Realtime Computer Graphics on GPUs Math

Jan Kolomazník

Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University in Prague

Computer Graphics Charles University

Vector Operations

Affine and Projective Spaces

SCALAR (DOT) PRODUCT

Definition:

$$\mathbf{p} \cdot \mathbf{q} = \sum_i p_i g_i$$

$$\mathbf{p} \cdot \mathbf{q} = \|\mathbf{p}\| \|\mathbf{q}\| \cos \alpha$$

► Matrix notation:

$$\mathbf{p} \cdot \mathbf{q} = \mathbf{p}^T \mathbf{q} = [p_0, \dots p_{n-1}] \begin{bmatrix} q_0 \\ \vdots \\ q_{n-1} \end{bmatrix}$$

Affine and Projective Spaces

SCALAR (DOT) PRODUCT

► Definition:

$$\mathbf{p}\cdot\mathbf{q}=\sum_i p_i g_i$$

$$\mathbf{p} \cdot \mathbf{q} = \|\mathbf{p}\| \|\mathbf{q}\| \cos \alpha$$

► Matrix notation:

$$\mathbf{p} \cdot \mathbf{q} = \mathbf{p}^T \mathbf{q} = [p_0, \dots p_{n-1}] \begin{bmatrix} q_0 \\ \vdots \\ q_{n-1} \end{bmatrix}$$

Affine and Projective Spaces

SCALAR (DOT) PRODUCT

Definition:

$$\mathbf{p} \cdot \mathbf{q} = \sum_{i} p_{i} g_{i}$$

$$\mathbf{p} \cdot \mathbf{q} = \|\mathbf{p}\| \|\mathbf{q}\| \cos \alpha$$

Matrix notation:

$$\mathbf{p} \cdot \mathbf{q} = \mathbf{p}^T \mathbf{q} = [p_0, \dots p_{n-1}] \begin{bmatrix} q_0 \\ \vdots \\ q_{n-1} \end{bmatrix}$$

VECTOR PROJECTION

Projection on another vector:

$$\mathbf{p}_{proj} = rac{\mathbf{p} \cdot \mathbf{q}}{\|\mathbf{q}\|} \mathbf{q}$$

• Matrix notation
$$(\mathbf{q}\mathbf{q}^T)$$
:

$$\mathbf{p}_{proj} = \frac{1}{\|\mathbf{q}\|^2} \begin{bmatrix} q_x^2 & q_x q_y & q_x q_z \\ q_x q_y & q_y^2 & q_y q_z \\ q_x q_z & q_y q_z & q_z^2 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

q

 Useful for repeated projections, embedding in matrix expressions

VECTOR PROJECTION

Projection on another vector:

$$\mathbf{p}_{proj} = \frac{\mathbf{p} \cdot \mathbf{q}}{\|\mathbf{q}\|} \mathbf{q}$$

• Matrix notation
$$(\mathbf{q}\mathbf{q}^T)$$
:

$$\mathbf{p}_{proj} = \frac{1}{\|\mathbf{q}\|^2} \begin{bmatrix} q_x^2 & q_x q_y & q_x q_z \\ q_x q_y & q_y^2 & q_y q_z \\ q_x q_z & q_y q_z & q_z^2 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

 Useful for repeated projections, embedding in matrix expressions

CROSS PRODUCT

Definition:

$$\mathbf{p} \times \mathbf{q} = [p_y q_z - p_z q_y, p_z q_x - p_x q_z, p_x q_y - p_y q_x]$$

As formal determinant:

$$\mathbf{p} \times \mathbf{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p_x & p_y & p_z \\ q_x & q_y & q_z \end{vmatrix}$$

Matrix formulation:

$$\mathbf{p} \times \mathbf{q} = \begin{bmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_x & 0 \end{bmatrix} \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix}$$

CROSS PRODUCT

Definition:

$$\mathbf{p} \times \mathbf{q} = [p_y q_z - p_z q_y, p_z q_x - p_x q_z, p_x q_y - p_y q_x]$$

As formal determinant:

$$\mathbf{p} \times \mathbf{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p_x & p_y & p_z \\ q_x & q_y & q_z \end{vmatrix}$$

Matrix formulation:

$$\mathbf{p} \times \mathbf{q} = \begin{bmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_x & 0 \end{bmatrix} \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix}$$

CROSS PRODUCT

Definition:

$$\mathbf{p} \times \mathbf{q} = [p_y q_z - p_z q_y, p_z q_x - p_x q_z, p_x q_y - p_y q_x]$$

As formal determinant:

$$\mathbf{p} \times \mathbf{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p_x & p_y & p_z \\ q_x & q_y & q_z \end{vmatrix}$$

