

Reflectance Models (BRDF)

© 1996-2017 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/

Light travels through media

Absorption is simple, scattering is very complicated

Light hits object surface (ideal)

Real surface (microscopic view)

Real surface (microscopic view)

What we see from the distance..

Metals (conductors)

Dielectrics (insulators)

BSSRDF idea

("Bi-directional Scattering-Surface Reflectance Distribution Function")

BRDF 2017

Ignoring exit-to-entry distance

BRDF = "Bi-directional Reflectance Distribution Function"

BRDF 2017

Shading terms (components)

BRDF formulation

© Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

12 / 62

BRDF plausibility

energy-conserving
$$\int_{\Omega} f(\omega_i, \omega_o) (n \cdot \omega_i) d\omega_i \leq 1$$

- Beckmann, Spizzichino (1963): electromagnetic wave reflection on rough surfaces (optics)
- Torrance, Sparrow (1967): off-specular reflections on rough surfaces (optics)
- Phong (1975): famous empirical model, used many decades
- Blinn (1977): first light reflection presentation at SIGGRAPH
- Cook, Torrance (1981): generalization, implementation, first physically based BRDF model in computer graphics

- He (1991): more complex wave optics, polarization, diffraction, interference..
- **Ward** (1992): anisotropic material, microfacets
- Schlick (1994): fast Fresnel formula approximation, two-layer reflectance model
- **Lafortune** (1997): multiple lobes, fitted to lab data
- Ашихмин, Shirley (2000): anisotropic Phong
- Walter (2007): microfacet refraction model (BSDF = Bidirectional Scattering Distribution Function)
- Ашихмин, Bagher (2007, 2012): models based on arbitrary microfacet distribution (measured..)

BRDF ZOO I

BRDF ZOO II

Ideal diffusion

ideal diffuse material (Lambertian surface)

- reflection probability is constant
- examples: furry surface, noisy microstructure w/o any pattern

Lambert law: reflected intensity depends solely on cos α

BRDF 2017

Ideal (mirror) reflection

 ratio of reflected and refracted light is determined by the Fresnel equations (19. century)

Refraction (Snell's law, Ibn Sahl, 984)

$$\cos\beta = \sqrt{1 - n_{12}^{2} \sin^{2} \alpha} = \sqrt{1 - n_{12}^{2} \cdot (1 - (n \cdot l)^{2})}$$
$$t = \left[n_{12}(n \cdot l) - \sqrt{1 - n_{12}^{2} \cdot (1 - (n \cdot l)^{2})} \right] \cdot n - n_{12} \cdot l$$

BRDF 2017

© Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

20 / 62

- going from more dense environment to less dense one (n₁ > n₂)
- for incident angles greater than critical angle α_{tr} there is no refraction at all!

- two **polarizations** (electric field perpendicular "s" /senkrecht/ or parallel "p" to the <u>incident plane</u>)
- reflectance "R" and transmittance "T" (power ratios):

$$R_{s} = \left[\frac{\sin(\beta - \alpha)}{\sin(\beta + \alpha)}\right]^{2} \qquad T_{s} = 1 - R_{s}$$
$$R_{p} = \left[\frac{\tan(\beta - \alpha)}{\tan(\beta + \alpha)}\right]^{2} \qquad T_{p} = 1 - R_{p}$$

Fresnel equations (alternative)

no need to compute angles (cosines are easy):

$$R_{s} = \left[\frac{n_{1}\cos\alpha - n_{2}\cos\beta}{n_{1}\cos\alpha + n_{2}\cos\beta}\right]^{2}$$
$$R_{p} = \left[\frac{n_{1}\cos\beta - n_{2}\cos\alpha}{n_{1}\cos\beta + n_{2}\cos\alpha}\right]^{2}$$

Unpolarized light

• averaging values $R_s a R_p$: $R = \frac{1}{2} \frac{(a-u)^2 + b^2}{(a+u)^2 + b^2} \left[\frac{(a+u-1/u)^2 + b^2}{(a-u+1/u)^2 + b^2} + 1 \right]$ $a^{2} = \frac{1}{2} \left(\sqrt{(n_{\lambda}^{2} - k_{\lambda}^{2} + u^{2} - 1)^{2} + 4n_{\lambda}^{2}k_{\lambda}^{2}} + n_{\lambda}^{2} - k_{\lambda}^{2} + u^{2} - 1 \right)$ $b^{2} = \frac{1}{2} \left(\sqrt{(n_{\lambda}^{2} - k_{\lambda}^{2} + u^{2} - 1)^{2} + 4n_{\lambda}^{2}k_{\lambda}^{2}} - n_{\lambda}^{2} + k_{\lambda}^{2} - u^{2} + 1 \right)$ $u = \cos \alpha = n \cdot l$ $n = n_{\lambda} - i k_{\lambda}$ (for dielectric $k_{\lambda} = 0$)

