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BOTTLENECKS OF MODERN RENDERERS

▶ Memory transfers between CPU (RAM) and GPU
▶ Communication with driver:

▶ Fixed pipeline:
▶ Lots of API calls to manage state

▶ OpenGL 3.0+:
▶ Bind operations
▶ Setting shader uniforms
▶ Draw calls
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PROBLEM – MULTI-MATERIAL SCENE/OBJECTS

▶ Changing shader programs + repeated uniform setup
▶ Bind new textures on material switch
▶ Multiple draw calls
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UNIFORM BUFFER OBJECTS I

Advantages:
▶ Same uniforms in multiple shader programs:

uniform vec4 camera_position ;
uniform vec4 light_position ;
uniform vec4 light_diffuse ;

▶ Single buffer cointaining the data
▶ Larger uniform storage
▶ Faster switching for uniform blocks
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UNIFORM BUFFER OBJECTS II

▶ Switch to uniform block in GLSL

uniform shader_data
{

vec4 camera_position ;
vec4 light_position ;
vec4 light_diffuse ;
} ;

▶ C++ counterpart:

s t r u c t shader_data_t
{

f l o a t camera_position [ 4 ] ;
f l o a t light_position [ 4 ] ;
f l o a t light_diffuse [ 4 ] ;

} shader_data ;
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UNIFORM BUFFER OBJECTS III
▶ Create uniform buffer:

GLuint ubo = 0;
glGenBuffers (1 , &ubo ) ;
glBindBuffer (GL_UNIFORM_BUFFER , ubo ) ;
glBufferData (GL_UNIFORM_BUFFER , s i z e o f (shader_data ) , &shader_data , ←↩

GL_DYNAMIC_DRAW ) ;
glBindBuffer (GL_UNIFORM_BUFFER , 0) ;

▶ Update data:
glBindBuffer (GL_UNIFORM_BUFFER , gbo ) ;
GLvoid* p = glMapBuffer (GL_UNIFORM_BUFFER , GL_WRITE_ONLY ) ;
memcpy (p , &shader_data , s i z e o f (shader_data ) )
glUnmapBuffer (GL_UNIFORM_BUFFER ) ;

▶ Connect UBO and GLSL program:
block_index = glGetUniformBlockIndex (program , ” shader data ” ) ;
GLuint binding_point_index = 2;
glUniformBlockBinding (program , block_index , binding_point_index ) ;

. . .

glBindBufferRange (GL_UNIFORM_BUFFER , binding_point_index ,
gbo , 0 , s i z e o f (shader_data_t ) ) ;
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BINDLESS TEXTURES

How to prevent texture binding?
▶ Generate integer handle for each texture:

▶ from texture object alone
▶ from texture object and sampler
▶ from specific image within texture

▶ Texture state becomes immutable (can update contents)
▶ Access texture by handle from shaders

▶ cannot be used until made resident
▶ Safety: errors may crash the GPU, program, OS
▶ Extensions: ARB bindless texture, NV bindless texture
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BINDLESS TEXTURES – USAGE

▶ Creation:
glGetTextureHandleARB(GLuint texture);
glGetTextureSamplerHandleARB(GLuint texture, GLuint sampler);

▶ Image handle:
glGetImageHandleARB(GLuint texture, GLint level,
GLboolean layered, GLint layer, GLenum format);

▶ Residency:
glMakeTextureHandleResidentARB(GLuint64 handle);
glMakeImageHandleResidentARB(uint64 handle, enum access);
glMakeTextureHandleNonResidentARB(GLuint64 handle);
glMakeImageHandleNonResidentARB(uint64 handle);
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BINDLESS TEXTURES – GLSL USAGE

▶ Handle must be resident
▶ Direct use:

▶ Shader stage inputs/outputs (except FS outputs)
▶ Vertex attributes (GL UNSIGNED INT64 ARB data type)
▶ Uniforms, uniform blocks

layout(bindless_sampler) uniform sampler2D bindless;

uniform samplers
{

sampler2D arr[10];
};