Matrix formulation:

$$\mathbf{p} imes \mathbf{q} = \left[egin{array}{ccc} 0 & -p_z & p_y \ p_z & 0 & -p_x \ -p_y & p_x & 0 \end{array}
ight] \left[egin{array}{c} q_x \ q_y \ q_z \end{array}
ight]$$

Affine and Projective Spaces

CROSS PRODUCT II

Perpendicular to p, q:

$$(\mathbf{p} \times \mathbf{q}) \cdot \mathbf{p} = (\mathbf{p} \times \mathbf{q}) \cdot \mathbf{q} = 0$$

Size:

$$\|\mathbf{p} \times \mathbf{q}\| = \|\mathbf{p}\| \|\mathbf{q}\| \sin \alpha$$

► Follows right hand rule

2D ROTATION

Basic expression:

$$x' = x \cos \alpha - y \sin \alpha$$
$$y' = x \sin \alpha + y \cos \alpha$$

Matrix notation:

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha\\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

► Complex exponential:

$$[x, y] \Rightarrow z = x + iy$$

Multiply by e^{iα} = cos α + i sin α
 Inverse rotation by complex conjugate

2D ROTATION

Basic expression:

$$x' = x \cos \alpha - y \sin \alpha$$
$$y' = x \sin \alpha + y \cos \alpha$$

Matrix notation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Complex exponential:

$$[x, y] \Rightarrow z = x + iy$$

Multiply by e^{iα} = cos α + i sin α
 Inverse rotation by complex conjugate

2D ROTATION

Basic expression:

$$x' = x \cos \alpha - y \sin \alpha$$
$$y' = x \sin \alpha + y \cos \alpha$$

Matrix notation:

$$\left[\begin{array}{c} x'\\ y' \end{array}\right] = \left[\begin{array}{c} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{array}\right] \left[\begin{array}{c} x\\ y \end{array}\right]$$

Complex exponential:

$$[x, y] \Rightarrow z = x + iy$$

Multiply by e^{iα} = cos α + i sin α
 Inverse rotation by complex conjugate

Affine and Projective Spaces

ELEMENTARY ROTATIONS IN 3D

$$\mathbf{R}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$
$$\mathbf{R}_{\mathbf{y}} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$
$$\mathbf{R}_{\mathbf{z}} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ROTATION AROUND ARBITRARY AXIS

• Axis **a**, angle θ , point **p**, rotated point p':

 $\|\mathbf{a}\| = 1$

$$\mathbf{p}_{proj} = (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$

 $R_{\mathbf{a}, heta}\mathbf{p}_{proj} = \mathbf{p}_{proj}$

Perpendicular component:

$$\mathbf{p}_{perp} = \mathbf{p} - (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$
$$\|\mathbf{p}_{perp}\| = \|\mathbf{p}\| \sin \alpha$$

$$(\mathbf{a} \times \mathbf{p}) \cdot \mathbf{p}_{perp} = 0$$

 $\|\mathbf{a} \times \mathbf{p}\| = \|\mathbf{p}\| \sin \alpha$

ROTATION AROUND ARBITRARY AXIS

• Axis **a**, angle θ , point **p**, rotated point p':

 $||\mathbf{a}|| = 1$

Project p onto axis:

$$\mathbf{p}_{proj} = (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$

 $R_{\mathbf{a},\theta}\mathbf{p}_{proj} = \mathbf{p}_{proj}$

Perpendicular component:

$$\mathbf{p}_{perp} = \mathbf{p} - (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$
$$\|\mathbf{p}_{perp}\| = \|\mathbf{p}\|\sin\alpha$$

$$(\mathbf{a} \times \mathbf{p}) \cdot \mathbf{p}_{perp} = 0$$

 $\|\mathbf{a} \times \mathbf{p}\| = \|\mathbf{p}\| \sin \alpha$

ROTATION AROUND ARBITRARY AXIS

• Axis **a**, angle θ , point **p**, rotated point p':

 $\|\mathbf{a}\| = 1$

Project p onto axis:

$$\mathbf{p}_{proj} = (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$

 $R_{\mathbf{a},\theta}\mathbf{p}_{proj} = \mathbf{p}_{proj}$

Perpendicular component:

$$\mathbf{p}_{perp} = \mathbf{p} - (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$
$$\|\mathbf{p}_{perp}\| = \|\mathbf{p}\|\sin\alpha$$

$$\begin{aligned} (\mathbf{a} \times \mathbf{p}) \cdot \mathbf{p}_{perp} &= 0 \\ \|\mathbf{a} \times \mathbf{p}\| &= \|\mathbf{p}\| \sin \alpha \end{aligned}$$

