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• Intro - Aliasing 

• Problem definition, Examples 

• Ad-hoc Solutions 

• Sampling theory 

• Fourier transform 
• Convolution 

• Reconstruction 

• Sampling theorem 
• Reconstruction in theory and practice
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• Errors incurred during analog-digital conversions: 

• Geometric (pixel artefacts, „jaggies“) 
• Colour quality 
• Errors in animation sequences
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• Jumpy images 

• "worming“ 

• Wheels turning backwards
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• “More effort” 

• Ad-hoc solutions 
• Higher resolution 
• Higher colour depth 
• Faster image refresh 

• “Use your brain” 

• Understanding the problem 
• Efficient counter-measures
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box filter                        cone               Gaussian filter

Simple Splatting Kernels
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• Without at least some knowledge about the sampled 
signal, we cannot guarantee that this will work! 

• At all!
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• Connects time and frequency domain 

• Applicable for arbitrary signals 

• f(x) time domain 
• F(u) frequency domain 
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� 

F(u) = f (x)[cos 2πux − isin 2π ux] dx
−∞

+∞

∫

f (x) = F(u)[cos 2πux − isin 2π ux]
−∞

+∞

∫ du
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• Yields complex-valued frequency space functions 

• The imaginary part contains phase information - this 
is usually omitted 

• Can be generalised to higher dimensions (2D, 3D) 

• Alternatives, such as the Hartley transform, exist
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• For discrete signals 

• N samples: complexity O(N^2) 

• Fast FT (FFT): O(N log N)
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� 

F(u) = f (x)[cos (2π ux /N) − isin (2πux /N)],0 ≤ u ≤ N −1
0

N−1

∑

f (x) = F(u)[cos (2π ux /N) − isin (2πux /N)],0 ≤ x ≤ N −1
0

N−1

∑
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• A single Dirac pulse corresponds to sampling an image 
at a single location 

• Regular sampling can be seen as multiplication with n 
evenly spaced Dirac pulses (comb function) 
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• A time domain comb corresponds to a frequency 
domain comb with inverse pulse distance
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� 

combT (x) ≡ comb1/T (ω)
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• Mathematical operator: 

• Two functions as input 
• A new function as output 

• “Weighing the first function with the second”
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� 

( f * g)(t) = f (τ )g(t − τ )dτ
D
∫
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• Convolution in the time domain corresponds to point 
wise multiplication in the frequency domain 

• And vice versa
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� 

f * g ≡ F ⋅G
f ⋅ g ≡ F *G
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• Goal: low pass filtering of a scanline 

• Time domain: convolution with a Sinc() 

• Frequency domain: cutting off high frequencies - 
multiplication with a box function 

• Sinc() in the time domain corresponds to a box in the 
frequency domain
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• Unlimited domain 

• Perfect reconstruction filter 

• Fourier transform of a box function
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� 

Sinc(x) =
Sin(x )
x falls x ≠ 0
0 falls x = 0

⎧ 
⎨ 
⎩ 
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• Sampling is a multiplication of the source signal with a 
comb function: 

• In the frequency domain, this corresponds to a 
convolution (!) with an inversely spaced comb:
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� 

fs(x) = f (x) ⋅ combT (x)

� 

Fs(ω) = F(ω) *comb1/T (ω)
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• The copies of the original frequency spectrum must not 
overlap in the frequency domain 

• Multiplication of the spectrum with a box function is 
equivalent to „cutting out“ of the original spectrum 

• This corresponds to a convolution with a Sinc function 
in the time domain
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• Sampling and Reconstruction of a scanline 

• With sufficient bandwidth 

• With insufficient bandwidth 

• With band limiting 

• With sinc() and tent kernels
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• An ideal reconstruction filter exists: 
Sinc(x) 

• Problem: Sinc(x) is unusable in practice, as it has infinite 
extent 

• And to add insult to injury, truncated Sinc(x) is actually 
worse than many alternatives 

• In practice, one uses a number of sub-optimal filters, 
depending on application
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