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Abstract 
Embree is a collection of high-performance ray tracing kernels, developed at Intel Labs. The kernels 
are optimized for photo-realistic rendering on the latest Intel® processors with support for SSE and 
AVX instructions. In addition to the ray tracing kernels, Embree provides an example photo-realistic 
rendering engine. The renderer is not intended to be a complete solution. Instead, it serves two 
purposes: (a) demonstrating how the ray tracing kernels are used in practice, and (b) measuring the 
performance of the kernels in a realistic application scenario.  

Embree is designed for Monte Carlo ray tracing algorithms, where the vast majority of rays are 
incoherent. The specific single-ray traversal kernels in Embree provide the best performance in this 
scenario and they are very easy to integrate into existing applications. The kernels can be used to 
develop new rendering engines on top of them, to replace the core of an existing renderer or simply 
as a benchmark. Embree is released as open source under the Apache 2.0 license. 

This document gives an overview of how the Embree code base is structured and how the example 
renderer is compiled and run. 

1 Introduction 
Monte Carlo ray tracing is the best know method for photo-realistic rendering. The algorithm is 
popular for professional applications, because it is robust, it supports physically accurate rendering, 
and it performs very well on modern multi-core processors. Typical applications include virtual 
prototyping, architectural visualization, and movie production.  

A major part of the runtime of a Monte Carlo ray tracer is consumed by geometric ray queries, i.e. 
finding the closest intersection along a ray, or determining if a ray hits any object at all. Embree 
provides the technology required to (a) efficiently perform these queries and to (b) efficiently build 
the underlying acceleration data structures. Embree may be used as the foundation of a new 
renderer or to improve or replace the ray tracing kernels of an existing application. 

Embree includes an example path tracing renderer implementing an API and a few simple test 
scenes. This makes it possible to do performance evaluations and comparisons in three different 
ways:  

• Plugging Embree's ray tracing kernels into an existing application 
• Plugging the ray tracing kernels of an existing application into Embree 
• Attaching an application to the Embree Rendering API 



    

3 
 

2 Getting Started 
Embree runs on Windows, Linux and MacOSX, each in 32bit and 64bit modes. The code compiles 
with the Intel Compiler, the Microsoft Compiler and with GCC. Using the Intel Compiler improves 
performance by approximately 10%. Performance also varies across different operating systems. 
Embree is optimized for Intel CPUs supporting SSSE3, SSE4.1, SSE4.2 and AVX. 

2.1 Compiling Embree 
For compilation under Linux and MacOSX you have to install CMake (for compilation) the developer 
version of GLUT (for display) and we recommend installing the ImageMagick and OpenEXR developer 
packages (for reading and writing images). To compile the code using CMake create a build directory 
such as embree/build and execute ccmake .. inside this directory. This will open a 

configuration dialog where you should set the build mode to “Release”, the SSE version to either 
SSSE3, SSE4.1, SSE4.2, or AVX, and possibly enable the ICC compiler for better performance. Press c 

(for configure) and g (for generate) to generate a Makefile and leave the configuration. The code 

can now be compiled by executing make. The executable embree will be generated in the build 

folder. 

For compilation under Windows we recommend using the Visual Studio 2008 or Visual Studio 2010 
solution files. You can switch between the Microsoft Compiler and the Intel Compiler by right clicking 
on the project and selecting the compiler. The project compiles with both compilers in 32bit and 
64bit mode. We recommend using 64bit mode and the Intel Compiler for best performance. When 
using the Microsoft Compiler, SSE4 is enabled by default in the code base. Disabling this default 
setting by removing the __SSE4_2__ define in common/sys/platform.h is necessary when 

SSE4 is not supported on your platform. Before you can run the application you have to install the 
GLUT library provided in the app/freeglut folder. Copy the 64bit DLL into the x64/Release 

and x64/Debug folder, and the 32bit DLL into the Win32/Release and Win32/Debug folder. 

2.2 Running Embree 
This section describes Embree's most important command line parameters. Execute embree -

help for a complete list of parameters. Embree ships with a few simple test scenes, each consisting 

of a scene file (.xml or .obj) and an Embree command script file (.ecs). The command script file 
contains command line parameters that set the camera parameters, lights and render settings. 

