
Introduction Framebuffer Structure Shadows Deffered Shading

Realtime Computer Graphics on GPUs
Framebuffer and Offscreen Rendering Techniques

Jan Kolomaznı́k

Department of Software and Computer Science Education
Faculty of Mathematics and Physics

Charles University in Prague

1 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

Introduction

2 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DEFINITIONS AND HISTORY

▶ Framebuffer, screen buffer, video buffer, . . .
▶ Memory containing bitmap driving video display
▶ 70s – framebuffers big enough to contain standard video

image
▶ Atari 2600 – Racing the beam
▶ HW support for sprites, shifting the framebuffer (scrolling), . . .

3 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DOUBLE BUFFERING

▶ Single frame buffer problems:
▶ screen tearing
▶ flickering
▶ render artefacts

▶ Double buffering - also known as page flipping
Front buffer – currently visible
Back buffer – currently rendered off-screen

▶ Requires fast buffer swap

4 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DOUBLE BUFFERING

▶ Single frame buffer problems:
▶ screen tearing
▶ flickering
▶ render artefacts

▶ Double buffering - also known as page flipping
Front buffer – currently visible
Back buffer – currently rendered off-screen

▶ Requires fast buffer swap

5 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

Framebuffer Structure

6 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

FRAMEBUFFER

▶ Default framebuffer created with window creation
▶ Custom off-screen framebuffer:

▶ Can choose resolution
▶ Arbitrary attachments
▶ Render to texture
▶ Filtering, postprocessing
▶ Interoperability with other APIs (CUDA, OpenCL, . . .)

7 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

FRAMEBUFFER

▶ Default framebuffer created with window creation
▶ Custom off-screen framebuffer:

▶ Can choose resolution
▶ Arbitrary attachments
▶ Render to texture
▶ Filtering, postprocessing
▶ Interoperability with other APIs (CUDA, OpenCL, . . .)

8 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

FRAMEBUFFER ATTACHMENTS

▶ 2D rendering target
▶ Almost any object containing image or image array
▶ For complex objects specify what part to attach:

Cube map select face
3D texture z-slice

Mipmap choose a level
. . .

▶ Specify semantics – how it will be used in the rendering
pipeline

9 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

COLOR ATTACHMENTS

▶ Should match fragment shader outputs
▶ Color:

▶ 1-4 channels
▶ Integer (8-32), float
▶ Special storage types: GL R3 G3 B2, GL RGB10 A2, . . .

▶ Color updated on successful pass through all fragment tests

10 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DEPTH BUFFER (Z-BUFFER)

▶ Contains depth information for each pixel
▶ Solves visibility problem

▶ Geometry can be streamed
▶ Works only for opaque objects

▶ Precision depends on:
▶ z-buffer element type
▶ projection – decreasing precision with increasing distance

(choose proper near/far clipping planes)

11 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DEPTH BUFFER (Z-BUFFER)

▶ Contains depth information for each pixel
▶ Solves visibility problem

▶ Geometry can be streamed
▶ Works only for opaque objects

▶ Precision depends on:
▶ z-buffer element type
▶ projection – decreasing precision with increasing distance

(choose proper near/far clipping planes)

12 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

STENCIL BUFFER

▶ Additional buffer with integer elements
▶ Usually shares memory with z-buffer
▶ Limits area for rendering – stenciling
▶ Often used for shadow computation
▶ Can be updated by results of stencil and depth test
▶ Behavior setup:

glStencilFunc: what the test does
glStencilOp: what happens on test pass/fail

13 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

OPERATIONS AND TESTS ON FRAGMENTS

▶ Scissor test
▶ Alpha test
▶ Depth test
▶ Stencil test
▶ Blending
▶ Dithering
▶ Logical operations (only integer based colors)

14 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

OPERATIONS AND TESTS ON FRAGMENTS

▶ Scissor test
▶ Alpha test
▶ Depth test
▶ Stencil test
▶ Blending
▶ Dithering
▶ Logical operations (only integer based colors)

15 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

OPERATIONS AND TESTS ON FRAGMENTS

▶ Scissor test
▶ Alpha test
▶ Depth test
▶ Stencil test
▶ Blending
▶ Dithering
▶ Logical operations (only integer based colors)