ROTATION AROUND ARBITRARY AXIS

• Axis **a**, angle θ , point **p**, rotated point p':

 $||\mathbf{a}|| = 1$

Project p onto axis:

$$\mathbf{p}_{proj} = (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$

 $R_{\mathbf{a},\theta}\mathbf{p}_{proj} = \mathbf{p}_{proj}$

Perpendicular component:

$$\mathbf{p}_{perp} = \mathbf{p} - (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$
$$\|\mathbf{p}_{perp}\| = \|\mathbf{p}\|\sin\alpha$$

$$\begin{aligned} (\mathbf{a} \times \mathbf{p}) \cdot \mathbf{p}_{perp} &= 0 \\ \|\mathbf{a} \times \mathbf{p}\| &= \|\mathbf{p}\| \sin \alpha \end{aligned}$$

ROTATION AROUND ARBITRARY AXIS

• Axis **a**, angle θ , point **p**, rotated point p':

 $||\mathbf{a}|| = 1$

Project p onto axis:

$$\mathbf{p}_{proj} = (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$

 $R_{\mathbf{a},\theta}\mathbf{p}_{proj} = \mathbf{p}_{proj}$

Perpendicular component:

$$\mathbf{p}_{perp} = \mathbf{p} - (\mathbf{a} \cdot \mathbf{p})\mathbf{a}$$
$$\|\mathbf{p}_{perp}\| = \|\mathbf{p}\|\sin\alpha$$

$$\begin{aligned} (\mathbf{a} \times \mathbf{p}) \cdot \mathbf{p}_{perp} &= 0 \\ \|\mathbf{a} \times \mathbf{p}\| &= \|\mathbf{p}\| \sin \alpha \end{aligned}$$

ROTATION AROUND ARBITRARY AXIS II

Final rotated position:

$$\mathbf{p}'_{perp} = \mathbf{p}_{perp} \cos \theta + (\mathbf{a} \times \mathbf{p}) \sin \theta$$

$$\mathbf{p}' = \mathbf{p}'_{perp} + \mathbf{p}_{proj}$$
(1)

Matrix representation:

$$\begin{aligned} \mathbf{p}_{perp}' &= \left[\mathbf{p} - (\mathbf{a} \cdot \mathbf{p})\mathbf{a}\right] \cos\theta + (\mathbf{a} \times \mathbf{p}) \sin\theta \\ &= \mathbf{p} \cos\theta + (\mathbf{a} \times \mathbf{p}) \sin\theta + \mathbf{a}(\mathbf{a} \cdot \mathbf{p})(1 - \cos\theta) \\ &= \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \mathbf{p} \cos\theta + \left[\begin{array}{ccc} 0 & -A_z & A_y \\ A_z & 0 & -A_x \\ -A_y & A_x & 0 \end{array} \right] \mathbf{p} \sin\theta \\ &+ \left[\begin{array}{ccc} A_x^2 & A_x A_y & A_x A_z \\ A_x A_y & A_y^2 & -A_y A_z \\ A_x A_z & A_y A_z & A_z^2 \end{array} \right] \mathbf{p}(1 - \cos\theta) \end{aligned}$$

1

ROTATION AROUND ARBITRARY AXIS II

Final rotated position:

$$\mathbf{p}'_{perp} = \mathbf{p}_{perp} \cos \theta + (\mathbf{a} \times \mathbf{p}) \sin \theta \mathbf{p}' = \mathbf{p}'_{perp} + \mathbf{p}_{proj}$$
(1)

Matrix representation:

$$\begin{aligned} \mathbf{p}_{perp}' &= \left[\mathbf{p} - (\mathbf{a} \cdot \mathbf{p})\mathbf{a}\right] \cos \theta + (\mathbf{a} \times \mathbf{p}) \sin \theta \\ &= \mathbf{p} \cos \theta + (\mathbf{a} \times \mathbf{p}) \sin \theta + \mathbf{a} (\mathbf{a} \cdot \mathbf{p})(1 - \cos \theta) \\ &= \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \mathbf{p} \cos \theta + \left[\begin{array}{ccc} 0 & -A_z & A_y \\ A_z & 0 & -A_x \\ -A_y & A_x & 0 \end{array} \right] \mathbf{p} \sin \theta \\ &+ \left[\begin{array}{ccc} A_x^2 & A_x A_y & A_x A_z \\ A_x A_y & A_y^2 & -A_y A_z \\ A_x A_z & A_y A_z & A_z^2 \end{array} \right] \mathbf{p} (1 - \cos \theta) \end{aligned}$$