BRDF 2017

© Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

24 / 62

Dielectric (insulator) materials

•
$$\mathbf{k}_{\lambda} = \mathbf{0} \implies$$

$$a^2 = n_\lambda^2 + u^2 - 1$$
 $b = 0$

$$R = \frac{1}{2} \frac{(a-u)^2}{(a+u)^2} \left(\frac{[u(a+u)-1]^2}{[u(a-u)+1]^2} + 1 \right)$$

Remarks (Fresnel)

- if $\alpha = \pi/2$ (i.e. $\mathbf{u} = \mathbf{0}$), then reflectance $\mathbf{R}_{\lambda}(\mathbf{90}) = \mathbf{1}$ regardless of the wavelength λ
- for perpendicular ray ($\alpha = \mathbf{0}$):

$$R_{0} = R_{s} = R_{p} = \left(\frac{n_{2} - n_{1}}{n_{2} + n_{1}}\right)^{2}$$
$$T_{0} = T_{s} = T_{p} = 1 - R_{0} = \frac{4n_{1}n_{2}}{(n_{2} + n_{1})^{2}}$$

Wavelength λ

For **I** and **v** perpendicular to the surface (i.e. $\alpha = 0$):

$$\mathsf{F}(\lambda,\mathbf{0}) = \left(\frac{\mathbf{n}_{\lambda} - \mathbf{1}}{\mathbf{n}_{\lambda} + \mathbf{1}}\right)^{2} \quad \mathbf{a} \quad \mathbf{n}_{\lambda} = \frac{\mathbf{1} + \sqrt{\mathsf{F}(\lambda,\mathbf{0})}}{\mathbf{1} - \sqrt{\mathsf{F}(\lambda,\mathbf{0})}}$$

quantities F_λ(0) were measured in labs for many real materials (both conductors and insulators)
 – so we know the n_λ indices

specular reflection depends on λ (except for $\alpha = \pi/2$)

Reflectance – dielectric material

(cc) Ulflund, Wiki

© Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

28 / 62

Reflectance - metal

Microfacet theory

Beckmann, Spizzichino (63), Torrance, Sparrow (67)

Perfect reflection for half-angle

Only ideal **half-angle microfacets** can contribute !

Shadowing and masking

Multiple bounces are lost

Microfacet specular BRDF

$$R_{\lambda}(h) = \frac{F_{\lambda}(\alpha)}{4} \cdot \frac{D(h) \cdot G(l, v, h)}{(n \cdot l)(n \cdot v)}$$

- $R_{\lambda}(h)$... specular reflectance for wavelength λ
- *F_λ(α)* ... Fresnel ideal reflectance for wavelength λ and incident angle α
- *D(h)* ... microfacet PDF ("how many microfacets" have *h* as a normal vector)
- <u>*G(l,v,h)*</u> ... geometric factor (shadowing & masking)

Fresnel term F

Fresnel term for unpolarized light

$$\begin{split} F(\lambda,\beta) &= \frac{1}{2} \cdot \frac{\left(g-c\right)^2}{\left(g+c\right)^2} \begin{cases} 1 + \frac{\left[c\left(g+c\right)-1\right]^2}{\left[c\left(g-c\right)-1\right]^2} \end{cases} \\ \text{for} \quad c = \cos\beta = \left(V \cdot H\right), \\ g^2 &= n_\lambda^2 + c^2 - 1 \end{split}$$

 \mathbf{n}_{λ} ... index of refraction for wavelength λ

• for conductors
$$\mathbf{n}_{\lambda}' = \mathbf{n}_{\lambda} - \mathbf{i} \kappa_{\lambda}$$
 (κ_{λ} ... absorbtion coeff.)

Fresnel – base specular color

Metal	F(0) [linear]	F(0) [sRGB]	
Titanium	0.542, 0.497, 0.449	194, 187, 179	
Chromium	0.549, 0.556, 0.554	196, 197, 196	
Iron	0.562, 0.565, 0.578	198, 198, 200	
Nickel	0.660, 0.609, 0.526	212, 205, 192	
Platinum	0.673, 0.637, 0.585	214, 209, 201	
Copper	0.955, 0.638, 0.538	250, 209, 194	
Palladium	0.733, 0.697, 0.652	222, 217, 211	
Zinc	0.664, 0.824, 0.850	213, 234, 237	
Gold	1.022, 0.782, 0.344	255, 229, 158	
Aluminum	0.913, 0.922, 0.924	245, 246, 246	
Silver	0.972, 0.960, 0.915	252, 250, 245	