The following command line will render the Cornell box scene with 16 samples per pixel and write 
the resulting image to the file cb.tga in the current directory: 

embree -c models/cornell_box.ecs -spp 16 -o cb.tga 
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You might have to adjust the path to the executable or model file for your system. To interactively 
display the same scene, enter the following command: 

embree -c models/cornell_box.ecs 

A window will open and you can control the camera using the mouse and keyboard. Pressing c in 

interactive mode outputs the current camera parameters, pressing r enables or disables the 

progressive refinement mode. 

2.3 Camera Navigation 
The navigation in the interactive display mode follows the camera orbit model, where the camera 
revolves around the current center of interest. The camera navigation assumes the y-axis to point 
upwards. If your scene is modeled using the z-axis as up axis we recommend rotating the scene. 

 LMB Rotate around center of interest 

 MMB Pan 

 RMB Dolly (move camera closer or away from center of interest) 

 Strg+LMB Pick center of interest 

 Strg+Shift+LMB Pick focal distance 

 Alt+LMB  Roll camera around view direction 

 L  Decrease lens radius by one world space unit 

 Shift+L  Increase lens radius by one world space unit 

3 System Overview 
This section gives an overview of the structure of the code. Embree consists of four separate parts. 

A base library in the embree/common folder. It contains general purpose functionality, such as a 

short vector class, SIMD wrapper classes, and some platform abstractions. All other parts of the 
system use this base library. 

The ray tracing kernels are isolated from the rest of the system in the embree/rtcore folder. It 

implements different acceleration structure builders and traverser. The kernels are standalone with 
dependencies only to the base library. For more information on the kernels see Section 4. 

The rendering system is contained in the embree/renderer directory. It is structured into 

different components and based on the concepts of the PBRT renderer1. The renderer provides an 
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API layer located in embree/renderer/api/api.h. The frontend application implements a 

useful C++ wrapper for this API. For more information on the rendering system see Section 5. 

The frontend application is located in the embree/app folder. It is responsible for parsing scenes 

and displaying the image. The frontend is less important for the intended usage scenarios of 
Embree, thus it is not described in detail. 

4 Ray Tracing Kernels 
The ray tracing kernels are the main contribution of Embree and they provide efficient 
implementations of two different spatial index structures:  

BVH2: Axis aligned BVH with a branching factor of two.  

BVH4: Axis aligned BVH with a branching factor of four.  

The builders and traversers of all data structures are carefully optimized for the SSE (and AVX) 
instruction set. 

4.1 BVH4 
This data structure implements a BVH with a branching factor of four. Each node stores the 
bounding box and pointers to its four children. Chunks of four triangles are stored and intersected at 
the leaf nodes with SSE. Nodes as well as leaves are typically not completely filled, resulting in a 
20% memory overhead. In average we see a memory consumption of 76 bytes per triangle for the 
entire data structure. 

4.1.1 Object Split Builder 

The object split builder is a highly optimized and multi-threaded builder producing no primitive 
duplications. On a quad-core 2nd generation Intel® Core™ system a build performance of about 8-9 
million triangles per second is achievable. 

The builder is a top-down builder using an SAH binning approach to find the best object partitioning. 
At every node, we split the child that gives the highest SAH gain until the node is completely filled 
and then descend into its children. 

The builder implements 3 different strategies for different granularities: 

• Small size jobs are completed in a single thread to avoid threading overhead. 
• Medium size jobs are split by a single thread into 4 sub-jobs. 
• Large size jobs are split in a multi-threaded way into 4 sub-jobs.  
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The first two strategies are important to gain good performance. The 3rd strategy can increase 
performance by additional 10% when building large scenes. We recommend using this builder for 
very large scenes or for previews where build time can become a bottleneck. 

4.1.2 Spatial Split Builder 

The spatial split builder is also multi-threaded but produces multiply referenced primitives. In 
addition to object splits, the spatial split builder tests spatial splits in the center of each dimension, 
and selects the better of these two options. The maximum number of primitive replications can be 
accurately controlled by changing the replication factor. In order to distribute the replication evenly 
over the scene, the builder operated in breadth-first order. 