ROTATION AROUND ARBITRARY AXIS III

Final matrix form:

$$\begin{bmatrix} c + (1-c)A_x^2 & (1-c)A_xA_y - sA_z & (1-c)A_xA_z + sA_y \\ (1-c)A_xA_y + sA_z & c + (1-c)A_y^2 & (1-c)A_yA_z - sA_x \\ (1-c)A_xA_z - sA_y & (1-c)A_yA_z + sA_x & c + (1-c)A_z^2 \end{bmatrix}$$

EULER ANGLES

- arbitrary rotation decomposed into three components
- Leonard Euler (1707-1783)
- ► 3 angles 3 elementary rotations
- order of rotations important (x-y-z, roll-pitch-yaw, z-x-z, ...)
 - intrinsic vs. extrinsics

EULER ANGLES II

Disadvantages:

- Problematic interpolation between two orientations
- Gimbal lock not as severe in SW as in HW (Apollo)

Figure 2, 1-24, IMU Gimbal Assembly

QUATERNIONS

- Sir William Rowan Hamilton, 16 Oct 1843 (Dublin)
- generalization of complex numbers in 4D space
- usage in graphics since 1985 (Shoemake)
- $\mathbf{P} \mathbf{q} = (\mathbf{v}, w) = ix + jy + kz + w = \mathbf{v} + w$
- imaginary part v = (x, y, z) = ix + jy + kz
- $\blacktriangleright \ i^2 = j^2 = k^2 = -1, jk = -kj = i, ki = -ik = j, ij = -ji = k$

QUATERNIONS

- Sir William Rowan Hamilton, 16 Oct 1843 (Dublin)
- generalization of complex numbers in 4D space
- usage in graphics since 1985 (Shoemake)

•
$$\mathbf{q} = (\mathbf{v}, w) = ix + jy + kz + w = \mathbf{v} + w$$

- imaginary part v = (x, y, z) = ix + jy + kz
- ▶ $i^2 = j^2 = k^2 = -1, jk = -kj = i, ki = -ik = j, ij = -ji = k$

QUATERNIONS - WHY 4D?

$$(i)(x+iy+jz) = -y+ix+(ij)z$$

• We need to introduce ij = k

$$(i)(ix + jy + kz + w) = -x + iw - jz + ky$$

QUATERNIONS - WHY 4D?

$$(i)(x + iy + jz) = -y + ix + (ij)z$$

• We need to introduce ij = k

$$(i)(ix + jy + kz + w) = -x + iw - jz + ky$$

• addition $(\mathbf{v}_1, w_1) + (\mathbf{v}_2, w_2) = (\mathbf{v}_1 + \mathbf{v}_2, w_1 + w_2)$

- multiplication $\mathbf{qr} = (\mathbf{v}_q \times \mathbf{v}_r + w_r \mathbf{v}_q + w_q \mathbf{v}_r, w_q w_r \mathbf{v}_q \cdot \mathbf{v}_r)$
- multiplication by a scalar sq = (0, s)(v, w) = (sv, sw)
- conjugation $(\mathbf{v}, w)^* = (-\mathbf{v}, w)$
- unit $id = (\mathbf{0}, 1)$
- ► norm (squared absolute value) $\|\mathbf{q}\|^2 = n(\mathbf{q}) = \mathbf{q}\mathbf{q}^* = x^2 + y^2 + z^2 + w^2$
- ► reciprocal $\mathbf{q}^{-1} = \mathbf{q}^*/n(\mathbf{q})$

- addition $(\mathbf{v}_1, w_1) + (\mathbf{v}_2, w_2) = (\mathbf{v}_1 + \mathbf{v}_2, w_1 + w_2)$
- multiplication $\mathbf{qr} = (\mathbf{v}_q \times \mathbf{v}_r + w_r \mathbf{v}_q + w_q \mathbf{v}_r, w_q w_r \mathbf{v}_q \cdot \mathbf{v}_r)$
- multiplication by a scalar $s\mathbf{q} = (0, s)(\mathbf{v}, w) = (s\mathbf{v}, sw)$
- conjugation $(\mathbf{v}, w)^* = (-\mathbf{v}, w)$
- unit $id = (\mathbf{0}, 1)$
- ► norm (squared absolute value) $\|\mathbf{q}\|^2 = n(\mathbf{q}) = \mathbf{q}\mathbf{q}^* = x^2 + y^2 + z^2 + w^2$
- ► reciprocal $\mathbf{q}^{-1} = \mathbf{q}^*/n(\mathbf{q})$

