
In the previous talk, Jaroslav discussed the path integral formulation of light transport 
and demonstrated its conceptual simplicity and flexibility. I will now show how we 
can leverage this framework to seamlessly combine photon mapping and 
bidirectional path tracing via multiple importance sampling. 
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Bidirectional path tracing is one of the most versatile light transport simulation algorithms 
available today. It can robustly handle a wide range of illumination and scene configurations, 
but is notoriously inefficient for specular-diffuse-specular light interactions, which occur e.g. 
when a caustic is seen through a reflection/refraction. 
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On the other hand, photon mapping (PM) is well known for its efficient handling of caustics. 
Recently, Hachisuka and Jensen [2009] showed a progressive variant of PM that converges to 
the correct result with a fixed memory footprint. Their stochastic progressive photon 
mapping (PPM) algorithm captures the reflected caustics in our scene quite well. However, it 
has hard time handling the strong distant indirect illumination coming from the part of the 
scene behind the camera. 
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By using multiple importance sampling to combine estimators from bidirectional path tracing 
and photon mapping, the algorithm I will talk about today automatically finds a good mixture 
of techniques for each individual light transport path, and produces a clean image in the 
same amount of time. 
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Let us start by reviewing the techniques BPT and PM use to construct light transport 
paths connecting the eye and the light sources. 

 

The BPT techniques can be roughly categorized to unidirectional sampling (US) and 
vertex connection (VC). US samples a path by starting either from a light source or the 
eye, and performs a random walk until termination. On the other hand, VC traces one 
sub-path from the eye and another sub-path from a light source, and then connects 
their endpoints. 

 

In contrast, photon mapping first traces a number of light sub-paths and stores their 
hit-points (a.k.a. photons). It then traces sub-paths from the eye and uses photon 
density estimation to compute the outgoing radiance at the hit-points. 

5 



It has been long recognized that bidirectional path tracing (BPT) and photon mapping 
(PM) complement each other in terms of the light transport effects they can 
efficiently handle. However, even though both methods have been published more 
than 15 years ago, neither a rigorous analysis of their relative performance nor an 
efficient combination had been shown until very recently. The reason for this is that 
BPT and PM have originally been defined in different theoretical frameworks – BPT as 
a standard Monte Carlo estimator to the path integral, and PM as an outgoing 
radiance estimator based on photon density estimation. 

 

The first step toward combining these two methods is to put them in the same 
mathematical framework. We choose Veach’s path integral formulation of light 
transport, as it has a number of good properties (which Jaroslav discussed) and also 
because BPT is already naturally defined in this framework. 

 

We need two key ingredients: (1) express PM as a sampling technique that constructs 
light transport paths that connect the light sources to the camera, and (2) derive the 
probability density function for paths sampled with this technique. This will give us a 
basis for reasoning about the relative efficiency of BPT and PM. And more 
importantly, it will lay the ground for combining their corresponding estimators via 
multiple importance sampling. 
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Let us start by taking a simple length-3 path and see how it can be constructed 
bidirectionally. 
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We first trace one subpath from the camera and another one from a light source. 
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Now let’s see how we complete a full path in BPT and PM.  

 

Bidirectional path tracing (BPT) connects the subpath endpoints deterministically. We 
call this technique vertex connection. The PDF of the resulting full path is simply the 
product of the PDFs of two independently sampled subpaths. 

 

Photon mapping (PM), on the other hand, extends the light subpath by sampling one 

more vertex from x1, and makes a contribution if the photon hit-point x2
∗   lies within 

a distance 𝑟 from x2. And we can derive a similar path PDF for PM. However, we see 
that the two methods sample paths with a different number of vertices, and 
consequently their PDFs have different units. Plugging these PDF into MIS wouldn’t 
produce a meaningful result, because the heuristics expect all PDFs to be expressed 
w.r.t. the same measure. To obtain a meaningful MIS combination, we need to 
express these two PDFs w.r.t. the same measure. 
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Hachisuka et al. [2012] express the vertex connection PDF in the higher-dimensional 
space of photon mapping by considering the sampling of vertex x2

∗  via a random 
perturbation of the eye vertex x2 within an 𝑟-neighborhood. 
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Assuming that the surface in this neighborhood is locally flat, i.e. that the region is a disk, the 

PDF of x2
∗  is 1 𝜋𝑟2 . 
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Alternatively, we can keep the vertex connection PDF in its original form, and express 
the PDF of photon mapping in the lower-dimensional space of BPT. 

 

To do this, we can interpret the sampling process as establishing a regular vertex 
connection between x1 and x2, but conditioning its acceptance on the random event 
that a vertex x2

∗  sampled from x1 lands within a distance 𝑟 to x2. This probabilistic 
acceptance is simply a Russian roulette decision. 

 

The full path PDF is then the product of the subpath PDFs as on the left, but in 
addition multiplied by the probability of sampling the point x2

∗  within a distance 𝑟 of 
x2. This acceptance probability is equal to the integral of the PDF of x2

∗  over the 𝑟-
neighborhood of x1. 
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Again, assuming that this neighborhood is a disk, and also that the density of x2
∗  is 

constant inside this disc, the integral can be approximated by the PDF of the actually 
sampled point x2

∗ , multiplied by the disc area 𝜋𝑟2. 

 

We label this technique vertex merging, as it can be intuitively thought to weld the 
endpoints of the two subpaths if they lie close to each other. 

