Aliasing And Anti-Aliasing Sampling and Reconstruction

An Introduction

- Intro Aliasing
 - Problem definition, Examples
- Ad-hoc Solutions
- Sampling theory
 - Fourier transform
 - Convolution
- Reconstruction
 - Sampling theorem
 - Reconstruction in theory and practice

Aliasing - a Common Problem

- Errors incurred during analog-digital conversions:
 - Geometric (pixel artefacts, "jaggies")
 - Colour quality
 - Errors in animation sequences

Aliasing: Colour Ramps

Animation Aliasing

- Jumpy images
- "worming"

• Wheels turning backwards

Wheels turning backwards

Wheels turning backwards

Solution Strategies

- "More effort"
 - Ad-hoc solutions
 - Higher resolution
 - Higher colour depth
 - Faster image refresh
- "Use your brain"
 - Understanding the problem
 - Efficient counter-measures

Computer Graphics Charles University

Solution Strategies

- "More effort"
 - Ad-hoc solutions
 - Higher resolution
 - Higher colour depth
 - Faster image refresh
- "Use your brain"
 - Understanding the problem
 - Efficient counter-measures

Oft aufwendig, nicht immer zielführend, manchmal unmöglich

Computer Graphics Charles University

Solution Strategies

- "More effort"
 - Ad-hoc solutions
 - Higher resolution
 - Higher colour depth
 - Faster image refresh
- "Use your brain"
 - Understanding the problem
 - Efficient counter-measures

Oft aufwendig, nicht immer zielführend, manchmal unmöglich

machbar

Computer Graphics Charles University

Simple Splatting Kernels

box filter

cone

Gaussian filter

Filter Kernels in Action

Computer Graphics Charles University

Filter Kernels in Action

Computer Graphics Charles University

Filter Kernels in Action

Computer Graphics Charles University

Computer Graphics Charles University

Computer Graphics Charles University

Storing a Scanline

Reconstruction

Sampling: Basic Problem

- Without at least some knowledge about the sampled signal, we cannot guarantee that this will work!
 - At all!

Signal Decomposition

Computer

Graphics Charles University

Fourier Transform

- Connects time and frequency domain
- Applicable for arbitrary signals
 - f(x) time domain
 - F(u) frequency domain

 $-\infty$

$$F(u) = \int_{-\infty}^{+\infty} f(x) [\cos 2\pi ux - i\sin 2\pi ux] dx$$
$$f(x) = \int_{-\infty}^{+\infty} F(u) [\cos 2\pi ux - i\sin 2\pi ux] du$$

Box & Sawtooth

F(u)

Computer Graphics Charles University

Box & Sawtooth

F(u)

f(x)

Computer Graphics Charles University

Box & Sawtooth

Square Wave & Scanline

F(u)

Computer Graphics Charles University

Square Wave & Scanline

Square Wave & Scanline

Computer

Graphics Charles

University

Fourier Transform

- Yields complex-valued frequency space functions
 - The imaginary part contains phase information this is usually omitted
- Can be generalised to higher dimensions (2D, 3D)
- Alternatives, such as the Hartley transform, exist

Discrete Fourier Transform

• For discrete signals

$$F(u) = \sum_{0}^{N-1} f(x) [\cos(2\pi ux/N) - i\sin(2\pi ux/N)], 0 \le u \le N-1$$
$$f(x) = \sum_{0}^{N-1} F(u) [\cos(2\pi ux/N) - i\sin(2\pi ux/N)], 0 \le x \le N-1$$

- N samples: complexity O(N^2)
- Fast FT (FFT): O(N log N)

Sampling Function: Comb

- A single Dirac pulse corresponds to sampling an image at a single location
- Regular sampling can be seen as multiplication with n evenly spaced Dirac pulses (comb function)

FT of a Comb

 A time domain comb corresponds to a frequency domain comb with inverse pulse distance

$$\operatorname{comb}_T(x) \equiv \operatorname{comb}_{1/T}(\omega)$$

Convolution

- Mathematical operator:
 - Two functions as input
 - A new function as output
- "Weighing the first function with the second"

$$(f * g)(t) = \int_{D} f(\tau)g(t - \tau)d\tau$$

Convolution Examples

Convolution Theorem

- Convolution in the time domain corresponds to point wise multiplication in the frequency domain
- And vice versa

 $f * g \equiv F \cdot G$ $f \cdot g \equiv F * G$

Low Pass Filter

- Goal: low pass filtering of a scanline
- Time domain: convolution with a Sinc()
- Frequency domain: cutting off high frequencies multiplication with a box function
- Sinc() in the time domain corresponds to a box in the frequency domain

- Unlimited domain
- Perfect reconstruction filter
- Fourier transform of a box function

$$\operatorname{Sinc}(x) = \begin{cases} \frac{\operatorname{Sin}(x)}{x} & \text{falls } x \neq 0\\ 0 & \text{falls } x = 0 \end{cases}$$

Low Pass (time domain)

N ww mph

Low Pass (time domain)

 Sampling is a multiplication of the source signal with a comb function:

$$f_s(x) = f(x) \cdot \operatorname{comb}_T(x)$$

In the frequency domain, this corresponds to a convolution (!) with an inversely spaced comb:

$$F_s(\omega) = F(\omega) * \operatorname{comb}_{1/T}(\omega)$$

Computer **Spectrum of a Sampled Function**

Graphics Charles

University

 $|F_{s}(u)|$

Perfect Reconstruction

- The copies of the original frequency spectrum must not overlap in the frequency domain
- Multiplication of the spectrum with a box function is equivalent to "cutting out" of the original spectrum
- This corresponds to a convolution with a Sinc function in the time domain

Reconstruction Examples

- Sampling and Reconstruction of a scanline
- With sufficient bandwidth
- With insufficient bandwidth
- With band limiting
- With sinc() and tent kernels

Sampling > w

Computer Graphics Charles University

Sampling > w: Sinc() kernel

Computer Graphics Charles University

Sampling > w: Tent Kernel

Sampling < w

Computer Graphics Charles University

Sampling < w: Sinc()</pre>

Sampling < w: Tent Kernel

Computer

Graphics Charles University

Band Limiting the Signal Computer Graphics Charles University

Band Limiting the Signal

 \sim , $/ \cup$

Band Limiting

Sampling

Reconstruction

Reconstruction in Practice

- An ideal reconstruction filter exists: Sinc(x)
- Problem: Sinc(x) is unusable in practice, as it has infinite extent
- And to add insult to injury, truncated Sinc(x) is actually worse than many alternatives
- In practice, one uses a number of sub-optimal filters, depending on application

Grid Example

Grid Example

Grid Example