- addition $(\mathbf{v}_1, w_1) + (\mathbf{v}_2, w_2) = (\mathbf{v}_1 + \mathbf{v}_2, w_1 + w_2)$
- multiplication $\mathbf{qr} = (\mathbf{v}_q \times \mathbf{v}_r + w_r \mathbf{v}_q + w_q \mathbf{v}_r, w_q w_r \mathbf{v}_q \cdot \mathbf{v}_r)$
- multiplication by a scalar $s\mathbf{q} = (0, s)(\mathbf{v}, w) = (s\mathbf{v}, sw)$
- conjugation $(\mathbf{v}, w)^* = (-\mathbf{v}, w)$
- unit $id = (\mathbf{0}, 1)$
- ► norm (squared absolute value) $\|\mathbf{q}\|^2 = n(\mathbf{q}) = \mathbf{q}\mathbf{q}^* = x^2 + y^2 + z^2 + w^2$
- ► reciprocal $\mathbf{q}^{-1} = \mathbf{q}^*/n(\mathbf{q})$

- addition $(\mathbf{v}_1, w_1) + (\mathbf{v}_2, w_2) = (\mathbf{v}_1 + \mathbf{v}_2, w_1 + w_2)$
- multiplication $\mathbf{qr} = (\mathbf{v}_q \times \mathbf{v}_r + w_r \mathbf{v}_q + w_q \mathbf{v}_r, w_q w_r \mathbf{v}_q \cdot \mathbf{v}_r)$
- multiplication by a scalar $s\mathbf{q} = (0, s)(\mathbf{v}, w) = (s\mathbf{v}, sw)$
- conjugation $(\mathbf{v}, w)^* = (-\mathbf{v}, w)$
- unit $id = (\mathbf{0}, 1)$

► norm (squared absolute value) $\|\mathbf{q}\|^2 = n(\mathbf{q}) = \mathbf{q}\mathbf{q}^* = x^2 + y^2 + z^2 + w^2$

► reciprocal $\mathbf{q}^{-1} = \mathbf{q}^*/n(\mathbf{q})$

- addition $(\mathbf{v}_1, w_1) + (\mathbf{v}_2, w_2) = (\mathbf{v}_1 + \mathbf{v}_2, w_1 + w_2)$
- multiplication $\mathbf{qr} = (\mathbf{v}_q \times \mathbf{v}_r + w_r \mathbf{v}_q + w_q \mathbf{v}_r, w_q w_r \mathbf{v}_q \cdot \mathbf{v}_r)$
- multiplication by a scalar $s\mathbf{q} = (0, s)(\mathbf{v}, w) = (s\mathbf{v}, sw)$
- conjugation $(\mathbf{v}, w)^* = (-\mathbf{v}, w)$
- unit $id = (\mathbf{0}, 1)$
- ▶ norm (squared absolute value) ||q||² = n(q) = qq* = x² + y² + z² + w²
 ▶ reciprocal q⁻¹ = q*/n(q)

- addition $(\mathbf{v}_1, w_1) + (\mathbf{v}_2, w_2) = (\mathbf{v}_1 + \mathbf{v}_2, w_1 + w_2)$
- multiplication $\mathbf{qr} = (\mathbf{v}_q \times \mathbf{v}_r + w_r \mathbf{v}_q + w_q \mathbf{v}_r, w_q w_r \mathbf{v}_q \cdot \mathbf{v}_r)$
- multiplication by a scalar $s\mathbf{q} = (0, s)(\mathbf{v}, w) = (s\mathbf{v}, sw)$
- conjugation $(\mathbf{v}, w)^* = (-\mathbf{v}, w)$
- unit $id = (\mathbf{0}, 1)$
- ► norm (squared absolute value) $\|\mathbf{q}\|^2 = n(\mathbf{q}) = \mathbf{q}\mathbf{q}^* = x^2 + y^2 + z^2 + w^2$
- reciprocal $\mathbf{q}^{-1} = \mathbf{q}^*/n(\mathbf{q})$

- ► unit quaternion can be expressed by goniometry as $\mathbf{q} = (\mathbf{u}_q \sin \theta, \cos \theta)$
- for some unit 3D vector u_q it represents a rotation (orientation) in 3D
 - ambiguity: both q and -q represent the same rotation!
- ▶ identity (zero rotation): (0,1)
- ► power, exponential, logarithm: $\mathbf{q} = \mathbf{u}_q \sin \theta + \cos \theta = exp(\theta \mathbf{u}_q), log \mathbf{q} = \theta \mathbf{u}_q$ $\mathbf{q}^t = (\mathbf{u}_q \sin \theta + \cos \theta)^t = exp(t\theta \mathbf{u}_q) = \mathbf{u}_q \sin t\theta + \cos t\theta$

- ► unit quaternion can be expressed by goniometry as $\mathbf{q} = (\mathbf{u}_q \sin \theta, \cos \theta)$
- for some unit 3D vector u_q it represents a rotation (orientation) in 3D
 - ▶ ambiguity: both q and -q represent the same rotation!
- ▶ identity (zero rotation): (0,1)