▶ Local sampler variables (init form other samplers, integer cast)
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SPARSE VIRTUAL TEXTURE

▶ Also known as megatextures (Idsoft – Rage)
▶ Different approach to binding prevention – one large texture for

whole scene
▶ Texture may be larger than GPU memory (over-subscription)

▶ Similar to virtual address space and physical memory
▶ Pages are texture tiles
▶ Page table for translation of texture coordinates

▶ Each object in scene uniquely textured
▶ Artist less limited by technical aspects

11 / 38



Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

VIRTUAL TEXTURING
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VIRTUAL TEXTURING
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VIRTUAL TEXTURING
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MEGATEXTURES – PAGE MAPPING

▶ Access the page table with original texture coordinates
(nearest neighbor)

▶ No special coordinate mapping
▶ Within-page offset:

▶ Depends on mip-map level

page_phys_tc = texture (page_tex , vtex_tc ) ;

within_page_tc = exp2 (mip_level ) * vtex_tc ;
within_page_tc = fract (within_page_tc ) ;

within_page_tc *= rescale_page_to_physical ;
phys_tc = page_phys_tc + within_page_tc ;

sample = texture (diffuse_tex , phys_tc ) ;
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FEEDBACK ANALYSIS

▶ Separate pass – render page IDs (low resolution)
▶ Determine pages + mip-map levels

▶ Loading missing pages – delay before used (mip-map fallback)

16 / 38



Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

IMPLEMENTATION DETAILS

Page faults:
▶ Mip-map substitution
▶ Propagate lower mip-map levels page mapping to un-mapped

upper levels
HW support:
▶ TexPageCommitmentARB()

Filtering:
▶ Bilinear filtering with/without tile borders
▶ Trilinear – mip-map the physical pages (larger border)
▶ Anisotropic – complicated

17 / 38



Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

Decals, Billboards
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DECALS

▶ Runtime interaction with the scene
▶ Additional details:

▶ Bullet holes
▶ Graffiti
▶ Local material weathering
▶ Footsteps
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DECALS – APPROACHES

▶ Megatextures:
▶ Draw decals directly in the scene texture
▶ Maybe permanent without increased overhead

▶ Special geometry rendered in front of the object
▶ Z-fighting, depth offset
▶ Simple scene – textured quad
▶ Geometry projection in general case
▶ Adding decals increases scene complexity – only few

latest/important kept
▶ Screen space decals – deferred shading
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DECALS – PROJECTING GEOMETRY

▶ Oriented bounding box:
▶ projector along z-axis
▶ x,y are mapped to u,v coordinates

▶ Intersection with scene geometry
▶ select intersecting tringles
▶ cut triangles – project to projector space, uv-mapping
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DECALS – SCREEN SPACE

▶ Deffered shading
▶ Render projector box

▶ Reject fragments which project outside the box (use z-buffer +
view direction)

▶ Flattened box – projected on the geometry
▶ Normal mapping:

▶ Normal buffer may contain modulated normals
▶ Underlying geometry normal – partial derivatives in the z-buffer

▶ Problems:
▶ Clipping the projector box
▶ Projection on 90 degree corners
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BILLBOARDS

▶ Billboard – semitransparent texture showing more complicated
object/scenery
▶ texture is usually mapped on a rectangle
▶ often perpendicular to view direction
▶ .. following the viewer – special transform matrix
▶ rotation around vertical axis only (unsightly from above)

▶ usage
▶ trees and bushes (even unoriented billboards, multi-billboards)
▶ complex inscriptions, 2D graphics, HUD, lens flare..
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IMPOSTORS

▶ Impostor – billboard created dynamically (as necessary) in a
rendering engine
▶ cache of complex scenery (not very dynamic)
▶ complex object/scenery (geometric or color complexity)
▶ for distant objects mostly
▶ hierarchy, LoD, multiple instances of the (almost) same object

