Pre-computing Lighting in Games

David Larsson

Autodesk Inc.




What is baked lighting?

Precompute lighting information for static scenes and lights

Typically baked to
= Vertices
= Textures
= Light probe points in space for relighting of dynamic objects

Most common approach to get access to Gl in games

Independent of Gl algorithm
= As long as it works in texture space

Precomputed lighting is a general concept. This presentation focuses on the static light,
static geometry case. Ambient occlusion and PRT, etc are also baked “lighting”.

The idea is to move the heavy part of the light computations into the game studio in order
to save runtime cpu and gpu time for other things.

In the end it’s about delivering 30 or 60 frames per second and that doesn’t leave you with
much margins, games is still all about smoke and mirrors.

Baked lighting is independent is independent of choice of Gl algorithm and can also store
direct lighting.



What is baked lighting?

Wireframe scene

Content courtesy.of A2M

Autodesk




What is baked lighting?

Diffuse Reflectance scene Diffuse Reflectance in UV space

Content courtegy,,ﬁf A2M

——

Autodesk




What is baked lighting?

Lighting only Scene Lighting only in UV space

Content courtesyof A2M

——

Autodesk

Diffuse light is view independent, suitable for light maps.
Specular effects frome baking are possible. It will be covered later in the presentation



What is baked lighting?

Content courtesy of AZM

——

Autodesk




Why bake lighting?

= Quality
= Performance

« Lighting Workflow




(@]TE1114Y

= Allows the highest quality light simulation algorithms
= Gl effects
= Multiple bounces
= Allows high quality direct lighting




Image from Mirrors Edge, by EA DICE

Autodesk

Note the color bleeding affecting the white object in its yellow environment.
Note the blue sky lighting that is the major source of lighting in the shadows
Note the shadow penumbra in the sun shadow.

All these effects would be expensive to simulate in realtime



Workflow

= Baked lighting is a way to give artists access to Global Illumination (Gl)
= Define the lighting in terms of actual light sources
= No artificial fill lights
= Decouples lighting from the geometry/materials

= Baked Lighting allows a richer set of light sources
= Physically based Soft Shadows
= Shadow Casting HDR light probes

Gl is a powertool for lighting. Less Manual work.

We have seen examples of literally thousands of light sources to simulate an overcast sky
environment for an outdoor level

Placing manual bounce lights forces change of lighting if you change involved materials and
geometry.

Gl encourages reuse of scenes since you can change the look of an environment by just
changing the lighting conditions

Examples of light sources that are hard to run in realtime: Emissive objects, lights with soft
shadows, HDR domes with shadow casting.

10



Performance

Runtime performance very good
« Independent of light setup
Independent of Gl algorithm
Good looking light maps run with the same performance as poor looking ones

The runtime performance is about one or a few texture fetches per shading sample. The
fetches are done in a cache friendly way, it’s not about abusing a texture for a data
structure that was never meant to be stored in a texture.

11



Predictable Performance

= Runtime performance tends to be very robust
« Artists can add as many lights as they want

» Realtime shadow map performance and Gl less predictable
« Light angle and position affects the performance of the shadow rendering
« Player position affects what lights needs resolution

Predictable performance is important.

Don’t want the game runtime performance to be different because an artist happened to
add too many lights in a small area. Game Engines often have hard limitations on how
many lights that can affect an object which can give strange results.

Some games uses a higher sun direction for the shadows than for lighting in order to make
sure the shadows aren’t cast over the entire scene at sunrise/sunset times. With baked
lighting the performance is the same regardless of this.

12



Scalable Performance

= Worked in Quake 1
« Used on handheld devices today

Used in today's high end games

On low end platforms baked lighting is the most effective way to get good looking lighting.

