

Alexander Keller, Ken Dahm, and Nikolaus Binder

Light transport simulation

trace light transport path segments from the light and camera

Light transport simulation

- trace light transport path segments from the light and camera,
 - connect them by shadow rays

Light transport simulation

- trace light transport path segments from the light and camera,
 - connect them by shadow rays and/or proximity

Light transport simulation

- trace light transport path segments from the light and camera,
 - connect them by shadow rays and/or proximity

and sum up the weighted contributions of all light transport paths

Light transport simulation

- trace light transport path segments from the light and camera,
 - connect them by shadow rays and/or proximity

and sum up the weighted contributions of all light transport paths

Light transport simulation

- trace light transport path segments from the light and camera,
 - connect them by shadow rays and/or proximity

and sum up the weighted contributions of all light transport paths

Light transport simulation

- trace light transport path segments from the light and camera,
 - connect them by shadow rays and/or proximity

and sum up the weighted contributions of all light transport paths

- check out the state of the art report "Quasi-Monte Carlo Image Synthesis in a Nutshell"

Light transport simulation

sum up the weighted contributions of all light transport paths

Light transport simulation

sum up the weighted contributions of all light transport paths

Light transport simulation

sum up the weighted contributions of all light transport paths

Light transport simulation

- sum up the weighted contributions of all light transport paths
 - noise vanishing only slowly with increasing number of samples

Light transport simulation

- sum up the weighted contributions of all light transport paths
 - noise vanishing only slowly with increasing number of samples

Noise reduction by averaging contributions of close-by vertices

range search

- range search
 - initial radius r₀ proportional to distance of ray origin and location of averaging

- range search
 - initial radius r₀ proportional to distance of ray origin and location of averaging

- range search with radius r(n) decreasing with number n of samples
 - initial radius r₀ proportional to distance of ray origin and location of averaging

$$r(n) := rac{r_0}{\sqrt{n^\delta}} ext{ for } \delta \in (0,1)$$

- range search with radius r(n) decreasing with number n of samples
 - initial radius r₀ proportional to distance of ray origin and location of averaging

$$r(n) := rac{r_0}{\sqrt{n^\delta}} ext{ for } \delta \in (0,1)$$

- range search with radius r(n) decreasing with number n of samples
 - initial radius r₀ proportional to distance of ray origin and location of averaging

$$r(n) := rac{r_0}{\sqrt{n^\delta}} ext{ for } \delta \in (0,1)$$

- range search with radius r(n) decreasing with number n of samples
 - initial radius r₀ proportional to distance of ray origin and location of averaging

$$r(n) := rac{r_0}{\sqrt{n^\delta}} ext{ for } \delta \in (0,1)$$

Algorithm

- enumerate contiguous blocks of b^m light transport paths
 - for each light transport path store a selected vertex x_i with
 - its throughput α_i of the camera path segment and
 - its contribution c_i of the light path segment

Algorithm

- enumerate contiguous blocks of b^m light transport paths
 - for each light transport path store a selected vertex x_i with
 - its throughput α_i of the camera path segment and
 - its contribution c_i of the light path segment
 - for each vertex x_i determine the weighted average contribution

 $\bar{\boldsymbol{c}}_{\boldsymbol{i}} := \frac{\sum_{j=0}^{b^m-1} \chi_{\mathscr{B}(n)} \left(x_{s_i+j} - x_i \right) \cdot \boldsymbol{w}_{i,j} \cdot \boldsymbol{c}_{\boldsymbol{s}_i+j}}{\sum_{l=0}^{b^m-1} \chi_{\mathscr{B}(n)} \left(x_{s_i+j} - x_i \right) \cdot \boldsymbol{w}_{i,j}}$

of all vertices x_{s_i+j} in the block starting at index $s_i := \left\lfloor \frac{i}{b^m} \right\rfloor b^m$ inside the ball \mathscr{B} of radius r(n) around x_i

Algorithm

- enumerate contiguous blocks of b^m light transport paths
 - for each light transport path store a selected vertex x_i with
 - \cdot its throughput α_i of the camera path segment and
 - \cdot its contribution c_i of the light path segment
 - for each vertex x_i determine the weighted average contribution

 $\bar{\boldsymbol{c}}_{\boldsymbol{i}} := \frac{\sum_{j=0}^{b^m-1} \chi_{\mathscr{B}(n)} \left(x_{s_i+j} - x_i \right) \cdot \boldsymbol{w}_{i,j} \cdot \boldsymbol{c}_{\boldsymbol{s}_i+j}}{\sum_{j=0}^{b^m-1} \chi_{\mathscr{B}(n)} \left(x_{s_i+j} - x_i \right) \cdot \boldsymbol{w}_{i,j}}$

of all vertices x_{s_i+j} in the block starting at index $s_i := \left\lfloor \frac{i}{b^m} \right\rfloor b^m$ inside the ball \mathscr{B} of radius r(n) around x_i