Compared to the object split builder, build performance is about 5x slower, but render performance 
can be 2x better for problematic scenes. In particular, scenes with long diagonal triangles benefit 
from this build procedure. The implementation of this builder does not natively build a BVH4, but a 
BVH2 which is then converted. Nevertheless, we recommend using this builder for scenes that 
contain many non-axis aligned triangles (some architectural scenes fall in this category). 

4.1.3 Traversal 

The traversal routine is hand tuned code implementing a standard recursive traversal of the tree. 
We intersect the single ray with the four boxes in SSE and descend into the hit children in front to 
back order. At the leaf nodes the ray is intersected with chunks of 4 triangles using SSE code. The 
next sections describes some of the optimizations we implemented to achieve higher performance. 

Load Near/Far Plane: For efficient ray/box intersection, we implement an optimization to switch 
loading of the near and far plane in each dimension based on the direction sign of the ray. This 
reduces the data dependency latency of the kernel compared to the alternative approach of 
selecting the near/far plane by additional min/max operations. 

0 Children Hit: We optimize the 0-children-hit case, by doing an early pop optimization. We load the 
next node from the stack into registers in parallel to the ray/box intersection, which makes a pop 
essentially free (apart from branch mispredictions). 

1 Child Hit: We optimize the likely 1-child-hit case by avoiding a push/pop sequence and keeping the 
ID of the next node to traverse in registers. 

2 Children Hit: We also optimize the 2-children-hit case, by pushing the farther child and continuing 
with the closer child. Optimizing the 0, 1 and 2 children hit cases is important as they occur with 
90% probability. 
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Cull at Pop: We store the far-distance of nodes on the stack. This allows us to cull a popped node 
early, when a closer intersection was found after its push event. 

Sorted Push: When more than two children are hit we first push the nodes onto the stack, and then 
sort the stack entries before we pop the closest one. To push the nodes, we use bsf and btc 

instructions to iterate through the hit bit-vector until no more hit child is found. This iteration is 
implemented as an unrolled loop. 

4.2 BVH2 
The BVH2 is a binary BVH with a special node layout to make the traversal SSE friendly. For a node, 
each dimension stores the lower and upper bounds of the left and right child in a single SSE vector. 
This allows for an efficient swap of the lower and upper bound for rays going from “right to left” 
and processing of the ray/plane intersections in SSE. Chunks of four triangles are stored and 
intersected at the leaf nodes with SSE code. 

The BVH2 traverser is as fast as the BVH4 if hyper-threading is disabled. For enabled hyper-
threading, the BVH4 outperforms the binary BVH. 

4.3 Extracting the Ray Tracing Kernels 
The most important usage scenario of Embree is extracting its ray tracing kernels and plugging 
them into an existing codebase, either for performance comparisons or to replace the ray tracing 
kernels of the existing application with Embree's kernels. The dependencies of the kernels and their 
interfaces are explained in this section. 

Embree's ray tracing kernels, located in the embree/rtcore folder, are well encapsulated. They 

only have dependencies to the embree/common/sys (system abstraction), 

embree/common/simd (SIMD wrappers), and embree/common/math (short vector library) 

folders. These folders can optionally be copied into the rtcore folder to obtain a self contained ray 

tracing kernel. For compilation of the kernels the include-path has to be set to the rtcore folder. 

We recommend compiling the kernels into a dynamic link library. 

The ray tracing kernels use a tasking system implemented in sys/tasking.cpp solely for parallel 
building of data structures. Before using the ray tracing kernels the tasking system must be 
initialized by calling the TaskScheduler::init function and cleaned up at application exit using 

the . TaskScheduler::cleanup function. Using the tasking system in existing code will 

generate one additional thread per system hyper-thread. These threads are very active as long as 
tasks need to get processed but sleeping when not required. Thus they should not cause any 
performance problems in the existing codebase. If desired the tasking system can be modified in 
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such a way that the TaskScheduler::run function is called from threads available in the 

existing application when a builder is active. 

The programming interface to the ray tracing kernels is located in rtcore/rtcore.h, and the ray 

and hit data structures are defined in rtcore/ray.h and rtcore/hit.h. There are two 

different interfaces, one for building data structures and one for tracing rays. 

Data structures are built by calling the rtcCreateAccel function with a list of build triangles. A 

build triangle is a special self contained triangle data structure defined in rtcore.h. 

