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DEFINITIONS AND HISTORY

▶ Framebuffer, screen buffer, video buffer, . . .
▶ Memory containing bitmap driving video display
▶ 70s – framebuffers big enough to contain standard video

image
▶ Atari 2600 – Racing the beam
▶ HW support for sprites, shifting the framebuffer (scrolling), . . .
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DOUBLE BUFFERING

▶ Single frame buffer problems:
▶ screen tearing
▶ flickering
▶ render artefacts

▶ Double buffering - also known as page flipping
Front buffer – currently visible
Back buffer – currently rendered off-screen

▶ Requires fast buffer swap
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FRAMEBUFFER

▶ Default framebuffer created with window creation
▶ Custom off-screen framebuffer:

▶ Can choose resolution
▶ Arbitrary attachments
▶ Render to texture
▶ Filtering, postprocessing
▶ Interoperability with other APIs (CUDA, OpenCL, . . . )

7 / 48



Introduction Framebuffer Structure Shadows Deffered Shading

FRAMEBUFFER

▶ Default framebuffer created with window creation
▶ Custom off-screen framebuffer:

▶ Can choose resolution
▶ Arbitrary attachments
▶ Render to texture
▶ Filtering, postprocessing
▶ Interoperability with other APIs (CUDA, OpenCL, . . . )

8 / 48



Introduction Framebuffer Structure Shadows Deffered Shading

FRAMEBUFFER ATTACHMENTS

▶ 2D rendering target
▶ Almost any object containing image or image array
▶ For complex objects specify what part to attach:

Cube map select face
3D texture z-slice

Mipmap choose a level
. . .

▶ Specify semantics – how it will be used in the rendering
pipeline

9 / 48



Introduction Framebuffer Structure Shadows Deffered Shading

COLOR ATTACHMENTS

▶ Should match fragment shader outputs
▶ Color:

▶ 1-4 channels
▶ Integer (8-32), float
▶ Special storage types: GL R3 G3 B2, GL RGB10 A2, . . .

▶ Color updated on successful pass through all fragment tests
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DEPTH BUFFER (Z-BUFFER)

▶ Contains depth information for each pixel
▶ Solves visibility problem

▶ Geometry can be streamed
▶ Works only for opaque objects

▶ Precision depends on:
▶ z-buffer element type
▶ projection – decreasing precision with increasing distance

(choose proper near/far clipping planes)
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STENCIL BUFFER

▶ Additional buffer with integer elements
▶ Usually shares memory with z-buffer
▶ Limits area for rendering – stenciling
▶ Often used for shadow computation
▶ Can be updated by results of stencil and depth test
▶ Behavior setup:

glStencilFunc: what the test does
glStencilOp: what happens on test pass/fail
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OPERATIONS AND TESTS ON FRAGMENTS

▶ Scissor test
▶ Alpha test
▶ Depth test
▶ Stencil test
▶ Blending
▶ Dithering
▶ Logical operations (only integer based colors)
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DEPTH TEST

▶ Different conditions for different objects (e.g. outline hidden
objects)

▶ glDepthFunc()
▶ GL NEVER, GL ALWAYS
▶ GL LESS, GL EQUAL, GL LEQUAL, . . .

▶ Z-fighting – z-buffer precision
▶ glPolygonOffset()

▶ Modulate z-value for specified primitives
▶ Early depth test optimization
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ALPHA TEST

▶ RGBA mode – fragment accepted/rejected by the alpha test
▶ void glAlphaFunc(GLenum func, GLclampf ref);
▶ Comparison function and reference value
▶ By default, ref is zero, func is GL ALWAYS
▶ func: GL ALWAYS, GL NEVER, GL LESS, GL EQUAL,

GL LEQUAL, GL GEQUAL, GL GREATER or GL NOTEQUAL
▶ glEnable(GL ALPHA TEST);

21 / 48



Introduction Framebuffer Structure Shadows Deffered Shading

COLOR BLENDING

▶ How the color of the pixel is updated by fragment shader
output

▶ Render transparent objects –
▶ disable depth test, painters algorithm (order primitives)
▶ order independent transparency – depth peeling

▶ glBlendFunc() mixing colors based on their respective alpha
values.

▶ The source color: the color of the fragment be drawn.
▶ The destination color: the color already present in the color

buffer.
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ANTIALIASING

▶ Supersampling (SSAA)
▶ Render in higher resolution
▶ Show downsampled image – smoothing

▶ Multisampling (MSAA)
▶ Multiple depth/stencil tests per pixel
▶ Estimates fragment coverage – smoothing on edges

23 / 48



Introduction Framebuffer Structure Shadows Deffered Shading

RENDER BUFFER VS. TEXTURE

Best buffer for framebuffer attachments?
▶ Render buffer object:

▶ contains image, which will not be sampled (read)
▶ optimized as render target
▶ support MSAA

▶ Textures:
▶ optimized for read access
▶ can be used later in the rendering pipeline
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TRIPLE BUFFERING AND V-SYNC