Fresnel term for other angles, based on $F_{\lambda}(0) = c$

$$F_{schlick}(c, l, h) = c + (1 - c) (1 - (l \cdot h))^{5}$$

- let's assume we have a base material color F_λ(0) and an angle-function for some (standard) λ₀
 - set of wavelengths can be limited (3÷6 components)

$$F_{\lambda}(\alpha) \approx F_{\lambda}(0) + (1 - F_{\lambda}(0)) \frac{max(0, F_{\lambda_0}(\alpha) - F_{\lambda_0}(0))}{1 - F_{\lambda_0}(0)}$$

Fast and simple formula – Gaussian distribution:

$$D(h,m) = \chi(n \cdot h) (n \cdot h) \cdot e^{-\left(\frac{\delta}{m}\right)^2}$$

- $\chi(a) = a > 0 ? 1 : 0$
- $\cos \delta = \mathbf{n} \cdot \mathbf{h}$
- *m* ... "surface roughness" (standard deviation of the surface slope)
 - **< 0.1** ... very smooth
 - > 0.8 ... rough (almost diffuse)

Beckmann's distribution (~normalised)

$$D_{be}(h,m) = \frac{\chi(n\cdot h)}{\pi m^2 (n\cdot h)^4} e^{-\left(\frac{\tan\delta}{m}\right)^2}$$
$$= \frac{\chi(n\cdot h)}{\pi m^2 (n\cdot h)^4} e^{\frac{(n\cdot h)^2 - 1}{m^2 (n\cdot h)^4}}$$

Blinn-Phong (normalised)

$$\underline{D_{bp}(h,m)} = \chi(n \cdot h) \ \frac{m+2}{2\pi} \ (n \cdot h)^m$$

Trowbridge & Reitz

$$\frac{D_{tr}(h,m)}{\pi \left((n \cdot h)^2 (m^2 - 1) + 1 \right)^2}$$

m can be greater than 1

GGX (Walter et al. 2007)

$$\underline{D_{GGX}(h,m)} = \frac{\chi(n\cdot h) m^2}{\pi (n\cdot h)^4 (m^2 + \tan^2 \delta)^2}$$

BRDF 2017

Isotropic Ward (1992)

$$\underline{D_{wiso}(h,m)} = \frac{\chi(n \cdot h)}{\pi m^2} e^{-\frac{\tan^2 \delta}{m^2}}$$

BRDF 2017

Anisotropic Ward (1992)

$$D_w(h, m_x, m_y) = \frac{\chi(n \cdot h)}{\pi m_x m_y} e^{-\tan^2 \delta \left(\frac{\cos^2 \phi_h}{m_x^2} + \frac{\sin^2 \phi_h}{m_y^2}\right)}$$

• ϕ_h ... azimuth angle of the half-vector

Ашихмин-Shirley anisotropic (2000)

$$D_{as}(h, e_x, e_y) = \sqrt{(e_x + 1)(e_y + 1)} (h \cdot n)^{e_x \cos^2 \phi_h + e_y \sin^2 \phi_h}$$

(с) Ашихмин, 2000

BRDF 2017

© Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

46 / 62

Idea of blending several materials together makes sense: $m_1 \dots m_k$

$$\mathbf{D}(\alpha) = \sum_{i=1}^{k} \mathbf{w}_{i} \cdot \mathbf{D}(\mathbf{m}_{i}, \alpha)$$

• W_i ... weight coefficients

 $\Sigma \mathbf{w}_{i} = \mathbf{1}$

Geometric term G (Cook-Torrance)

Cook and Torrance assumed infinitely long **"V"-shaped grooves** (not exactly true)

optimized: Kelemen, more accurate: Smith

BRDF 2017

G alternative (GGX)

$$\frac{G_{GGX}(l, v, h)}{(l, v, h)} = \chi\left(\frac{v \cdot h}{v \cdot n}\right) \frac{2}{1 + \sqrt{1 + m^2} \tan^2 \theta_v}$$

m ... roughness from the GGX distribution

Cheap G (Kelemen-Szirmay-Kalos)

$$\frac{G_{KSK}(l,v,h)}{(n\cdot v)} \approx \frac{1}{(l\cdot h)^2}$$

Blinn's contribution

- Blinn-Phong model (here $\beta = \angle v, r$)
 - light source and viewer in infinity:
 - $\cos^{h}\beta \approx \cos^{4h}\beta/2$ $(R_{i} \cdot V)^{h} \approx (H_{i} \cdot N)^{4h}$

- **Christophe Schlick** (1994) was experimenting with approximate substitution in Fresnel term
- fraction instead of power function $S^h \approx S / (h - hS + S)$
 - slightly less sharp highlight compared to Blinn-Phong
- Fresnel term substitute (32× faster, error <1%) $R_{schlick}(c, l, n) = c + (1 - c) (1 - (l \cdot n))^{5}$