► power, exponential, logarithm: $\mathbf{q} = \mathbf{u}_q \sin \theta + \cos \theta = exp(\theta \mathbf{u}_q), log \mathbf{q} = \theta \mathbf{u}_q$ $\mathbf{q}^t = (\mathbf{u}_q \sin \theta + cos \theta)^t = exp(t\theta \mathbf{u}_q) = \mathbf{u}_q \sin t\theta + \cos t\theta$

- ► unit quaternion can be expressed by goniometry as $\mathbf{q} = (\mathbf{u}_q \sin \theta, \cos \theta)$
- for some unit 3D vector u_q it represents a rotation (orientation) in 3D
 - ▶ ambiguity: both q and -q represent the same rotation!
- identity (zero rotation): (0,1)

► power, exponential, logarithm: $\mathbf{q} = \mathbf{u}_q \sin \theta + \cos \theta = exp(\theta \mathbf{u}_q), log \mathbf{q} = \theta \mathbf{u}_q$ $\mathbf{q}^t = (\mathbf{u}_q \sin \theta + cos\theta)^t = exp(t\theta \mathbf{u}_q) = \mathbf{u}_q \sin t\theta + \cos t\theta$

- ► unit quaternion can be expressed by goniometry as $\mathbf{q} = (\mathbf{u}_q \sin \theta, \cos \theta)$
- for some unit 3D vector u_q it represents a rotation (orientation) in 3D
 - ▶ ambiguity: both q and -q represent the same rotation!
- ▶ identity (zero rotation): (0,1)
- power, exponential, logarithm:

$$\mathbf{q} = \mathbf{u}_q \sin \theta + \cos \theta = exp(\theta \mathbf{u}_q), \log \mathbf{q} = \theta \mathbf{u}_q$$
$$\mathbf{q}^t = (\mathbf{u}_q \sin \theta + \cos \theta)^t = exp(t\theta \mathbf{u}_q) = \mathbf{u}_q \sin t\theta + \cos t\theta$$

QUATERNION ROTATIONS

- unit quaternion $\mathbf{q} = (\mathbf{u}_q \sin \theta, \cos \theta)$
 - \mathbf{v}_q axis of rotation
 - θ angle
- vector (point) in 3D: $\mathbf{p} = [p_x, p_y, p_z, 0]$
- rotation of vector (point) p around u_q by angle 2θ
 p' = qpq⁻¹ = qpq^{*}

QUATERNION ROTATIONS

- unit quaternion $\mathbf{q} = (\mathbf{u}_q \sin \theta, \cos \theta)$
 - **u**_q axis of rotation
 - θ angle
- vector (point) in 3D: $\mathbf{p} = [p_x, p_y, p_z, 0]$
- rotation of vector (point) p around u_q by angle 2θ
 p' = qpq⁻¹ = qpq*

Rotate by i from left:

$$(i)(w + ix + jy + kz) = -x + iw - jz + ky$$

▶ Rotate by *i* from right:

$$(w + ix + jy + kz)(i) = -x + iw + jz - ky$$

Rotate by *i* from both sides:

$$(i)(w+x+jy+kz)(i) = -w - ix + jy + kz$$

Prevent rotation in w:

 $(i)(w+ix+jy+kz)(i^{-1}) = (i)(ix+jy+kz+w)(-i) = w-ix+jy+kz$

To prevent the second 4D rotation we rotated twice around the first axis.

Rotate by *i* from left:

$$(i)(w + ix + jy + kz) = -x + iw - jz + ky$$

Rotate by *i* from right:

$$(w + ix + jy + kz)(i) = -x + iw + jz - ky$$

Rotate by *i* from both sides:

$$(i)(w + x + jy + kz)(i) = -w - ix + jy + kz$$

Prevent rotation in w:

 $(i)(w+ix+jy+kz)(i^{-1}) = (i)(ix+jy+kz+w)(-i) = w-ix+jy+kz$

To prevent the second 4D rotation we rotated twice around the first axis.

Rotate by i from left:

$$(i)(w + ix + jy + kz) = -x + iw - jz + ky$$

Rotate by *i* from right:

$$(w + ix + jy + kz)(i) = -x + iw + jz - ky$$

Rotate by *i* from both sides:

$$(i)(w+x+jy+kz)(i) = -w - ix + jy + kz$$

Prevent rotation in w:

 $(i)(w+ix+jy+kz)(i^{-1}) = (i)(ix+jy+kz+w)(-i) = w-ix+jy+kz$

To prevent the second 4D rotation we rotated twice around the first axis.

