Speeding up Ray-tracing

© 1996-2018 Josef Pelikán CGG MFF UK Praha
pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Ray-scene intersection

- takes most of the CPU time (Whitted: up to 95\%)
- scene composed of elementary solids
- sphere, box, cylinder, cone, triangle, polyhedron, ..
- primitive solids in CSG
- number of elementary solids .. \mathbf{N}
- naïve algorithm tests every ray (up to the proper recursion depth \mathbf{H}) against every elementary solid
- O(N) tests for one ray

Classification

- faster "ray \times scene"
- faster "ray \times solid" test
» bounding solids with efficient intersection algorithms
- less "ray \times solid" tests
» bounding volume hierarchy, space subdivision (spatial data structures), directional techniques (+2D data structures)
(2) less rays
» dynamic recursion control, adaptive anti-aliasing
© generalized rays (carrying more information)
" polygonal ray bundle, ray cone, ..

Bounding solid

Bounding solid

- intersection is [much] faster than with an original object
- sphere, box (axis-aligned "AABB" or arbitrary orientation "OBB"), intersection of strips, ..
(2) a bounding solid should enclose an original object as tight as possible
* eficiency of a bounding solid .. middle ground between (1) and (2)
- total asymptotic complexity is still $\mathbf{O}(\mathbf{N})$

Bounding solid efficiency

Expected intersection time ray vs. object:

B+p•I < I

- I .. intersection time with an original object
- B .. intersection time with a bouding solid
- p .. probability of hitting a bounding solid (how many rays hit a bounding solid in total)

Bounding solid efficiency

Combined bounding solids

- better approximation of an original shape
- unions and intersections of simple bounding shapes:

Convex shapes

- bounding solid for convex shapes
- intersection of strips ("k-dops" system)
- strip = space between two parallel planes
- efficient computation of \mathbf{d} and \mathbf{D} constants is necessary:

$$
d=\min _{[x, y, z] \in \mathrm{T}}\{a x+b y+c z\}, \quad D=\max _{[x, y, z] \in \mathrm{T}}\{a x+b y+c z\}
$$

Bounding solids - an efficient algorithm

- intersections with all bounding solids
(2) intersected bounding solids are sorted in ascending order from the ray origin
© original objects will be checked (intersected with the ray) in the same order
\Rightarrow if there is an intersection and all bounding solids with closer intersection were already tested, the intersection is the closest one

An efficient algorithm

Bounding Volume Hierarchy (BVH)

Hierarchy

- ideal asymptotic complexity is $\mathbf{O}(\log \mathbf{N})$
- efficient for well structured scenes
- many well separated small objects / clusters
- natural in CSG representation (cutting a CSG tree)
- automatic construction is possible
- very complex optimal methods
- suboptimal incremental algorithm
- in case of "AABB" it is called R-tree (Guttman, 1984)
- see: database spatial query technology

Efficiency of a hierarchy

B .. intersection time with the bounding solid
$\mathbf{p}_{\mathbf{i}}$.. probability of hitting the i-th bounding solid
$\mathbf{I}_{\mathbf{i}}$.. time for objects inside of the i-th bounding solid

Efficiency of a hierarchy

$\mathbf{P}(\mathbf{d}), \mathbf{P}_{\mathrm{i}}(\mathbf{d})$.. area projected from the direction d

$\mathbf{S}, \mathbf{S}_{\mathbf{i}}$. . surface area of a shape
For single direction d:

$$
p_{i}=\operatorname{Pr}\left(\text { hit } C_{i} \mid \text { hit } C\right)=\frac{P_{i}(d)}{P(d)}
$$

For every direction and convex objects:

$$
p_{i}=\frac{\int P_{i}(d) d d}{\int P(d) d d}=\frac{S_{i}}{S}
$$

Incremental construction ideas

- create an empty hierarchy (tree root)
(2) take the $1^{\text {st }}$ object and insert it into the root
- root bounding solid must be updated
© for the $\mathrm{n}^{\text {th }}$ object there are options (in one node):
- object will be stand-alone (w/o any bounding solid)
- object will have new bounding subsolid
- object will go inside an existing bounding solid
- order of insertion objects does matter !
- some defined 3D order and random shuffle

Bounding volume hierarchies

- "Sphere tree" (Palmer, Grimsdale, 1995)
- simple test and transformation, worse approximation
- "AABB tree", "R-tree" (Held, Klosowski, Mitchell, '95) - simple test, comples transformation
- "OBB tree" (Gottschalk, Lin, Manocha, 1996)
- simple transformation, more complex test, good approx.
-"K-dop tree" (Klosowski, Held, Mitchell, 1998)
- more complex transformation and test, excellent approx.

