
Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

Realtime Computer Graphics on GPUs
Effects II

Jan Kolomaznı́k

Department of Software and Computer Science Education
Faculty of Mathematics and Physics

Charles University in Prague

1 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

Advanced Texturing

2 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

BOTTLENECKS OF MODERN RENDERERS

▶ Memory transfers between CPU (RAM) and GPU
▶ Communication with driver:

▶ Fixed pipeline:
▶ Lots of API calls to manage state

▶ OpenGL 3.0+:
▶ Bind operations
▶ Setting shader uniforms
▶ Draw calls

3 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

PROBLEM – MULTI-MATERIAL SCENE/OBJECTS

▶ Changing shader programs + repeated uniform setup
▶ Bind new textures on material switch
▶ Multiple draw calls

4 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

UNIFORM BUFFER OBJECTS I

Advantages:
▶ Same uniforms in multiple shader programs:

uniform vec4 camera_position ;
uniform vec4 light_position ;
uniform vec4 light_diffuse ;

▶ Single buffer cointaining the data
▶ Larger uniform storage
▶ Faster switching for uniform blocks

5 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

UNIFORM BUFFER OBJECTS II

▶ Switch to uniform block in GLSL

uniform shader_data
{

vec4 camera_position ;
vec4 light_position ;
vec4 light_diffuse ;
} ;

▶ C++ counterpart:

s t r u c t shader_data_t
{

f l o a t camera_position [4] ;
f l o a t light_position [4] ;
f l o a t light_diffuse [4] ;

} shader_data ;

6 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

UNIFORM BUFFER OBJECTS III
▶ Create uniform buffer:

GLuint ubo = 0;
glGenBuffers (1 , &ubo) ;
glBindBuffer (GL_UNIFORM_BUFFER , ubo) ;
glBufferData (GL_UNIFORM_BUFFER , s i z e o f (shader_data) , &shader_data , ←↩

GL_DYNAMIC_DRAW) ;
glBindBuffer (GL_UNIFORM_BUFFER , 0) ;

▶ Update data:
glBindBuffer (GL_UNIFORM_BUFFER , gbo) ;
GLvoid* p = glMapBuffer (GL_UNIFORM_BUFFER , GL_WRITE_ONLY) ;
memcpy (p , &shader_data , s i z e o f (shader_data))
glUnmapBuffer (GL_UNIFORM_BUFFER) ;

▶ Connect UBO and GLSL program:
block_index = glGetUniformBlockIndex (program , ” shader data ”) ;
GLuint binding_point_index = 2;
glUniformBlockBinding (program , block_index , binding_point_index) ;

. . .

glBindBufferRange (GL_UNIFORM_BUFFER , binding_point_index ,
gbo , 0 , s i z e o f (shader_data_t)) ;

7 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

BINDLESS TEXTURES

How to prevent texture binding?
▶ Generate integer handle for each texture:

▶ from texture object alone
▶ from texture object and sampler
▶ from specific image within texture

▶ Texture state becomes immutable (can update contents)
▶ Access texture by handle from shaders

▶ cannot be used until made resident
▶ Safety: errors may crash the GPU, program, OS
▶ Extensions: ARB bindless texture, NV bindless texture

8 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

BINDLESS TEXTURES – USAGE

▶ Creation:
glGetTextureHandleARB(GLuint texture);
glGetTextureSamplerHandleARB(GLuint texture, GLuint sampler);

▶ Image handle:
glGetImageHandleARB(GLuint texture, GLint level,
GLboolean layered, GLint layer, GLenum format);

▶ Residency:
glMakeTextureHandleResidentARB(GLuint64 handle);
glMakeImageHandleResidentARB(uint64 handle, enum access);
glMakeTextureHandleNonResidentARB(GLuint64 handle);
glMakeImageHandleNonResidentARB(uint64 handle);

9 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

BINDLESS TEXTURES – GLSL USAGE

▶ Handle must be resident
▶ Direct use:

▶ Shader stage inputs/outputs (except FS outputs)
▶ Vertex attributes (GL UNSIGNED INT64 ARB data type)
▶ Uniforms, uniform blocks

layout(bindless_sampler) uniform sampler2D bindless;

uniform samplers
{

sampler2D arr[10];
};

▶ Local sampler variables (init form other samplers, integer cast)

10 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

SPARSE VIRTUAL TEXTURE

▶ Also known as megatextures (Idsoft – Rage)
▶ Different approach to binding prevention – one large texture for

whole scene
▶ Texture may be larger than GPU memory (over-subscription)

▶ Similar to virtual address space and physical memory
▶ Pages are texture tiles
▶ Page table for translation of texture coordinates

▶ Each object in scene uniquely textured
▶ Artist less limited by technical aspects

11 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

VIRTUAL TEXTURING

12 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

VIRTUAL TEXTURING

13 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

VIRTUAL TEXTURING

14 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

MEGATEXTURES – PAGE MAPPING

▶ Access the page table with original texture coordinates
(nearest neighbor)

▶ No special coordinate mapping
▶ Within-page offset:

▶ Depends on mip-map level

page_phys_tc = texture (page_tex , vtex_tc) ;

within_page_tc = exp2 (mip_level) * vtex_tc ;
within_page_tc = fract (within_page_tc) ;

within_page_tc *= rescale_page_to_physical ;
phys_tc = page_phys_tc + within_page_tc ;

sample = texture (diffuse_tex , phys_tc) ;

15 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

FEEDBACK ANALYSIS

▶ Separate pass – render page IDs (low resolution)
▶ Determine pages + mip-map levels

▶ Loading missing pages – delay before used (mip-map fallback)

16 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

IMPLEMENTATION DETAILS

Page faults:
▶ Mip-map substitution
▶ Propagate lower mip-map levels page mapping to un-mapped

upper levels
HW support:
▶ TexPageCommitmentARB()

Filtering:
▶ Bilinear filtering with/without tile borders
▶ Trilinear – mip-map the physical pages (larger border)
▶ Anisotropic – complicated

17 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

Decals, Billboards

18 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

DECALS

▶ Runtime interaction with the scene
▶ Additional details:

▶ Bullet holes
▶ Graffiti
▶ Local material weathering
▶ Footsteps

19 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

DECALS – APPROACHES

▶ Megatextures:
▶ Draw decals directly in the scene texture
▶ Maybe permanent without increased overhead

▶ Special geometry rendered in front of the object
▶ Z-fighting, depth offset
▶ Simple scene – textured quad
▶ Geometry projection in general case
▶ Adding decals increases scene complexity – only few

latest/important kept
▶ Screen space decals – deferred shading

20 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

DECALS – PROJECTING GEOMETRY

▶ Oriented bounding box:
▶ projector along z-axis
▶ x,y are mapped to u,v coordinates

▶ Intersection with scene geometry
▶ select intersecting tringles
▶ cut triangles – project to projector space, uv-mapping

21 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

DECALS – SCREEN SPACE

▶ Deffered shading
▶ Render projector box

▶ Reject fragments which project outside the box (use z-buffer +
view direction)

▶ Flattened box – projected on the geometry
▶ Normal mapping:

▶ Normal buffer may contain modulated normals
▶ Underlying geometry normal – partial derivatives in the z-buffer

▶ Problems:
▶ Clipping the projector box
▶ Projection on 90 degree corners

22 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

BILLBOARDS

▶ Billboard – semitransparent texture showing more complicated
object/scenery
▶ texture is usually mapped on a rectangle
▶ often perpendicular to view direction
▶ .. following the viewer – special transform matrix
▶ rotation around vertical axis only (unsightly from above)

▶ usage
▶ trees and bushes (even unoriented billboards, multi-billboards)
▶ complex inscriptions, 2D graphics, HUD, lens flare..