Rotate by i from left:

$$(i)(w + ix + jy + kz) = -x + iw - jz + ky$$

Rotate by *i* from right:

$$(w + ix + jy + kz)(i) = -x + iw + jz - ky$$

Rotate by *i* from both sides:

$$(i)(w+x+jy+kz)(i) = -w - ix + jy + kz$$

Prevent rotation in w:

 $(i)(w+ix+jy+kz)(i^{-1}) = (i)(ix+jy+kz+w)(-i) = w-ix+jy+kz$

To prevent the second 4D rotation we rotated twice around the first axis.

SPHERICAL LINEAR INTERPOLATION – SLERP

- two quaternions \mathbf{q} and \mathbf{r} ($\mathbf{q} \cdot \mathbf{r} \ge 0$, else take $-\mathbf{q}$)
- real parameter $0 \le t \le 1$
- interpolated quaternion $slerp(\mathbf{q}, \mathbf{r}, t) = \mathbf{q}(\mathbf{q}^*\mathbf{r})^t$

$$slerp(q, r, t) = \frac{\sin(\theta(1-t))}{\sin\theta}\mathbf{q} + \frac{\sin\theta t}{\sin\theta}\mathbf{r}$$

the shortest spherical arc between q and r

SPHERICAL LINEAR INTERPOLATION – SLERP

- two quaternions \mathbf{q} and \mathbf{r} ($\mathbf{q} \cdot \mathbf{r} \ge 0$, else take $-\mathbf{q}$)
- real parameter $0 \le t \le 1$
- interpolated quaternion $slerp(\mathbf{q}, \mathbf{r}, t) = \mathbf{q}(\mathbf{q}^*\mathbf{r})^t$

$$slerp(q, r, t) = \frac{\sin(\theta(1-t))}{\sin\theta}\mathbf{q} + \frac{\sin\theta t}{\sin\theta}\mathbf{r}$$

▶ the shortest spherical arc between q and r

SPHERICAL LINEAR INTERPOLATION – SLERP

- two quaternions \mathbf{q} and \mathbf{r} ($\mathbf{q} \cdot \mathbf{r} \ge 0$, else take $-\mathbf{q}$)
- real parameter $0 \le t \le 1$
- interpolated quaternion $slerp(\mathbf{q}, \mathbf{r}, t) = \mathbf{q}(\mathbf{q}^*\mathbf{r})^t$

$$slerp(q, r, t) = \frac{\sin(\theta(1-t))}{\sin\theta}\mathbf{q} + \frac{\sin\theta t}{\sin\theta}\mathbf{r}$$

the shortest spherical arc between q and r

QUATERNION FROM TWO VECTORS

- two vectors s and t:
 - 1. normalization of s, t
 - 2. unit rotation axis $u = (s \times t)/||s \times t||$
 - 3. angle between *s* and *t*: $s \cdot t = \cos \theta$

Identities to prevent trigonometry:

$$\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}$$
(2)
$$\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}$$
(3)
$$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$
(4)

► Final quaternion:

$$q = \left(norm(u)\sin\frac{\theta}{2}, \cos\frac{\theta}{2}\right) = \left(\frac{s \times t}{\sqrt{2(1+s \cdot t)}}, \sqrt{\frac{1+s \cdot t}{2}}\right)$$

QUATERNION FROM TWO VECTORS

- two vectors s and t:
 - 1. normalization of s, t
 - 2. unit rotation axis $u = (s \times t)/||s \times t||$
 - 3. angle between *s* and *t*: $s \cdot t = \cos \theta$

Identities to prevent trigonometry:

$$\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}$$
(2)
$$\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}$$
(3)
$$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$
(4)

► Final quaternion:

$$q = \left(norm(u)\sin\frac{\theta}{2}, \cos\frac{\theta}{2}\right) = \left(\frac{s \times t}{\sqrt{2(1+s \cdot t)}}, \sqrt{\frac{1+s \cdot t}{2}}\right)$$

QUATERNION FROM TWO VECTORS

- two vectors s and t:
 - 1. normalization of s, t
 - 2. unit rotation axis $u = (s \times t)/||s \times t||$
 - 3. angle between *s* and *t*: $s \cdot t = \cos \theta$

1

Identities to prevent trigonometry:

$$\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}$$
(2)
$$\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}$$
(3)
$$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$
(4)

Final quaternion:

$$q = \left(\textit{norm}(u)\sin\frac{\theta}{2}, \cos\frac{\theta}{2}\right) = \left(\frac{s \times t}{\sqrt{2(1 + s \cdot t)}}, \sqrt{\frac{1 + s \cdot t}{2}}\right)$$

