matfyz

Speeding up
Ray-tracing

© 1996-2018 Josef Pelikan
CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Ray-scene intersection

¢+ takes most of the CPU time (Whitted: up to 95%)

= scene composed of elementary solids
— sphere, box, cylinder, cone, triangle, polyhedron, ..
— primitive solids in CSG
— number of elementary solids .. N

= naive algorithm tests every ray (up to the proper
recursion depth H) against every elementary solid
— O(N) tests for one ray

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 2 /49

Classification

9 faster “ray x scene*
= faster “ray x solid” test
» bounding solids with efficient intersection algorithms

= Jess “ray x solid” tests

» bounding volume hierarchy, space subdivision (spatial data
structures), directional techniques (+2D data structures)

® Jess rays
» dynamic recursion control, adaptive anti-aliasing

© generalized rays (carrying more information)
» polygonal ray bundle, ray cone, ..

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 3/ 49

Bounding solid

-
P

honsaving cases

saving case

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 4/ 49

Bounding solid

9 intersection is [much] faster than with an original
object
— sphere, box (axis-aligned “AABB” or arbitrary orientation
“OBB”), intersection of strips, ..

® a bounding solid should enclose an original object as
tight as possible

+ eficiency of a bounding solid .. middle ground between
O and ©

— total asymptotic complexity is still O(N)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 5/ 49

Bounding solid efficiency

Expected intersection time ray vs. object:

B+p-l < |

= | .. intersection time with an original object
= B .. intersection time with a bouding solid

= p .. probability of hitting a bounding solid (how
many rays hit a bounding solid in total)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 6/ 49

Bounding solid efficiency

pA/pB = 0.23

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 7/ 49

Combined bounding solids

¢ better approximation of an original shape

= unions and intersections of simple bounding
shapes:

LA

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 8/ 49

Convex shapes

* bounding solid for convex shapes

= intersection of strips (“k-dops” system)
— strip = space between two parallel planes
— efficient computation of d and D constants is necessary:

d= min{ax+by+cz, D= max|ax+by+cz
[x,y,z] eT [x,y,z] eT

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 9/ 49

Bounding solids - an efficient algorithm

® intersections with all bounding solids

® intersected bounding solids are sorted in ascending
order from the ray origin

© original objects will be checked (intersected with the
ray) in the same order

+ if there is an intersection and all bounding solids
with closer intersection were already tested, the
intersection is the closest one

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 10 / 49

An efficient algorithm

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 11/ 49

Bounding Volume Hierarchy (BVH) .

Speedup 2018 s

Hierarchy

¢+ ideal asymptotic complexity is O(log N)

¢+ efficient for well structured scenes
— many well separated small objects / clusters
— natural in CSG representation (cutting a CSG tree)

= automatic construction is possible
— very complex optimal methods
— suboptimal incremental algorithm

¢ in case of “AABB“ it is called R-tree (Guttman, 1984)
— see: database spatial query technology

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 13/ 49

Efficiency of a hierarchy

K ? K B .. intersection time with the
K-B+ Z p; I < Z I bounding solid
i=1 i=1 P: .. probability of hitting
the i-th bounding solid

... time for objects inside of the i-th bounding solid

¢

P, P, "

O O

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 14/ 49

Efficiency of a hierarchy

P(d), P,(d) .. area projected
from the direction d

S, S, .. surface area of a shape

For single direction d:

p;=Pr hit C;| hit C)=m

Pd

For every direction D, = I Pi(d) dd _ Si
and convex objects: _' I P(d) dd i

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 15/ 49

Incremental construction ideas

® create an empty hierarchy (tree root)

® take the 1* object and insert it into the root
— root bounding solid must be updated

© for the n™ object there are options (in one node):
— object will be stand-alone (w/o any bounding solid)
— object will have new bounding subsolid

— object will go inside an existing bounding solid

= order of insertion objects does matter !
— some defined 3D order and random shuffle

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 16 / 49

Bounding volume hierarchies

- “Sphere tree” (Palmer, Grimsdale, 1995)
— simple test and transformation, worse approximation

= “AABB tree’, “R-tree” (Held, Klosowski, Mitchell, '95)
— simple test, comples transformation

= “OBB tree” (Gottschalk, Lin, Manocha, 1996)
— simple transformation, more complex test, good approx.

- “K-dop tree” (Klosowski, Held, Mitchell, 1998)
— more complex transformation and test, excellent approx.

