x and y components to create reflection
vectors for them.

We use the normal and tangent vectors as a basis to convert the view vector to tangentWe use the normal and tangent vectors as a basis to convert the view vector to tangent
space. The dot product of that vector with each irradiance vector taken to the power of
“smoothness” gives the intensity coming from each of these virtual directional lights. We
use the corresponding irradiance value to “color” the intensity and multiply the total by the
material’s specular color.

25



Out GI solver implementation uses negative radiance to handle visibility, basically casting
very soft shadows. Since radiance is subtracted from a different point from where it was
originally generated it is impossible for it to cancel perfectly. The result can be light leakage
and color shift. Usually these artifacts are not noticeable, but if they do crop up there are
ways to fix them.
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Here is a corridor lit using area lights at the far end.
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As the door closes light leakage is not noticeable since there is still light shining through the
opening.
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Once the door is completely shut, though. It is obvious that the room should be completely
dark, but it is not. Artists can fix this problem by increasing the shadow intensity of the
point samples in the door. (or never have completely dark room. How can I play this game if
I can’t see anything?)
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This next problem is trickier. Here we have a corridor lit with area lights. The lights at the
far end are red.
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As the door closes we see a cyan shift near the top of it cause from subtracting too much
red.
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Once the door is completely closed the cyan shift is greater near the top of the door, but
there is red light leaking through the bottom of the door. Artists can try to solve this
problem by adjusting the shadow intensity values, but there is a better way.
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If the samples of the two parts of the corridor are placed into separate groups then we can
set there dependencies such that there will be no light leaking through (positive or
negative). We simply set the dependency between to two groups to 1 when the door is
open and 0 when the door is closed.
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Grouping clusters of samples is a great way to control lighting, improve performance, and
manage large game levels. (A cluster of samples are the samples from a single model or
mesh).
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Once the PBGI system was in place artists removed most of the conventional lighting. Some
they replaced with area lights. Others were simply no longer needed once indirect lighting
was added. Some of the engine performance lost adding PBGI was recovered by reducing
the number of lights.

The artists did play with the reflection color and shadow intensity of samples to get look
they wanted, but mostly they used the default values.

These last two points are suggestions really. The artists did not really modify the geometryThese last two points are suggestions really. The artists did not really modify the geometry
for lighting and did not bake occlusion for composite objects as much as I would like.
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Adding proxy meshes did not really affect the art pipeline since we made it basically
automatic. We did allow the artists to specify the LOD of the point sample mesh or supply a
custom mesh if they wanted too, though.
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We were able to use point based GI, which has become so popular in feature films, to
improve lighting in video games. Specifically, we were able to add support for area lights (of
any shape), indirect lighting, and improved SSS in fully dynamic environments.

However, due to the severe time‐restraint of having to render in real‐time, our
implementation is quite different from what is used for film rendering. Specifically, we use
negative radiance instead of explicitly calculating visibility. Also, we cache the irradiance
result to take advantage of frame‐to‐frame coherence, and to save calculating irradiance in
static regions. We also allow artists to set dependencies of groups of clusters to reduce
computation time (and artifacts caused by negative radiance).

Lastly, we deal with sparse sampling by relying on occlusion maps (or bent normal maps)
and using per pixel GI to handle contact (or near contact) shadows.
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