"Cutting" CSG tree

- efficient for subtractive set operations (intersection, difference)
- primary bounding solids are assigned to (finite) elementary solids
- analytic computation
- bounding solids are propagated from leaves to the root node
- subtractive operations can reduce bounding solids in ancestors (arguments)

"Cutting" CSG tree

$B_{1} \quad B_{2}$
$B(A-B) \cap B\left(B_{2}\right)=0$

Space subdivision (spatial directories)

- uniform subdivision (equal cells)
+ simple traversal \& addressign
- many traversal steps
- big data volume
- nonuniform subdivision (mostly adaptive)
+ less traversal steps
+ less data
- more complex implementation (data struture \& traversal)

Uniform subdivision (grid)

Grid traversal (3D DDA)

Grid traversal (3D DDA)

- ray: $\quad \mathbf{P}_{\mathbf{0}}+\mathbf{t} \cdot \overrightarrow{\mathbf{p}}_{1}$ for $\mathbf{t}>\mathbf{0}$
- for the given direction $\overrightarrow{\mathrm{p}}_{1}$ there are precomputed constants Dx, Dy, Dz:
- distance between subsequent intersections of the ray and the parallel wall system (perpendicular to $\mathbf{X}, \mathbf{y}, \mathbf{Z}$)
© for the $\mathbf{P}_{\mathbf{0}}$ there is an initial cell $[\mathbf{i}, \mathbf{j}, \mathbf{k}]$ and quantities $\mathbf{t}, \mathbf{L x}, \mathbf{L y}, \mathbf{L z}$:
- ray parameter \mathbf{t}, distances to the closest walls in the $\mathbf{x}, \mathbf{y}, \mathbf{z}$ system

Grid traversal (3D DDA)

(2) processing in the cell [i, $\mathbf{j}, \mathbf{k}]$ (intersections)
(3) stepping to the next cell:

- D = min \{Lx,Ly,Lz\}; /* assumption: D = Lx */
- Lx = Dx; Ly = Ly - D; Lz = Lz - D;
$-\mathbf{i}=\mathbf{i} \mathbf{~ 1 ; ~}$
/* according to the sign of $\mathbf{P}_{\mathbf{1 x}}{ }^{*}$ /
(4) end conditions:
- an actual (the closest) intersection was found
» the intersection is in the current cell
- no intersection was found and the next cell is outside of the grid domain

Nonuniform subdivision of space

Adaptive subdivision systems

- octree (division in the middle)
- representation - pointers, implicit representation or hash table (Glassner)
- KD-tree (Bentley, 1975)
- static division: in the middle, cyclic coordinate component
- adaptive: both components and bounds are dynamic
- [general BSP-tree]
- dividing planes have arbitrary orientation

Octree storage by Glassner

Octree storage by Glassner

- each individual cell has its signature
- root .. 1
- ancestors of the root .. 11 až 18, .. etc.
- each voxel (potential cell) has its specific signature
- actual tree nodes are stored in sparse hash table
- hash-function example: Signature mod TableSize

Tree traversal (Glassner)

- point on the ray .. [$\mathbf{x}, \mathbf{y}, \mathbf{z}$]
- associated voxel's signature .. [1 $\div 8]^{k}$
- look for all prefixes of the code in the hash table
- the $1^{\text {st }}$ (shortest) found prefix defines the current cell
- after cell processing the point [$\mathbf{x}, \mathbf{y}, \mathbf{z}$] is moved in the direction of the ray $\left(\mathbf{p}_{1}\right)$
- the new point is localized, ...