16 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

OPERATIONS AND TESTS ON FRAGMENTS

▶ Scissor test
▶ Alpha test
▶ Depth test
▶ Stencil test
▶ Blending
▶ Dithering
▶ Logical operations (only integer based colors)

17 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

OPERATIONS AND TESTS ON FRAGMENTS

▶ Scissor test
▶ Alpha test
▶ Depth test
▶ Stencil test
▶ Blending
▶ Dithering
▶ Logical operations (only integer based colors)

18 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

OPERATIONS AND TESTS ON FRAGMENTS

▶ Scissor test
▶ Alpha test
▶ Depth test
▶ Stencil test
▶ Blending
▶ Dithering
▶ Logical operations (only integer based colors)

19 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DEPTH TEST

▶ Different conditions for different objects (e.g. outline hidden
objects)

▶ glDepthFunc()
▶ GL NEVER, GL ALWAYS
▶ GL LESS, GL EQUAL, GL LEQUAL, . . .

▶ Z-fighting – z-buffer precision
▶ glPolygonOffset()

▶ Modulate z-value for specified primitives
▶ Early depth test optimization

20 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

ALPHA TEST

▶ RGBA mode – fragment accepted/rejected by the alpha test
▶ void glAlphaFunc(GLenum func, GLclampf ref);
▶ Comparison function and reference value
▶ By default, ref is zero, func is GL ALWAYS
▶ func: GL ALWAYS, GL NEVER, GL LESS, GL EQUAL,

GL LEQUAL, GL GEQUAL, GL GREATER or GL NOTEQUAL
▶ glEnable(GL ALPHA TEST);

21 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

COLOR BLENDING

▶ How the color of the pixel is updated by fragment shader
output

▶ Render transparent objects –
▶ disable depth test, painters algorithm (order primitives)
▶ order independent transparency – depth peeling

▶ glBlendFunc() mixing colors based on their respective alpha
values.

▶ The source color: the color of the fragment be drawn.
▶ The destination color: the color already present in the color

buffer.

22 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

ANTIALIASING

▶ Supersampling (SSAA)
▶ Render in higher resolution
▶ Show downsampled image – smoothing

▶ Multisampling (MSAA)
▶ Multiple depth/stencil tests per pixel
▶ Estimates fragment coverage – smoothing on edges

23 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

RENDER BUFFER VS. TEXTURE

Best buffer for framebuffer attachments?
▶ Render buffer object:

▶ contains image, which will not be sampled (read)
▶ optimized as render target
▶ support MSAA

▶ Textures:
▶ optimized for read access
▶ can be used later in the rendering pipeline

24 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

TRIPLE BUFFERING AND V-SYNC

▶ V-Sync: new frame is rendered in sync with monitor refresh
frequency (60-100 Hz)

▶ Double buffering + V-Sync – small interval when none of the
buffers can be touched – delay, idle GPU

▶ Second backbuffer – no delays, highest possible framerate
▶ Meaningful only when refresh rate lower than maximal

possible rendering framerate

25 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

Shadows

26 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW CASTING

▶ Static Shadows: baked light/shadow map
▶ Dynamic shadows:

▶ single shadow-receiving plane
▶ simple approach, not generally usable

▶ shadow mapping
▶ shadow depth-buffer, supported in HW – shadowmap sampler

▶ shadow volumes
▶ precise but very computationally intensive

▶ sharp shadows (one pass)
▶ soft shadows (more passes, accumulation of results)

27 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW RECEIVING PLANE

▶ sharp shadows – point light source
▶ use of stencil buffer and multiple scene passes

▶ stencil prevents shadow duplication
▶ single shadow-receiving plane
▶ shadow could be opaque (destroying the original surface

color) or transparent (only reducing the amount of light)

28 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW RECEIVING PLANE – PROCEDURE

1. the whole scene rendered using ordinary projection
▶ shadow-receiver sets stencil to 1
▶ other objects zero this bit

2. potential shadow-casters rendered to the shadow-receiving
plane
▶ depth-test is off
▶ special projection matrix
▶ shadows are drawn only to the (stencil==1) pixels

29 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW RECEIVING PLANE – PROCEDURE

1. the whole scene rendered using ordinary projection
▶ shadow-receiver sets stencil to 1
▶ other objects zero this bit