13



Challenges

= Changing Light Setups
Moving/Deformed Geometry

= Memory Usage for the Baked Lighting

= Light Rebuild Times

14



Memory Usage

Lighting is global

Material textures
= Instances share material textures
= Multiple objects can share textures
= Textures can be tiled and mirrored

Lighting textures

= Must be unigue per instance

» Cannot be tiled, mirrored etc

= Possible to optimize resolution based on resolution requirements

Reference on memory usage for lightmaps

Texture memory is scarce on game consoles and making good use of it is important.
Lighting is different from many other kinds of textures.
Lighting is HDR too which makes texture format choice or encoding even more important.

15



Normal Maps and Light Maps

Normal maps are great for increase the geometry detail level
« Normal maps introduces high frequency details in the lighting

High frequency lighting requires high texture resolution

Normal maps forces the resolution of the light map to the same as the normal map in order
to capture the details.

16



Directional Light Maps

Details are in the geometry, not in the incoming lighting
« Store the hemisphere of incoming light per texel in the light map

« Allows approximation of lighting for different normal directions

The first point is somewhat simplified, there is of course a self shadowing aspect of the
normal map and fine geometric details

17



Directional Light Maps

Content courtesy of A2ZM

Autodesk

18



Directional Light Maps

« Typical Encodings
= Radiosity Normal Maps (RNM)
= SH (generally 2 bands, 4 components)
= Per pixel ambient and directional light
= H-basis

= Allows real BRDF:s

= Hemisphere is blurry but it's possible to get reasonable specular effects from it too

= References

=

19



Changing Light Setups

= Possible to bake different times of days
= Combinatorial explosion if introducing more changeable lights

= Treat moving and intensity changing lights like ordinary runtime lights

= Good for explosions or lights that flicker
= No indirect lighting

Daylight cycles are manageable to precompute since they tend to be the main source of

lighting in outdoor scenes.
There is no problem combining dynamic and baked lighting so if there are lights that just

can’t be baked, it’s easy to treat them independently.

20



Changing Geometry

= Separate between local and global changes

= Local
= Characters moving in a room
= Small furniture
= Bullet holes

= Global

= Destroyed buildings
= Destroyed walls

21



Local Geometry Changes

= Two sides of the problem
= How is the object affected by the environment?
= How does the object affect its environment?

Generally solved without considering how the object affect the indirect lighting in its
surrounding.

22



Autodesk

The Naive approach is just adding direct lighting to moving objects. Tends to make
characters to look out of place. Also in regions where no direct light reaches, the characters
are completely black.

Light probes solves these problems elegantly and gives a nice pipeline for lighting
characters and other moving objects.

Some games keep key lights out of the light probes and add them as more traditional direct
lights.

23



Incoming Light on Moving Objects

= Bake light probes in the room

« Use the closest ones to light the object
= Approximate the incoming lighting as one light probe for an entire object
= Works well on objects small compared to the environment
= Very large objects may need special treatment

« Encodings
= Spherical harmonics (typically 3 bands)
» Cube map with 1 pixel per side
= Single ambient color

A light probe in this case means a representation of the incoming light for an arbitrary point
in space.

24



Moving Objects Affecting the Environment

Direct lighting lighting in light probes optional
= Allows self shadowing on dynamic objects
= Allows the object to cast shadow on the environment

= Possible to extract strongest light direction from light probes too

= Described in
= Gives the possibility for self shadowing from indirect lighting

« Some titles only bake indirect light for lights where character shadow on
environment is a big deal

Indirect lighting from characters generally insignificant

Subtracting a dynamic shadow of a light baked into a light map is not trivial.

Common to just multiply the light map color with a darkening factor.

More advanced would be to subtract the shadow from the lighting in case the light is not
already occluded by the environment but it can give seams since the shadow border from
the realtime and the bake shadow doesn’t necessarily match up perfectly.