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 17/ 49

“Cutting” CSG tree

¢+ efficient for subtractive set operations (intersection,
difference)

= primary bounding solids are assigned to (finite)
elementary solids

— analytic computation

= bounding solids are propagated from leaves to the
root node

= subtractive operations can reduce bounding solids
in ancestors (arguments)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 18 / 49

“Cutting” CSG tree

S

/ ~N
A /@\

B(A)

Speedup 2018

B1 BZ
I — |
| A B, B,
. Jl B B(B)

S

T

A-B

L

]

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

7N\

B(A-B) N B(B,) =0

B(A-B)

B(B)

19 / 49

Space subdivision (spatial directories)

® uniform subdivision (equal cells)
+ simple traversal & addressign
— many traversal steps
— big data volume

® nonuniform subdivision (mostly adaptive)
+ less traversal steps

+ less data
— more complex implementation (data struture &

traversal)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 20 / 49

\
) R
\ P
”’F_¢ﬁ;!]'r’fj:\
ams >;
— A e
///// g\\(\/ -
/7/\7: A ﬁ\ [
TV Cell | contains
/ <// list of intersected
A objects

Speedup 2018

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

<@° 9o,

21/ 49

«@°® e,
o . .

Grid traversal (3D DDA)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 22 /49

Grid traversal (3D DDA)

= ray: P0+t-[_)>1 for t>0

: L. o
© for the given direction p, there are precomputed

constants Dx, Dy, Dz:

— distance between subsequent intersections of the ray and
the parallel wall system (perpendicular to X, Y, Z)

o forthe P, thereisaninitial cell [i, j, k] and
quantities t, Lx, Ly, Lz:

— ray parameter t, distances to the closest walls in the x, y, z
system

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 23 / 49

Grid traversal (3D DDA)

® processing inthe cell [i, j, k] (intersections)

© stepping to the next cell:
— D=min {Lx,Ly,Lz}; /*assumption:D =Lx*/
— Lx=Dx;Ly=Ly-D;Lz=Lz-D;

=it /* according to the sign of P, */

9 end conditions:
— an actual (the closest) intersection was found
» the intersection is in the current cell

— no intersection was found and the next cell is outside of
the grid domain

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 24 / 49

Nonuniform subdivision of space

QO _~
:[' R
B S
// \/\
/\L
111717)) Octree
[L 13 cells
7 vV (grid: 17 cells)
~ (3 objects tested)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 25/ 49

Adaptive subdivision systems

= octree (division in the middle)

— representation — pointers, implicit representation or hash
table (Glassner)

= KD-tree (Bentley, 1975)
— static division: in the middle, cyclic coordinate component
— adaptive: both components and bounds are dynamic

= [general BSP-tree]
— dividing planes have arbitrary orientation

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 26 / 49

Octree storage by Glassner

1
(<
12 13 14 15 17 18
- 162 ®
111 112 161 168
. O...
1621 1622

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 27/ 49

Octree storage by Glassner

= each individual cell has its signature

— root .. 1
— ancestors of the root .. 11 az 18, .. etc.

— each voxel (potential cell) has its specific signature

= actual tree nodes are stored in sparse hash table
— hash-function example: Signature mod TableSize

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 28 / 49

Tree traversal (Glassner)

¢ pointontheray.. [X,Vy, Z]
— associated voxel's signature ..[1+8]F

= look for all prefixes of the code in the hash table
— the 1% (shortest) found prefix defines the current cell

= after cell processing the point [X, y, z] is moved in
the direction of the ray (p,)

— the new point is localized, ...

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 29 / 49

KD-tree (static variant)

Speedup 2018

Q v) m-Yy
1] | T
\ o
”””,,,,,ff”” //;>>§::>
o VI vVl a4
I /FL [N n
i KD-tree:
Ly 7 cells
] (5 objects tested)

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

30/ 49

Adaptive subdivision criteria

9]imited number of objects and subdivision depth

— if a cell is intersected by more than M objects (e.g.
M=4. 32), subdivide it

— maximal subdivision level is K (e.g. K=5 .. 25)

®]imited number of cells or memory occupation

instead of subdivision depth limit:

— subdivision is finished after filling the whole dedicated
memory

— subdivision controlled by a breadth-first traversal
(FIFO data structure holding candidate cells)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 31/ 49

Traversing adaptive subdivision

= marching the ray: finding the next cell from the root
(see Glassner's method)

= preprocessing: tree traversal used for dividing the ray
into individual segments (intersections with cells)

— t parameter segments for individual cells

= additional support data (ala “finger tree”)
— pointer to the neighbour cell (on the same tree level)