▶ V-Sync: new frame is rendered in sync with monitor refresh
frequency (60-100 Hz)

▶ Double buffering + V-Sync – small interval when none of the
buffers can be touched – delay, idle GPU

▶ Second backbuffer – no delays, highest possible framerate
▶ Meaningful only when refresh rate lower than maximal

possible rendering framerate
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Shadows
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SHADOW CASTING

▶ Static Shadows: baked light/shadow map
▶ Dynamic shadows:

▶ single shadow-receiving plane
▶ simple approach, not generally usable

▶ shadow mapping
▶ shadow depth-buffer, supported in HW – shadowmap sampler

▶ shadow volumes
▶ precise but very computationally intensive

▶ sharp shadows (one pass)
▶ soft shadows (more passes, accumulation of results)
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SHADOW RECEIVING PLANE

▶ sharp shadows – point light source
▶ use of stencil buffer and multiple scene passes

▶ stencil prevents shadow duplication
▶ single shadow-receiving plane
▶ shadow could be opaque (destroying the original surface

color) or transparent (only reducing the amount of light)
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SHADOW RECEIVING PLANE – PROCEDURE

1. the whole scene rendered using ordinary projection
▶ shadow-receiver sets stencil to 1
▶ other objects zero this bit

2. potential shadow-casters rendered to the shadow-receiving
plane
▶ depth-test is off
▶ special projection matrix
▶ shadows are drawn only to the (stencil==1) pixels
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FACE CULLING

▶ From the point of view of camera
▶ GPU can filter (face cull) according to vertex order:

▶ glEnable( GL CULL FACE );
▶ glFrontFace( GL CCW );
▶ glCullFace( GL BACK ); // draw front faces only

▶ Speed optimization
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SHADOW VOLUME – DEPTH PASS

▶ shadow-caster – infinite shadow volume from countour
(shadow solid)

▶ lateral faces of a shadow solid are considered, but invisible
▶ virtual ray from the camera is tested against these faces
▶ GPU can rasterize the virtual faces and ”draw” them into the

stencil buffer
▶ Front faces increase stencil
▶ Back faces decrease stencil

▶ stencil buffer values define shadows in the scene
▶ has to be done separately for each point light source
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SHADOW VOLUME – DEPTH PASS
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SHADOW VOLUME – DEPTH FAIL

▶ Carmack’s reverse
▶ camera can be placed anywhere
▶ shadow solid sealed using ”caps”: one is illuminated part of an

object, the second one in infinity
▶ second phase: lateral shadow faces and both ”caps”

▶ Front faces – decrement on depth fail
▶ Back faces – increment on depth fail

▶ third phase: stencil==0 means ”light”
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SHADOW MAPPING

1. scene is rendered from the light-source viewpoint
▶ no need to modify frame buffer, only depth-buffer has to be

updated
2. depth-buffer is moved into a texture (”shadow map”)

▶ regular projection according to the camera
▶ use of projective texture coordinates
▶ test actual distance of a fragment from the light source (in the

world space) against shadow-map texture
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SHADOW MAPPING
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SHADOW MAPPING PROBLEMS

▶ Shadow acne
▶ Perspective aliasing
▶ Sharp shadows
▶ Hard to choose optimal size of shadow maps

▶ Solution: cascaded shadow maps
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Deffered Shading
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BOTTLENECKS IN RASTERIZATION PIPELINE

▶ Processing lots of lights
▶ Complicated materials
▶ Lots of fragments shaded and not used
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DEFFERED SHADING

▶ Decouple geometry and light processing
▶ Two stages:

1. Render geometry to textures – multiple render targets
(G-buffer)

2. Posprocessing – apply light computations
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COMPOSITING STEP

▶ Compute shader or draw one fullscreen quad
▶ Apply lighting for only visible fragments
▶ All shading parameters come from uniforms and textures
▶ Modern engines do postprocessing

▶ Motion blur
▶ Depth of field
▶ Screen space ambient occlusion
▶ Screen space decals
▶ Bloom
▶ HDR processing
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DISADVANTAGES

▶ Cannot handle transparency (depth peeling)
▶ Complicated usage of multiple material types
▶ Memory intensive
▶ MSAA does not work:

▶ Supersampling
▶ Smoothing trick (small scale, rotate with linear interpolation,

. . . )
▶ Postprocessing – edge detection and masked smoothing,

morphological AA (MLAA)
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SUMMARY: OPENGL CALLS

Framebuffer setup: glGenFramebuffers, glBindFramebuffer,
glGenRenderbuffers, glFramebufferTexture*,
glBlitFramebuffer, glRenderbufferStorageMultisample

Z-buffer and stencil buffer: glDepthFunc, glStencilMask,
glStencilFunc, glStencilOp, glPolygonOffset

Other: glBlendEquation, glBlendFunc, glScissor,

48 / 48


	Introduction
	Framebuffer Structure
	Shadows
	Deffered Shading