The intersector interface returned by the rtcCreateAccel function is used to trace rays using 

the intersect or occluded function. The intersect function traverses a ray through the 

spatial index structure and returns the closest hit found. The occluded function tests if the ray is 

occluded by any geometry along the ray. A ray in the system is actually a ray segment defined by 
position, direction, and a parameter interval. 

One issue when using the ray tracing kernels in an existing code base might be that different short 
vector and SIMD wrapper libraries are used in each code base. We recommend not modifying the 
Embree core to use any other short vector or SIMD wrapper library. Instead, a wrapper layer should 
be written around the rtcore interface to obtain an interface that uses the existing short vector 
library. If possible pointer casts should be used in this layer instead of copying actual data.  

This is of particular importance for the trace functions where no overhead should be introduced at 
all. For instance, if the memory layout of the ray and hit structures can be matched between 
Embree and the existing code base, a simple pointer cast in the wrapper layer is sufficient. 

5 Renderer 
The purpose of the Embree renderer is to provide an environment for evaluating the traversal 
kernels in a flexible framework. It also serves as an example of how the ray tracing kernels are used 
in a rendering system. It is important to note that the renderer is not intended as a complete 
solution. Its feature set is limited. Therefore it is probably not suitable for replacing an existing 
rendering engine. It does, however, serve as an example of how an efficient rendering engine is 
designed and implemented. 

Our design is inspired by the PBRT renderer1 which implements a clean separation of different 
aspects of the system into modular components. Like PBRT, Embree supports programmable lights, 
BRDFs, materials, integrators, renderers, and samplers. All these different components communicate 
through well defined interfaces. This allows for modifying and extending them separately from 
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other modules of the system, for example materials and lights can be added independently of the 
renderers. 

The path tracer together with a variety of implemented surface reflectance models supports the 
generation of a wide range of non-trivial ray distributions. These range from relatively coherent 
reflections and transmissions from metal and thin glass BRDFs, to highly incoherent diffuse bounces 
and soft shadows from HDR environment lighting. Deep specular and glossy reflections and 
refractions in glass bodies, such as headlights, are supported as well. 

The renderer is partitioned into several components. Each component is located in its own folder, 
see Table below. Each of these folders contains an interface file named similar to the folder itself, 
e.g. the file brdfs/brdf.h defines the interface to the BRDFs, and 

integrators/integrator.h the interface to the integrators. 

 API renderer/api 

 BRDFs renderer/brdfs 

 Cameras renderer/cameras 

Pixel Filters renderer/filters 

 Integrators renderer/integrators 

 Lights renderer/lights 

 Materials renderer/materials 

 Renderers renderer/renderers 

 Samplers renderer/samplers 

 Shapes renderer/shapes 

 Textures renderer/textures 

 

The Embree renderer provides an API for ease of use. It needs to be initialized by calling rtInit() 

at the beginning and rtExit() at the end of your application. The API is completely functional, 

meaning that objects cannot be modified. Handles are references to objects, and objects are 
internally reference counted, thus destroyed when no longer needed. Calling rtDelete merely 

deletes the handle, not the object it references. Calling one of the rtNew* functions creates a new 

handle referencing a new object. The rtSet* functions buffer parameters to be set inside the 

handle. A subsequent call to rtCommit will set the handle reference to a new object with these 
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new parameters. The original object is not changed by this process. To find the parameters 
supported by a specific object see the header file of the object implementation. The semantics of 
modifying an object A used by another object B can only be achieved by creating A' and a new B' 
that uses A'. 

The renderer splits the frame buffer into a set of tiles and processes them with multiple threads. All 
threads are completely independent. A renderer typically uses an integrator to integrate the 
incident radiance at a given point and direction. 

The current implementation provides a path tracing integrator. It is very efficient when the scene is 
lit with a low-frequency HDR environment map. However, it is not designed for efficient handling of 
scenes with many light sources or strong caustics. A more sophisticated integrator is required for 
such scenarios.  

As mentioned earlier, the primary intent of Embree is to provide highly optimized ray tracing kernels, 
not a complete rendering solution. To get a deeper understanding of the design and implementation 
of complete rendering systems, we recommend reading that book PBRT1. Embree adopts many of 
the fundamental concepts in this book. 
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