¢ recursive depth-first traversal with heap

— heap: list of potentially intersected cells (ordered from the
most promising ones)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 32/ 49

“Mailbox” technique

/
M

37 [\¢ = [iimersecton
\

4

/

S
\/4—_. 4: intersection
1 T

The intersection must be in the current cell (else it is cached)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 33/ 49

Abstract space division

* no need to test (even to access!) lists of objects, which
were already tested

+ list of objects needs to be processed only in a cell with
different (bigger) set of objects

= cells can share equal object lists
— tested lists are marked by a special flag
— processing only nonmarked lists
— mailbox technique is used on the object level

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 34 / 49

Abstract space division

.| = [A]

C\\ [AC]
\\ C//' [IBC]

\ ’

\
2

A =

[] \/ || [B]

Speedup 2018

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

35/ 49

<@° 9o,

Macro-cells (Milo§ Sramek)

.,
=
- (A L
<X
. P
///-\‘ rd ‘\ (—// %
/ A1
/| T ~ N
- N\
[méfk Cell | contains
/Y) “safe distance”
/1] . (empty space)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 36/ 49

Directional speedup techniques .

¢ utilizing directional cube:

= light buffer

— speeding up shadow rays to point light sources

= ray coherence
— for all secondary rays

+ 5D ray classification

¢+ image plane directory (visibility precomputation)
— only for primary rays

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 37/ 49

Directional cube (adaptive)

N

%
%

N

—
v
Hy

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 38 /49

Directional cube

¢+ axis-oriented

¢ cube faces divided into cells
— uniform or adaptive division

— every cell stores list of relevant objects (can be ordered by
the distance from the cube)

- HW rasterization and visibility (depth-buffer) can
be used for uniform division

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 39/ 49

Light buffer

¢+ speeding up shadow rays

= directional cube in every point light source
— possible visibility of objects from the light-source point

— some cells might be covered completely by one object
(everything else is in shadow)

= for a shadow ray only objects projected in the relevant
cell are considered

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 40 / 49

Ray coherence

COSGZJ1_ Ri+R;
$1-S,

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 41/ 49

Speedup utiIizing coherence

* for every secondary rays
— reflected, refracted, shadow

¢ assumed bounding solid: sphere

= directional cube placed in every center of bounding
sphere

— list of projected objects/light sources in every cell

» coherence condition is used
» lazy evaluation!

— lists can be ordered by distance from the cube

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 42/ 49

5D ray space

¢ raysin 3D scene:
—origin P,-[x,y,2]
— direction [@, 0]

+ 5D hypercube divided into cells

— every cell contains list of possible intersections for the
associated ray pencil (“beam”™)

— adaptive subdivision (merging neighbour cells with equal
or similar lists)

= 6D variant: one more quantity (time) for animations

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 43 / 49

Ray classification

.

origin (2-3D) + direction (1D, 2D) = bundle / pencil

=7

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 44 / 49

Image plane directory

¢ for primary rays

* projection plane is (adaptively) divided into cells

— possible visibility of individual objects in a cell (together
with order)

— complete coverage by one cell by one object is possible
(hard to test)

= robust variant of used visibility method
— in most pixels it can be done with complete certainty

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 45 / 49

Generalized rays

¢ computing more information about f(x,y)

— for anti-aliasing (average color estimation) or soft shadows
(shadow ratio)

— some restrictions to a scene are necessary

= forms of generalized rays
— rotational or elliptical cone, regular pyramid

— pyramid with polygonal cross section (polygonal scene, see
the next slide)

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 46 / 49

Polygonal scene

|

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 47/ 49

References

B A. Glassner: An Introduction to Ray Tracing,
Academic Press, London 1989, 201-262

B A. Watt, M. Watt: Advanced Animation and
Rendering Techniques, Addison-Wesley,
Wokingham 1992, 233-248

B V. Havran: Heuristic Ray Shooting Algorithms,
PhD thesis, FEL CVUT Praha, 2001

B P. KoneCny: Obalova télesa v pocitacove grafice,
M.S. thesis, Masaryk University, Brno 1998

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 48 / 49

References Il

® J. Klosowski, M. Held, J. Mitchell, H. Sowizral,
K. Zikan: Efficient collision detection using
bounding volume hierarchies of k-dops, IEEE

Transactions on VaCG, 21-36, January-March
1998

® H. Samet: Foundations of Multidimensional and
Metric Data Structures, Morgan Kaufmann, 2006

® H. Samet: The Design and Analysis of Spatial Data
Structures, Addison-Wesley, 1990

Speedup 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 49 / 49

