Painter's Algorithm

© 1995-2015 Josef Pelikán \& Alexander Wilkie CGG MFF UK Praha
pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Painter's Algorithm

- Drawing to a buffer
- Video RAM, raster printer with a buffer
- Area filling
- Even with patterns
\Rightarrow Drawing is back to front
- Overdrawing of earlier objects
- Determines visibility

Simplified Versions

- Explicit drawing order
- E.g. as function of two variables: $\boldsymbol{z}=\mathrm{f}(\boldsymbol{x}, \boldsymbol{y})$
- Depth-sort
- Sorting of objects (polygons) by \mathbf{Z} coordinate (center)
- Works well for large amounts of small objects
- Does not work correctly for mixtures of large and small polygons (table-top with small objects on them)

Correct Algorithm

- Scene is made up of planar geometry
- Faces may have common points only along the border (no intersections)

Phase 1: Sorting

(1) Polygons are sorted by minimal \boldsymbol{z} coordinate in ascending order - back to front - which generates an input list S

Phase 2: Checking the Ordering

${ }^{(2)}$ From the beginning of the list \boldsymbol{S} we take the polygon \boldsymbol{P} - a candidate for drawing. We have to test other polygons against \boldsymbol{P} whether there is a collision. The tested polygons are denoted Q

Phase 2A: "minimax test"

- First we perform a very easy test - we compare the the bounding boxes of the two polygons. If there are no overlapping points, the testing of \boldsymbol{Q} ends.
If not, we go on with further tests of \boldsymbol{P} and \boldsymbol{Q}.

Phase 2B: testing of \boldsymbol{P} against \boldsymbol{Q}

(2) We then test whether \boldsymbol{P} completely lies behind the plane of the polygon \boldsymbol{Q}. If this is the case, testing of \boldsymbol{Q} ends.
If not, we go on with further tests of \boldsymbol{P} and \boldsymbol{Q}.
$a \cdot x+b \cdot y+c \cdot z+d<0$

Phase 2C: testing of \boldsymbol{Q} against \boldsymbol{P}

(2) We then test whether \boldsymbol{Q} completely lies before the plane of the polygon \boldsymbol{P}.
If this is the case, testing of \boldsymbol{Q} ends.
If not, we go on with further tests of \boldsymbol{P} and \boldsymbol{Q}.

$$
a \cdot x+b \cdot y+c \cdot z+d>0
$$

Phase 2D: Complete Projection

© If the previous tests all failed, we have to run a complete intersection test of the polygons \boldsymbol{P} and \boldsymbol{Q} in projection. It is necessary to determine whether \boldsymbol{Q} covers any part of \boldsymbol{P}. In this case, \boldsymbol{P} has to be drawn before \boldsymbol{Q} !

Phase 2D: Complete Projection

- We test all edges of \boldsymbol{P} and \boldsymbol{Q} against each other. If we find intersections, we compare the \boldsymbol{Z} coordinate. If any part of \boldsymbol{P} is before \boldsymbol{Q}, the test of \boldsymbol{Q} ends. In this case, it would not be possible to draw \boldsymbol{P} before \boldsymbol{Q} !

Phase 2D: Complete Projection

\Rightarrow But even if no intersections of \boldsymbol{P} and \boldsymbol{Q} exist, we have to check whether \boldsymbol{P} does not lie completely inside Q, or vice versa.
We do this by comparing \boldsymbol{z} coordinates.

Phase 2: Re-Ordering

- If \boldsymbol{P} cannot be drawn in front of \boldsymbol{Q}, we try to move \boldsymbol{Q} to the beginning of the list \boldsymbol{S} (even before P)
- \boldsymbol{Q} will again undergo all tests of the 2nd phase (described for \boldsymbol{P})
- Tests between \boldsymbol{Q} and \boldsymbol{P} have already been done, you only need to do an inverted test on \mathbf{B} and \mathbf{C}
- During loops each candidate has to be evaluated separately

Phase 2: Cycle Removal

- If any candidate is tested more than once, there is a cycle
- A cycle can be eliminated by splitting some polygons (correct order is $\mathbf{A}_{1}, \mathbf{B}, \mathbf{C}, \mathbf{A}_{2}$)

End

Further information:

■ J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer Graphics, Principles and Practice, 672675

- Jiří Žára a kol.: Počítačová grafika, principy a algoritmy, 302-304

