
1 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Painter's Algorithm

© 1995-2015 Josef Pelikán & Alexander Wilkie

 CGG MFF UK Praha

 pepca@cgg.mff.cuni.cz

 http://cgg.mff.cuni.cz/~pepca/

2 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Painter's Algorithm

 Drawing to a buffer
– Video RAM, raster printer with a buffer

 Area filling
– Even with patterns

Drawing is back to front
– Overdrawing of earlier objects

Determines visibility

3 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Simplified Versions

 Explicit drawing order
– E.g. as function of two variables: z = f(x,y)

 Depth-sort
– Sorting of objects (polygons) by z coordinate (center)

– Works well for large amounts of small objects
– Does not work correctly for mixtures of large and small

polygons (table-top with small objects on them)

4 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Correct Algorithm

 Scene is made up of planar geometry

 Faces may have common points only along the
border (no intersections)

5 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 1: Sorting

 Polygons are sorted by
minimal z coordinate in
ascending order – back to
front – which generates an
input list S

z

x,y

1 3

2

4

5

6 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2: Checking the Ordering

 From the beginning of the
list S we take the polygon P
– a candidate for drawing.
We have to test other
polygons against P whether
there is a collision. The
tested polygons are denoted
Q

z

x,y

P Q2

5

Q3

Q1

7 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2A: “minimax test”

 First we perform a very
easy test – we compare the
the bounding boxes of the
two polygons. If there are
no overlapping points, the
testing of Q ends.
If not, we go on with further
tests of P and Q.

x

y

P Q

8 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2B: testing of P against Q

 We then test whether P
completely lies behind the
plane of the polygon Q.
If this is the case, testing of
Q ends.
If not, we go on with further
tests of P and Q.

z

x,y

P

Q

a· x + b· y + c· z + d < 0

9 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2C: testing of Q against P

 We then test whether Q
completely lies before the
plane of the polygon P.
If this is the case, testing of
Q ends.
If not, we go on with further
tests of P and Q.

z

x,y

P

Q

a· x + b· y + c· z + d > 0

10 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2D: Complete Projection

 If the previous tests all
failed, we have to run a
complete intersection test
of the polygons P and Q in
projection. It is necessary
to determine whether Q
covers any part of P.
In this case, P has to be
drawn before Q! x

y

P Q

11 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2D: Complete Projection

 We test all edges of P and Q
against each other. If we
find intersections, we
compare the z coordinate. If
any part of P is before Q,
the test of Q ends. In this
case, it would not be
possible to draw P before Q!

x

y

P Q

zP<zQ

12 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2D: Complete Projection

 But even if no intersections
of P and Q exist, we have to
check whether P does not lie
completely inside Q, or
vice versa.
We do this by comparing z
coordinates.

x

y

P

Q

zP<zQ

13 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2: Re-Ordering

 If P cannot be drawn in front of Q, we try to move Q
to the beginning of the list S (even before P)
– Q will again undergo all tests of the 2nd phase (described for P)
– Tests between Q and P have already been done, you only need to

do an inverted test on B and C

 During loops each candidate has to be evaluated
separately

14 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

Phase 2: Cycle Removal

A

B
C

BC

A1A2

 If any candidate is tested more than once, there is
a cycle

 A cycle can be eliminated by splitting some
polygons (correct order is A1, B, C, A2)

15 / 15Painter 2013 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

End

Further information:

 J. Foley, A. van Dam, S. Feiner, J. Hughes:
Computer Graphics, Principles and Practice, 672-
675

 Jiří Žára a kol.: Počítačová grafika, principy a
algoritmy, 302-304

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