. . .
▶ trees, bushes

▶ impostors might be oriented along main branches..
▶ technique: HW render-target textures
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EXAMPLE

©Linda (Bohemia Interactive)
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Noise Functions
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OVERVIEW AND MOTIVATION

▶ Critical for realistic textures and models
▶ Simplifies creation of natural variations
▶ Applications: terrain, procedural texturing, simulations
▶ Key for realism in visual effects and games
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NOISE FUNCTIONS

▶ Generate pseudo-random
▶ Smooth gradients – frequency limited
▶ Controlled randomness mimics natural forms
▶ Types:

▶ Value
▶ Gradient (Perlin, Simplex)
▶ Cellular (Worley)
▶ Fractal Noise
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PERLIN NOISE

▶ Developed by Ken Perlin, 1983
▶ Algorithm:

▶ Gradient vectors computed at grid points
▶ Interpolated across grid to produce smooth transitions

▶ Properties:
▶ Visually isotropic in 2D and 3D
▶ Repeats over large scales, which can be controlled

▶ Applications: Terrain, clouds, fire textures
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SIMPLEX NOISE

▶ Ken Perlin, 2001
▶ Algorithm:

▶ Similar to Perlin but with simplex grid (triangular/hexagonal)
▶ Reduces computational complexity, especially in higher

dimensions
▶ Properties:

▶ Faster computation and lower complexity than Perlin
▶ Scales more efficiently to higher dimensions (4D and beyond)

▶ Avoids square-grid artifacts of Perlin noise
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WORLEY NOISE

▶ Steven Worley, 1996
▶ Algorithm:

▶ Points randomly distributed, partitioned into cells
▶ Noise generated based on proximity to nearest points

▶ Properties:
▶ Produces a voronoi diagram-like appearance
▶ Can simulate phenomena like cracked surfaces, sponge

textures
▶ Applications: Stone, water effects, organic textures
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COMPOSITING NOISE FUNCTIONS

▶ Combines multiple noise types to increase texture complexity
▶ Techniques:

▶ Layering different scales and amplitudes
▶ Masking layers to control influence areas

▶ Example: Mix Perlin (base texture) + Worley (detail
enhancement)

▶ Enhances detail and realism in procedural content
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Volumetric Effects
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VOLUMETRIC EFFECTS

▶ Light usually passes through some medium (air, water, . . . )
▶ Intensity, color (polarization) may be modulated:

▶ Attenuation (fog)
▶ Scattering (sunbeams, blue sky)

▶ Simulated by:
▶ Ray traversal
▶ Blending billboard slice planes
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RAY CASTING

▶ Space traversal along light ray
▶ Integrating properties along the ray:

v =

∫ rayend

raystart

f (s)ds

▶ Discrete samples:
▶ Regular voxel grid
▶ Procedural description

▶ Numerical integration:
▶ Piece-wise constant
▶ Interpolation (linear, polynomial)
▶ . . .

Eye

Screen

Voxel grid
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SUNBEAMS

▶ Also known as crepuscular rays, god rays, . . .
▶ Scattering on particles under direct light:

▶ Sun + clouds
▶ Point light source + dusty room
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SUNBEAMS – IMPLEMENTATION

▶ Deffered shading
▶ Ray casting from viewer to each pixel

▶ Ray sampling
▶ Check if sample illuminated – shadow map test
▶ Apply light scattering (physical model) to illuminated points
▶ Aggregate the effect and apply to color buffer

▶ Heavy computation
▶ Downsampled g-buffer
▶ Bluring result to prevent aliasing
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OTHER APPROACHES

▶ Create light volume geometry from shadow map and light
source
▶ Solve the rendering integral in intervals defined by light mesh

▶ Screen space approach:
▶ Directional light source bluring (decreasing alpha)
▶ Ligth source must be in the image
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