Generalized cosine lobe model

- derived using Householder matrix (3×3)
- 1. classical specular term (Phong) ..

$$f_r(l,v) = \rho_s C_s \cos^h \beta$$

2. .. rewritten using Householder matrix notation

$$f_r(l, v) = \rho_s C_s (r \cdot v)^h$$

= $\rho_s C_s [l^T (2nn^T - I) v]^h$

General plausible cosine lobe

- Householder matrix $M(3 \times 3)$
 - for reciprocity it must be symmetrical

$$f_r(l,v) = \rho_s \left[l^T M v \right]^h$$

- SVD decomposition of matrix **M**: $f_r(l, v) = \rho_s \left[l^T Q^T D Q v \right]^h$
- **Q** ... coordinate transform, **D** ... diagonal matrix

$$f_{r}(l,v) = \rho_{s} \left[C_{b}l_{b}v_{b} + C_{t}l_{t}v_{t} + C_{n}l_{n}v_{n} \right]^{h}$$

© Josef Pelikán, http://cgg.mff.cuni.cz/~pepca

h

Cosine lobe options

- Phong lobe: $-C_b = -C_t = C_n = \sqrt{C_s}$
- general isotropic reflection: $C_b = C_t$
- anisotropy: $C_b \neq C_t$
- isotropic diffuse term: $C_b = C_t = 0, C_s = (h+2)/2\pi$
- off-specular reflection: $C_n < -C_b = -C_t$
- retro-reflections: $C_b, C_t, C_n > 0$

Compound model

Superposition of several lobes

each one is defined by: C_{b,i}, C_{t,i}, C_{n,i}, h_i

$$f_{r}(l,v) = \sum_{i} \left[C_{b,i} l_{b} v_{b} + C_{t,i} l_{t} v_{t} + C_{n,i} l_{n} v_{n} \right]^{h_{i}}$$

Lambert law is not perfect..

- pure "cosine" surface is not as common in the nature
- rough, grainy surfaces (sandpaper, sand, etc.)
- full moon contours should be darker but actually they are not !
- "back-scattering" effect, reflecting (passive) taillights

Oren-Nayar model

based on microfacet idea

- diffuse reflection on microfacets
- simplified formulas only most important ones

$$E_{d} = \frac{\rho}{\pi} \cdot E_{0} \cdot \cos(\theta_{i}) \cdot (A + B \cdot max(0, \cos(\phi_{o} - \phi_{i})) \cdot \sin(\alpha) \cdot \tan(\beta))$$

 $\begin{array}{ll} \theta_{i} & \text{incoming angle } (\angle l_{i}, n) \\ \theta_{o} & \text{outgoing angle } (\angle v, n) \\ \Phi_{i} & \text{incoming azimuth of } \omega_{i} \\ \Phi_{o} & \text{outgoing azimuth of } \omega_{o} \\ \alpha & \max(\theta_{i}, \theta_{o}) \\ \beta & \min(\theta_{i}, \theta_{o}) \end{array}$

 $E_{d} = (C_{L} \circ C_{D}) \cdot \cos(\theta_{i}) \cdot (A + B \cdot max(0, \cos(\phi_{o} - \phi_{i}))) \cdot \sin(\alpha) \cdot \tan(\beta))$

$$A = 1 - 0.5 \cdot \frac{\sigma^2}{\sigma^2 + 0.33}$$

(value in denominator – up to 0.57)

$$B = 0.45 \cdot \frac{\sigma^2}{\sigma^2 + 0.09}$$

- **σ roughness**: mean value of h (see Cook-Torrance)
- C_L light source color
- C_D material color

Oren-Nayar - samples

References I

- A. Glassner: An Introduction to Ray Tracing, Academic Press, London 1989, 121-160
- J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer Graphics, Principles and Practice, 760-771
- **R. Cook, K. Torrance:** *A Reflectance Model for Computer Graphics*, ACM Transactions on Graphics, 1982, #1, 7-24
- Ch. Schlick: An Inexpensive BRDF Model for Physically-based Rendering, 1994

References II

- E. Lafortune: Non-Linear Approximation of Reflectance Functions
- A. Ozturk et al.: *Linear approximation of BDRF*, C&G 2008
- Self Shadow tutorials (esp. SIGGRAPH 2012, 2015): http://blog.selfshadow.com/publications/
- **R. Montes, C. Ureňa**: *An Overview of BRDF Models*, Technical report, Uni of Granada, 2012
- S. H. Westin et al.: A Comparison of Four BRDF Models, EGSR 2004
- A. Ngan et al.: Experimental Validation of Analytical BRDF Models, SIGGRAPH 2004