2. potential shadow-casters rendered to the shadow-receiving
plane
▶ depth-test is off
▶ special projection matrix
▶ shadows are drawn only to the (stencil==1) pixels

30 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

FACE CULLING

▶ From the point of view of camera
▶ GPU can filter (face cull) according to vertex order:

▶ glEnable(GL CULL FACE);
▶ glFrontFace(GL CCW);
▶ glCullFace(GL BACK); // draw front faces only

▶ Speed optimization

31 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW VOLUME – DEPTH PASS

▶ shadow-caster – infinite shadow volume from countour
(shadow solid)

▶ lateral faces of a shadow solid are considered, but invisible
▶ virtual ray from the camera is tested against these faces
▶ GPU can rasterize the virtual faces and ”draw” them into the

stencil buffer
▶ Front faces increase stencil
▶ Back faces decrease stencil

▶ stencil buffer values define shadows in the scene
▶ has to be done separately for each point light source

32 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW VOLUME – DEPTH PASS

33 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW VOLUME – DEPTH PASS

34 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW VOLUME – DEPTH FAIL

▶ Carmack’s reverse
▶ camera can be placed anywhere
▶ shadow solid sealed using ”caps”: one is illuminated part of an

object, the second one in infinity
▶ second phase: lateral shadow faces and both ”caps”

▶ Front faces – decrement on depth fail
▶ Back faces – increment on depth fail

▶ third phase: stencil==0 means ”light”

35 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW VOLUME – DEPTH FAIL

36 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW VOLUME – DEPTH FAIL

37 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW MAPPING

1. scene is rendered from the light-source viewpoint
▶ no need to modify frame buffer, only depth-buffer has to be

updated
2. depth-buffer is moved into a texture (”shadow map”)

▶ regular projection according to the camera
▶ use of projective texture coordinates
▶ test actual distance of a fragment from the light source (in the

world space) against shadow-map texture

38 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW MAPPING

39 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SHADOW MAPPING PROBLEMS

▶ Shadow acne
▶ Perspective aliasing
▶ Sharp shadows
▶ Hard to choose optimal size of shadow maps

▶ Solution: cascaded shadow maps

40 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

Deffered Shading

41 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

BOTTLENECKS IN RASTERIZATION PIPELINE

▶ Processing lots of lights
▶ Complicated materials
▶ Lots of fragments shaded and not used

42 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DEFFERED SHADING

▶ Decouple geometry and light processing
▶ Two stages:

1. Render geometry to textures – multiple render targets
(G-buffer)

2. Posprocessing – apply light computations

43 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DEFFERED SHADING

▶ Decouple geometry and light processing
▶ Two stages:

1. Render geometry to textures – multiple render targets
(G-buffer)

2. Posprocessing – apply light computations

44 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DEFFERED SHADING

▶ Decouple geometry and light processing
▶ Two stages:

1. Render geometry to textures – multiple render targets
(G-buffer)

2. Posprocessing – apply light computations

45 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

COMPOSITING STEP

▶ Compute shader or draw one fullscreen quad
▶ Apply lighting for only visible fragments
▶ All shading parameters come from uniforms and textures
▶ Modern engines do postprocessing

▶ Motion blur
▶ Depth of field
▶ Screen space ambient occlusion
▶ Screen space decals
▶ Bloom
▶ HDR processing

46 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

DISADVANTAGES

▶ Cannot handle transparency (depth peeling)
▶ Complicated usage of multiple material types
▶ Memory intensive
▶ MSAA does not work:

▶ Supersampling
▶ Smoothing trick (small scale, rotate with linear interpolation,

. . .)
▶ Postprocessing – edge detection and masked smoothing,

morphological AA (MLAA)

47 / 48

Introduction Framebuffer Structure Shadows Deffered Shading

SUMMARY: OPENGL CALLS

Framebuffer setup: glGenFramebuffers, glBindFramebuffer,
glGenRenderbuffers, glFramebufferTexture*,
glBlitFramebuffer, glRenderbufferStorageMultisample

Z-buffer and stencil buffer: glDepthFunc, glStencilMask,
glStencilFunc, glStencilOp, glPolygonOffset

Other: glBlendEquation, glBlendFunc, glScissor,

48 / 48

	Introduction
	Framebuffer Structure
	Shadows
	Deffered Shading