- accumulate $\alpha_i \bar{c}_i$ instead of $\alpha_i c_i$

Algorithm

- enumerate contiguous blocks of b^m light transport paths
 - for each light transport path store a selected vertex x_i with
 - its throughput α_i of the camera path segment and
 - \cdot its contribution c_i of the light path segment
 - for each vertex x_i determine the weighted average contribution

 $\bar{\boldsymbol{c}}_{\boldsymbol{i}} := \frac{\sum_{j=0}^{b^m-1} \chi_{\mathscr{B}(n)} \left(x_{s_i+j} - x_i \right) \cdot \boldsymbol{w}_{i,j} \cdot \boldsymbol{c}_{\boldsymbol{s}_i+j}}{\sum_{j=0}^{b^m-1} \chi_{\mathscr{B}(n)} \left(x_{s_i+j} - x_i \right) \cdot \boldsymbol{w}_{i,j}}$

of all vertices x_{s_i+j} in the block starting at index $s_i := \left\lfloor \frac{i}{b^m} \right\rfloor b^m$ inside the ball \mathscr{B} of radius r(n) around x_i

- accumulate $\alpha_i \bar{c}_i$ instead of $\alpha_i c_i$
- consistent due to $\lim_{n\to\infty} \overline{c}_i = c_i$, because $\lim_{n\to\infty} r(n) = 0$

- only include contributions from x_{s_i+j} that could have been generated in x_i
 - input of 16 path space samples per pixel

- only include contributions from x_{s_i+j} that could have been generated in x_i
 - input of 16 path space samples per pixel filtered without weighting

- only include contributions from x_{s_i+j} that could have been generated in x_j
 - input of 16 path space samples per pixel accounting for similar normals
 - weights w_{i,j} in fact are similarity heuristics from irradiance interpolation

- only include contributions from x_{s_i+j} that could have been generated in x_j
 - input of 16 path space samples per pixel accounting for similar normals, reflectance
 - weights w_{i,j} in fact are similarity heuristics from irradiance interpolation

- only include contributions from x_{s_i+j} that could have been generated in x_j
 - input of 16 path space samples per pixel accounting for similar normals, reflectance, and visibility
 - weights w_{i,j} in fact are similarity heuristics from irradiance interpolation

- only include contributions from x_{s_i+j} that could have been generated in x_j
 - input of 16 path space samples per pixel accounting for similar normals, reflectance, and visibility
 - weights $w_{i,j}$ in fact are similarity heuristics from irradiance interpolation

- only include contributions from x_{s_i+j} that could have been generated in x_i
 - input of 16 path space samples per pixel

Select block size *b^m*as large as possible

- accumulating 16 passes
 - 1 path space sample per pixel

Select block size *b^m*as large as possible

- accumulating 16 passes
 - filtered across 1 path space sample per pixel

Select block size *b^m*as large as possible

- accumulating 2 passes
 - filtered across 8 path space samples per pixel

- results for
 - ambient occlusion

- results for
 - ambient occlusion, shadows

- results for
 - ambient occlusion, shadows, subsurface scattering

- results for
 - ambient occlusion, shadows, subsurface scattering, light transport simulation

- results for
 - ambient occlusion, shadows, subsurface scattering, light transport simulation across multiple cameras

Variable rate shading

trajectory splitting is costly

Variable rate shading

trajectory splitting is costly

Variable rate shading

trajectory splitting is costly, however, one may try to amortize cost by interpolation

Variable rate shading

trajectory splitting is costly, however, one may try to amortize cost by interpolation

Variable rate shading

Variable rate shading

mimicking trajectory splitting by path space filtering is consistent

Variable rate shading

mimicking trajectory splitting by path space filtering is consistent

Variable rate shading

- mimicking trajectory splitting by path space filtering is consistent
 - and allows for subsampling

Variable rate shading

- mimicking trajectory splitting by path space filtering is consistent
 - and allows for subsampling

Iteration

input at one sample per pixel

Iteration

input at one sample per pixel filtered once

Iteration

- input at one sample per pixel
 - after iterating the weighted average four times

Consistent and efficient variance reduction method

- stop-and-go rendering paradigm
 - no persistent artifacts
 - no re-render, especially for animations

Consistent and efficient variance reduction method

- stop-and-go rendering paradigm
 - no persistent artifacts
 - no re-render, especially for animations
- practical
 - orthogonal to any path space sampling based algorithm
 - two parameters

Consistent and efficient variance reduction method

- stop-and-go rendering paradigm
 - no persistent artifacts
 - no re-render, especially for animations
- practical
 - orthogonal to any path space sampling based algorithm
 - two parameters
- dual to photon mapping
 - weighted average vs. division by disk area
 - similar particle inclusion heuristics and transient artifacts

Courtesies

Models

- Cornell Box by Kevin Beason in smallpt
- Sponza by Marko Dabrovic, modified by Crytek
- Hairball by Samuli Laine
- Trees by http://www.laubwerk.com
- Lucy Statue from the Stanford 3D Scanning Repository
- San Miguel by Guillermo M. Leal Llaguano
- Fence by Chris Wyman

Note that image quality may have suffered from PDF compression.