 

Note that while in the interpretation of Hachisuka et al. we had 𝜋𝑟2 in the vertex 
connection PDF denominator, it appears in the nominator of the VM interpretation. In the 
remainder of the discussion I will use the vertex merging interpretation, but the final 
combined algorithm I will present is identical with both interpretations. 
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Now that we have formulated the vertex merging path sampling technique, we can 
put it side by side with the already available techniques in BPT. There are two ways to 
sample a length-4 path unidirectionally, and four ways to sample it via vertex 
connection. Vertex merging adds five new ways to sample the path, corresponding to 
merging at the five individual path vertices. In practice, we can avoid merging at the 
light source and the camera, as directly evaluating emission and sensitivity is usually 
cheap. 

 

But with so many ways to sample the same light transport path, a question naturally 
arises: which technique is the most efficient for what types of paths? 
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To answer this question, let us first take a look at specular-diffuse-specular (SDS) paths. Here, 
bidirectional path tracing can only rely on unidirectional sampling: it traces a path from the 
camera hoping to randomly hit the light source. With vertex merging, we can trace one light 
and one camera subpath, and merge their endpoints on the diffuse surface. 

 

It can be shown that if the light source and the merging disk have the same area 𝐴, then 
unidirectional sampling and vertex merging sample paths with roughly the same probability 
density. This means that we should expect the two techniques to perform similarly in terms 
of rendering quality.  

 

We render these two images progressively, sampling one full path per pixel per iteration. For 
the left image we trace paths from the camera until they hit the light. For image on the right, 
we trace subpaths from both ends, and merge their endpoints if they lie within a distance 

𝑟 = 𝐴/𝜋 from each other. Both images look equally noisy, even after sampling 10,000 
paths per pixel. This confirms that vertex merging, and thus photon mapping, is not an 
intrinsically more robust sampling technique for SDS paths than unidirectional sampling. 

15 



However, the strength of vertex merging is computational efficiency – we can very efficiently 
reuse the light subpaths traced for all pixels at the cost of a single range search query. This 
allows us to quickly construct orders of magnitude more light transport estimators from the 
same sampling data, with a minimal computational overhead, resulting in a substantial 
quality improvement. 
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For all these three images we have traced roughly the same number of rays, and the only 
difference between the one in the center and the one on the right is that the for right image 
we have enabled path reuse, by storing, and looking up, the light subpath vertices in a 
photon map at every rendering iteration. 
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Now let’s look at another extreme example – diffuse illumination. Note that vertex 
connection (VC) constructs the edge between x1 and x2 deterministically, while 
unidirectional sampling (US) and vertex merging (VM) both rely on random sampling. 

 

Once again, it can be shown that if the light source and the merging disk have the same area, 
then US and VM sample this path with roughly the same probability density. 

 

For the specific case shown on this slide, this density is about 100,000 lower than that of VC. 
This demonstrates that VM is not an intrinsically more robust sampling technique than VC 
either. This is not surprising – if we recall the expression for the VM path PDF, we see that it 
can only be lower than that of the corresponding VC technique, as their only difference is the 
probability factor in the VM PDF, which is necessarily in the range [0; 1]. Still, by reusing 
paths across pixels, vertex merging, and thus photon mapping, gains a lot of efficiency over 
unidirectional sampling. 

 

All these useful insights emerge from the reformulation of photon mapping as a path 
sampling technique. 
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Even more usefully, we now have the necessary ingredients for combining photon mapping 
and bidirectional path tracing into one unified algorithm. The vertex merging path PDFs tell 
us how to weight all sampling techniques in multiple importance sampling, and the insights 
from the previous two slides command to strive for path reuse. 

 

The combined algorithm, which we call vertex connection and merging (VCM), operates in 
two stages. 

 

1. In the first stage, we 

a) trace the light subpaths for all pixels, 

b) connect them to the camera, and 

c) store them in a range search acceleration data structure (e.g. a kd-tree or a 
hashed grid). 

 

2. In the second stage, we trace a camera subpath for every pixel. 

a) Each sampled vertex on this path is connected to a light source (a.k.a. next 
event estimation), connected to the vertices of the light subpath corresponding 
to that pixel, and 

b) merged with the vertices of all light subpaths. 

c) We then sample the next vertex and do the same. 

 

In a progressive rendering setup, we perform these steps at each rendering iteration, 
progressively reducing the vertex merging radius . For details on this, please refer to the cited 
papers below for details. 
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Let us now see how this combined algorithm stacks up against bidirectional path tracing and 
stochastic progressive photon mapping on a number of scenes with complex illumination. 
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Here, we visualize the relative contributions of VM and VC techniques to the VCM image 
from the previous slide. This directly corresponds to the weights that VCM assigned to these 
techniques. 
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In summary, vertex connection and merging tries to combine the best of bidirectional 
path tracing (BPT) and (progressive) photon mapping. An important property of the 
algorithm is that it retains the higher order of convergence of BPT, meaning that it 
approaches the correct solution faster than PPM as we spend more computational 
effort (i.e. sample more paths). The asymptotic analysis can be found in the VCM 
paper. 

 

Even though VCM is a step forward in Monte Carlo rendering and has proven very 
useful in practice, it doesn’t come without limitations. Specifically, it cannot handle 
more efficiently those types of light transport paths that are difficult for both BPT and 
PM to sample. A prominent example are caustics falling on a glossy surface. 
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And on this kitchen scene, even though VCM brings practical improvements over BPT, 
there is still a lot to be desired from the caustics on the glossy surface. 

29 



30 



We have recently extended this work to support efficient rendering of various 
participating media, by augmenting it with various point- and beam-based volumetric 
light transport estimators. Please refer to the paper for more details. 
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