Realtime Computer Graphics on GPUs Agenda

Jan Kolomazník

Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University in Prague

INFO

Web: https://cgg.mff.cuni.cz/~kolomaznik/

Email: kolomaznik@cgg.mff.cuni.cz Put "NPGR019" in email subject

CONTENT AND FORM

- hardware support for 3D graphics (GPUs)
 - follows loosely the CG I (NPGR003) course
 - math and data structures for 3D graphics
 - GPU capabilities, advanced techniques, data handling, ...
 - 3D scene rendering methods, advanced techniques
 - GPU programming (shaders), general computing GPGPU
 - concrete API (OpenGL, GLSL, CUDA, OpenCL ..)
- ► 2/2 C+Ex
 - lecture and lab every week
 - practical examples, two homework tasks for the credit

Course Brief I

- GPU Architecture, History
 - simplified programmable pipeline (vertex, fragment shaders)
 - basic primitives, rasterisation, 2D rendering
 - historical background 3D rendering wireframe, flat, basic lighting, Gourand vs. Phong shading
 - Phong model
- Math
 - 2D linear transformation, rotation by formula, matrix, complex numbers
 - ▶ 3D transformations affine, perspective space
 - ▶ 3D rotations euler angles, gimbal lock, matrices
 - Normal matrices
 - Quaternions
 - lerp, slerp
 - easing/tweening
 - animation curves

Course Brief II

- Textures
 - coordinates
 - aliasing vs. filtering
 - mip-maps
 - multitexturing
 - bump mapping
 - ▶ 3D textures
- Framebuffer
 - render to texture
 - deferred shading
 - antialiasing
 - stencil buffer shadow-map, shadow volume, mirrors
 - ▶ effects in screen space (ambient occlusion, DOF, ...)
- Generating geometry
 - datastructures

Course Brief III

- tesselation shaders
- geometry shaders
- mesh shaders
- Speedup techniques
 - near/far clipping
 - occlusion culling
 - instancing
 - billboards, decals
 - ► LOD
 - triangle fan, strip
- Advanced techniques
 - bindless textures
 - megatextures
 - volume rendering
 - CAD visualization

Course Brief IV

- scientific visualization
- Other technologies
 - ► OGL ES
 - ▶ WebGL
 - Vulkan
 - ► DX11, DX12
 - Optix + raytracing
- ▶ GPGPU
 - compute shaders
 - OpenCL
 - ► CUDA
 - terminology
 - OGL interoperability
 - computation model
 - memory types
 - Deep learning