KD-tree (static variant)

Adaptive subdivision criteria

- limited number of objects and subdivision depth
- if a cell is intersected by more than M objects (e.g. $M=4$.. 32), subdivide it
- maximal subdivision level is K (e.g. $K=5$.. 25)
(2) limited number of cells or memory occupation instead of subdivision depth limit:
- subdivision is finished after filling the whole dedicated memory
- subdivision controlled by a breadth-first traversal (FIFO data structure holding candidate cells)

Traversing adaptive subdivision

- marching the ray: finding the next cell from the root (see Glassner's method)
- preprocessing: tree traversal used for dividing the ray into individual segments (intersections with cells)
- \mathbf{t} parameter segments for individual cells
- additional support data (à la "finger tree")
- pointer to the neighbour cell (on the same tree level)
- recursive depth-first traversal with heap
- heap: list of potentially intersected cells (ordered from the most promising ones)

"Mailbox" technique

The intersection must be in the current cell (else it is cached)

Abstract space division

- no need to test (even to access!) lists of objects, which were already tested
- list of objects needs to be processed only in a cell with different (bigger) set of objects
- cells can share equal object lists
- tested lists are marked by a special flag
- processing only nonmarked lists
- mailbox technique is used on the object level

Abstract space division

Macro-cells (Miloš Šrámek)

Directional speedup techniques

- utilizing directional cube:
- light buffer
- speeding up shadow rays to point light sources
- ray coherence
- for all secondary rays
- 5D ray classification
- image plane directory (visibility precomputation)
- only for primary rays

Directional cube (adaptive)

Directional cube

- axis-oriented
- cube faces divided into cells
- uniform or adaptive division
- every cell stores list of relevant objects (can be ordered by the distance from the cube)
- HW rasterization and visibility (depth-buffer) can be used for uniform division

Light buffer

- speeding up shadow rays
- directional cube in every point light source
- possible visibility of objects from the light-source point
- some cells might be covered completely by one object (everything else is in shadow)
- for a shadow ray only objects projected in the relevant cell are considered

Ray coherence

$\cos \alpha \geq \sqrt{1-\frac{\mathbf{R}_{1}+\mathbf{R}_{2}}{\left\|\mathrm{~S}_{1}-\mathrm{S}_{2}\right\|}}$

Speedup utilizing coherence

- for every secondary rays
- reflected, refracted, shadow
- assumed bounding solid: sphere
- directional cube placed in every center of bounding sphere
- list of projected objects/light sources in every cell
" coherence condition is used
» lazy evaluation!
- lists can be ordered by distance from the cube

5D ray space

- rays in 3D scene:
- origin $P_{0}-[x, y, z]$
- direction [φ, θ]
- 5D hypercube divided into cells
- every cell contains list of possible intersections for the associated ray pencil ("beam")
- adaptive subdivision (merging neighbour cells with equal or similar lists)
- 6D variant: one more quantity (time) for animations

Ray classification

origin (2-3D) + direction (1D, 2D) = bundle / pencil

Image plane directory

- for primary rays
- projection plane is (adaptively) divided into cells
- possible visibility of individual objects in a cell (together with order)
- complete coverage by one cell by one object is possible (hard to test)
- robust variant of used visibility method
- in most pixels it can be done with complete certainty

Generalized rays

- computing more information about $\mathbf{f}(\mathbf{x}, \mathbf{y})$
- for anti-aliasing (average color estimation) or soft shadows (shadow ratio)
- some restrictions to a scene are necessary
- forms of generalized rays
- rotational or elliptical cone, regular pyramid
- pyramid with polygonal cross section (polygonal scene, see the next slide)

Polygonal scene

References

- A. Glassner: An Introduction to Ray Tracing, Academic Press, London 1989, 201-262
- A. Watt, M. Watt: Advanced Animation and Rendering Techniques, Addison-Wesley, Wokingham 1992, 233-248
- V. Havran: Heuristic Ray Shooting Algorithms, PhD thesis, FEL ČVUT Praha, 2001

■ P. Konečný: Obalová tělesa v počítačové grafice, M.S. thesis, Masaryk University, Brno 1998

References II

- J. Klosowski, M. Held, J. Mitchell, H. Sowizral, K. Zikan: Efficient collision detection using bounding volume hierarchies of k-dops, IEEE Transactions on VaCG, 21-36, January-March 1998
- H. Samet: Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, 2006
- H. Samet: The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990