Global Geometry Changes

Highly dynamic games tend to avoid global baked lighting

« Other subsystems tends to rely on or perform better on static geometry as well
= Path Finding
= Collision Detection
= Game story often requires players following certain paths

26



Hybrid Solutions

= Bake only indirect lighting
= Indirect light generally smoother than direct lighting
= Sharp shadows needs higher texture resolution

= Special treatment of the sun
= Sunlight is often the most influential light for outdoor scenes
= Direct sunlight often a source of sharp shadows and dynamic range differences
= Bake indirect only from the sun, add direct as a runtime light

Most games are hybrids to some extent. Some lights or components of some lights are

computed as dynamic lights.
Games having key lights outside the light maps often uses standard one component (as
opposed to directional) light maps for the baked lighting. This saves them memory and the

key lights will contribute with normal map and specular effects.

27



Pipeline

Level and lighting workflow

Level

Assembling SalLEGY

Asset Creation

Breakdown of the Light Baking phase

Light Map Texture

Rendering AU=sg Compression Data import

Scene Export

Not necessarily a one way process but changes in the assets or the scene assembly forces
light builds. Scene assembly and lighting are iterative processes.

Asset Creation, tends to happen inside Maya, Max etc for meshes and paint programs for
textures.

Scene Assembly, happens in a dedicated game editor or Maya, Max, or other modeling
programs.

Lighting, happens inside the game editor and must happen when the entire scene is
assebled since it is a global effect where everything can affect everything.

UV Atlasing refers to the process of creating a few large textures from many small. This
gives no limitations on texture sizes, reduces number of texture switches when rendering
and allows different objects uv spaces to overlap as long as no baked information overlaps.

28



Pipeline implications

= Light build stage can be time consuming

= In the magnitude of CPU hours
= Dependent on algorithm, resolutions, level size, light setup, number of bounces etc

= Tools to speed things up
= Selective Light Builds
= Preview Quality Builds

= Preview Tools
= Camera render tools
« Progressive light map generation

= Distribution

« Automatic rebuilds to make sure lighting is always up to date

Tools to shorten the iteration times makes a big difference for artist productivity.

Being able to work on a room at the time can be an effective way of shortening iteration
times.

Doing camera renderings inside the offline renderer can give fast previews. It also exposes
any differences in what was exported and what the Gl result was.

Distribution can dramatically cut render times.

<ShamelessProductPromotion>Check out Ernst from Autodesk for a cool preview tool for
light map baking</ShamelessProductPromotion>

Automatic rebuilds is a convenient way to make sure there is always up to date lighting for
the scene available after geometry modifications.

29



Pipeline Implications

= Clear separation of what is static and dynamic
= Both for Lights and Geometry

= Tools for placing and managing light probes in levels
= Grids
= Hierarchical grids
= Arbitrary points

« Tools for managing texture resolutions and bake type

30



Pipeline Implications

= Tools for managing Gl specific light source properties
= Scale factors for direct and indirect lighting in order to exaggerate and separate light contributions

= Tools for managing Gl specific material properties

= What gives good glow effects and the right look on screen is not necessarily giving the desired light
emission on the environment

= Increase or decrease overall reflectivity for scenes

These are just examples. Even if Gl should give automatic realism, artists will always want
control of the exact end results.
Too much artist control can make things less realistic. Lots of SSIGGRAPH 2010 presentations

praised energy conserving materials since they guarantee a consistent look and levels for
content.

31



Pipeline Implications

= Texture baked shapes needs unique UV
« Possible to automate to some extent
= Content that is easy to unwrap is preferable
= Keep details in the normal map layer if possible

= Vertex baking is common

= No seams because of insufficient texture resolution
« Normal maps together with directional light maps can help give details in low resolution lighting
= Not good with shadows and other lighting discontinuities inside polygons

Unwrapping can be done automatically, but good artists can improve the results with
manual work. Ideally the UV layout should be continuous where the surface is smooth and
discontinuous where the surface isn’t smooth to avoid bilinear filtering over sharp edges in
the lighting.

Unwrapping tends to work better on low polygon normal mapped geometry as opposed to
high detail meshes since folds and wrinkles should preferably end up as seams in the uv
layout. If doing this the UV layout will be constructed from lots of small islands which will
waste texture memory on padding.

Vertex baking is more common than most people thinks and supports directional light
maps too.

32



Questions?

33