23 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

IMPOSTORS

▶ Impostor – billboard created dynamically (as necessary) in a
rendering engine
▶ cache of complex scenery (not very dynamic)
▶ complex object/scenery (geometric or color complexity)
▶ for distant objects mostly
▶ hierarchy, LoD, multiple instances of the (almost) same object

. . .
▶ trees, bushes

▶ impostors might be oriented along main branches..
▶ technique: HW render-target textures

24 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

EXAMPLE

©Linda (Bohemia Interactive)

25 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

Noise Functions

26 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

OVERVIEW AND MOTIVATION

▶ Critical for realistic textures and models
▶ Simplifies creation of natural variations
▶ Applications: terrain, procedural texturing, simulations
▶ Key for realism in visual effects and games

27 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

NOISE FUNCTIONS

▶ Generate pseudo-random
▶ Smooth gradients – frequency limited
▶ Controlled randomness mimics natural forms
▶ Types:

▶ Value
▶ Gradient (Perlin, Simplex)
▶ Cellular (Worley)
▶ Fractal Noise

28 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

PERLIN NOISE

▶ Developed by Ken Perlin, 1983
▶ Algorithm:

▶ Gradient vectors computed at grid points
▶ Interpolated across grid to produce smooth transitions

▶ Properties:
▶ Visually isotropic in 2D and 3D
▶ Repeats over large scales, which can be controlled

▶ Applications: Terrain, clouds, fire textures

29 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

SIMPLEX NOISE

▶ Ken Perlin, 2001
▶ Algorithm:

▶ Similar to Perlin but with simplex grid (triangular/hexagonal)
▶ Reduces computational complexity, especially in higher

dimensions
▶ Properties:

▶ Faster computation and lower complexity than Perlin
▶ Scales more efficiently to higher dimensions (4D and beyond)

▶ Avoids square-grid artifacts of Perlin noise

30 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

WORLEY NOISE

▶ Steven Worley, 1996
▶ Algorithm:

▶ Points randomly distributed, partitioned into cells
▶ Noise generated based on proximity to nearest points

▶ Properties:
▶ Produces a voronoi diagram-like appearance
▶ Can simulate phenomena like cracked surfaces, sponge

textures
▶ Applications: Stone, water effects, organic textures

31 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

COMPOSITING NOISE FUNCTIONS

▶ Combines multiple noise types to increase texture complexity
▶ Techniques:

▶ Layering different scales and amplitudes
▶ Masking layers to control influence areas

▶ Example: Mix Perlin (base texture) + Worley (detail
enhancement)

▶ Enhances detail and realism in procedural content

32 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

Volumetric Effects

33 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

VOLUMETRIC EFFECTS

▶ Light usually passes through some medium (air, water, . . .)
▶ Intensity, color (polarization) may be modulated:

▶ Attenuation (fog)
▶ Scattering (sunbeams, blue sky)

▶ Simulated by:
▶ Ray traversal
▶ Blending billboard slice planes

34 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

RAY CASTING

▶ Space traversal along light ray
▶ Integrating properties along the ray:

v =

∫ rayend

raystart

f (s)ds

▶ Discrete samples:
▶ Regular voxel grid
▶ Procedural description

▶ Numerical integration:
▶ Piece-wise constant
▶ Interpolation (linear, polynomial)
▶ . . .

Eye

Screen

Voxel grid

35 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

SUNBEAMS

▶ Also known as crepuscular rays, god rays, . . .
▶ Scattering on particles under direct light:

▶ Sun + clouds
▶ Point light source + dusty room

36 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

SUNBEAMS – IMPLEMENTATION

▶ Deffered shading
▶ Ray casting from viewer to each pixel

▶ Ray sampling
▶ Check if sample illuminated – shadow map test
▶ Apply light scattering (physical model) to illuminated points
▶ Aggregate the effect and apply to color buffer

▶ Heavy computation
▶ Downsampled g-buffer
▶ Bluring result to prevent aliasing

37 / 38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects

OTHER APPROACHES

▶ Create light volume geometry from shadow map and light
source
▶ Solve the rendering integral in intervals defined by light mesh

▶ Screen space approach:
▶ Directional light source bluring (decreasing alpha)
▶ Ligth source must be in the image

38 / 38

	Advanced Texturing
	Decals, Billboards
	Noise Functions
	Volumetric Effects