SUMMARY

rotational matrix

- + HW support, efficient point/vector transformation
- memory (float[9]), other operations are not so efficient

rotational axis and angle

- + memory (float[4] or float[6]), similar to quaternion
- inefficient composition and interpolation

quaternion

- + memory (float[4]), composition, interpolation
- inefficient point/vector transformation

AFFINNE AND PROJECTIVE SPACES

Affine space:

- Set V of vectors and set P of points
- Affine transformations can be represented by matrix

Projective space:

- Homogeneous coordinates
- All lines intersect (space contains infinity)
- Affine and projective transformations can be represented by matrix

AFFINNE AND PROJECTIVE SPACES

Affine space:

- Set V of vectors and set P of points
- Affine transformations can be represented by matrix

Projective space:

- Homogeneous coordinates
- All lines intersect (space contains infinity)
- Affine and projective transformations can be represented by matrix

HOMOGENNEOUS COORDINATES

- ► homogeneous coordinate vector [*x*, *y*, *z*, *w*]
- transformation: multiplying by a 4×4 matrix
- homogeneous matrix is able to translate and to do perspective projections
- From homogeneous coordinates [x, y, z, w] into Cartesian coordinates: by division (w ≠ 0)[x/w, y/w, z/w]
- ► coordinate vector [*x*, *y*, *z*, 0] − point in infinity
- ▶ from Cartesian coordinates to homogeneous: trivial extension [x, y, z]...[x, y, z, 1]

TRANSFORMATION MATRIX

$$\mathbf{A}\mathbf{p} = \begin{bmatrix} \mathbf{M} & \mathbf{T} \\ \\ \mathbf{M} & \mathbf{T} \\ \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ p_w \end{bmatrix}$$

- T defines translation
- M defines:
 - rotation
 - scaling

$$\mathbf{M}_{scale} = \begin{bmatrix} s_x & 0 & 0\\ 0 & s_y & 0\\ 0 & 0 & s_z \end{bmatrix}$$
$$\mathbf{M}_{shear} = \begin{bmatrix} 1 & 0 & \lambda\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

shear

and their combinations

NORMAL VECTOR TRANSFORMATION

- Only orientation change is valid transformation for normals
- ► Tangents (*t*) remain valid:

$$\mathbf{n} \cdot \mathbf{t} = 0 \quad \Rightarrow \quad \mathbf{n}' \cdot \mathbf{t}' = (\mathbf{G}\mathbf{n}) \cdot (\mathbf{M}\mathbf{t}) = 0$$

$$(\mathbf{G}\mathbf{n}) \cdot (\mathbf{M}\mathbf{t}) = (\mathbf{G}\mathbf{n})^T (\mathbf{M}\mathbf{t})$$

$$= \quad \mathbf{n}^T \mathbf{G}^T \mathbf{M}\mathbf{t}$$

$$\Rightarrow \quad \mathbf{G} = (\mathbf{M}^{-1})^T$$

TRANSFORMATIONS FOR RENDERING PIPELINE

LOOKAT CAMERA MATRIX

- Camera position (eye) e
- Lookat point p
- Up vector u

Matrix which transforms camera into its position:

$$\mathbf{TR} = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_x & u_x & v_x & 0 \\ n_y & u_y & v_y & 0 \\ n_z & u_z & v_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(5)

LOOKAT CAMERA MATRIX

- Camera position (eye) e
- Lookat point p
- Up vector u

$$\mathbf{v} = norm(\mathbf{e} - \mathbf{p})$$

$$\mathbf{n} = norm(\mathbf{v} \times \mathbf{u})$$

(5)

Matrix which transforms camera into its position:

$$\mathbf{TR} = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_x & u_x & v_x & 0 \\ n_y & u_y & v_y & 0 \\ n_z & u_z & v_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

LOOKAT CAMERA MATRIX II

World view needs to be transformed by its inverse:

$$(\mathbf{TR})^{-1} = \mathbf{R}^{-1}\mathbf{T}^{-1} = \mathbf{R}^{\mathbf{T}}\mathbf{T}^{-1} = \begin{bmatrix} n_x & n_y & n_z & 0\\ u_x & u_y & u_z & 0\\ v_x & v_y & v_z & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x\\ 0 & 1 & 0 & -e_y\\ 0 & 0 & 1 & -e_z\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} n_x & n_y & n_z & -(n \cdot e_x)\\ u_x & u_y & u_z & -(u \cdot e_y)\\ v_x & v_y & v_z & -(v \cdot e_z)\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

PERSPECTIVE PROJECTION

Point *p* projection:
$$x = -\frac{n}{p_z}p_x$$
 and $y = -\frac{n}{p_z}p_y$

Near

Right

Perspective correct interpolation