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Consistent Image Synthesis

Light transport simulation

⌅ trace light transport path segments from the light and camera

– connect them by shadow rays
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Consistent Image Synthesis

Light transport simulation

⌅ trace light transport path segments from the light and camera,
– connect them by shadow rays and/or proximity

P

L

Camera

and sum up the weighted contributions of all light transport paths

– check out the state of the art report ”Quasi-Monte Carlo Image Synthesis in a Nutshell”
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https://sites.google.com/site/qmcrendering/


Consistent Image Synthesis

Light transport simulation

⌅ sum up the weighted contributions of all light transport paths

– noise vanishing only slowly with increasing number of samples
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Path Space Filtering

Noise reduction by averaging contributions of close-by vertices

⌅ range search

– initial radius r0 proportional to distance of ray origin and location of averaging
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Path Space Filtering

Noise reduction by averaging contributions of close-by vertices

⌅ range search with radius r(n) decreasing with number n of samples
– initial radius r0 proportional to distance of ray origin and location of averaging
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for d 2 (0,1)
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Path Space Filtering

Algorithm

⌅ enumerate contiguous blocks of b

m light transport paths
– for each light transport path store a selected vertex x

i

with
⇧ its throughput a

i

of the camera path segment and

⇧ its contribution c

i

of the light path segment

– for each vertex x
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determine the weighted average contribution

c̄

i

:=
Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j ·cs

i

+j

Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j

of all vertices x

s

i

+j

in the block starting at index s

i

:=
j

i

b

m

k
b

m

inside the ball B of radius r(n) around x

i

– accumulate a
i

c̄

i

instead of a
i

c

i

⌅ consistent due to lim
n!• c̄

i

= c

i

, because lim
n!• r(n) = 0

5 A. Keller, K. Dahm, and N. Binder: Path Space Filtering



Path Space Filtering

Algorithm

⌅ enumerate contiguous blocks of b

m light transport paths
– for each light transport path store a selected vertex x

i

with
⇧ its throughput a

i

of the camera path segment and

⇧ its contribution c

i

of the light path segment

– for each vertex x

i

determine the weighted average contribution

c̄

i

:=
Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j ·cs

i

+j

Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j

of all vertices x

s

i

+j

in the block starting at index s

i

:=
j

i

b

m

k
b

m

inside the ball B of radius r(n) around x

i

– accumulate a
i

c̄

i

instead of a
i

c

i

⌅ consistent due to lim
n!• c̄

i

= c

i

, because lim
n!• r(n) = 0

5 A. Keller, K. Dahm, and N. Binder: Path Space Filtering



Path Space Filtering

Algorithm

⌅ enumerate contiguous blocks of b

m light transport paths
– for each light transport path store a selected vertex x

i

with
⇧ its throughput a

i

of the camera path segment and

⇧ its contribution c

i

of the light path segment

– for each vertex x

i

determine the weighted average contribution

c̄

i

:=
Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j ·cs

i

+j

Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j

of all vertices x

s

i

+j

in the block starting at index s

i

:=
j

i

b

m

k
b

m

inside the ball B of radius r(n) around x

i

– accumulate a
i

c̄

i

instead of a
i

c

i

⌅ consistent due to lim
n!• c̄

i

= c

i

, because lim
n!• r(n) = 0

5 A. Keller, K. Dahm, and N. Binder: Path Space Filtering



Path Space Filtering

Algorithm

⌅ enumerate contiguous blocks of b

m light transport paths
– for each light transport path store a selected vertex x

i

with
⇧ its throughput a

i

of the camera path segment and

⇧ its contribution c

i

of the light path segment

– for each vertex x

i

determine the weighted average contribution

c̄

i

:=
Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j ·cs

i

+j

Âb

m�1
j=0 cB(n)

�
x

s

i

+j

�x

i

�
·w

i ,j

of all vertices x

s

i

+j

in the block starting at index s

i

:=
j

i

b

m

k
b

m

inside the ball B of radius r(n) around x

i

– accumulate a
i

c̄

i

instead of a
i

c

i

⌅ consistent due to lim
n!• c̄

i

= c

i

, because lim
n!• r(n) = 0

5 A. Keller, K. Dahm, and N. Binder: Path Space Filtering



Path Space Filtering

Mimicking trajectory splitting

⌅ only include contributions from x

s

i

+j

that could have been generated in x

i

– input of 16 path space samples per pixel

⇧ weights w

i ,j in fact are similarity heuristics from irradiance interpolation
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i

– input of 16 path space samples per pixel accounting for similar normals, reflectance
⇧ weights w

i ,j in fact are similarity heuristics from irradiance interpolation
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Path Space Filtering

Select block size b

m

as large as possible

⌅ accumulating 16 passes
– 1 path space sample per pixel
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Select block size b
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Path Space Filtering

Select block size b

m

as large as possible

⌅ accumulating 2 passes
– filtered across 8 path space samples per pixel
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Path Space Filtering

Example applications

⌅ results for
– ambient occlusion

P

L
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Example applications

⌅ results for
– ambient occlusion, shadows
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Path Space Filtering

Example applications

⌅ results for
– ambient occlusion, shadows, subsurface scattering, light transport simulation across multiple cameras
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Extensions of Path Space Filtering

Variable rate shading

⌅ trajectory splitting is costly

– and allows for subsampling
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Extensions of Path Space Filtering

Variable rate shading

⌅ mimicking trajectory splitting by path space filtering is consistent
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Extensions of Path Space Filtering

Iteration

⌅ input at one sample per pixel

– after iterating the weighted average four times
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Extensions of Path Space Filtering
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Path Space Filtering

Consistent and efficient variance reduction method

⌅ stop-and-go rendering paradigm
– no persistent artifacts

– no re-render, especially for animations

⌅ practical
– orthogonal to any path space sampling based algorithm

– two parameters

⌅ dual to photon mapping
– weighted average vs. division by disk area

– similar particle inclusion heuristics and transient artifacts
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Courtesies

Models

⌅ Cornell Box by Kevin Beason in smallpt

⌅ Sponza by Marko Dabrovic, modified by Crytek

⌅ Hairball by Samuli Laine

⌅ Trees by http://www.laubwerk.com

⌅ Lucy Statue from the Stanford 3D Scanning Repository

⌅ San Miguel by Guillermo M. Leal Llaguano

⌅ Fence by Chris Wyman

Note that image quality may have suffered from PDF compression.
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