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Ray-scene intersection
 takes most of the CPU time (Whitted: up to 95%) 

➨ scene composed of elementary solids
– sphere, box, cylinder, cone, triangle, polyhedron, ..
– primitive solids in CSG
– number of elementary solids .. N

➨ naïve algorithm tests every ray (up to the proper 
recursion depth H) against every elementary solid
– O(N) tests for one ray
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Classification
  faster “ray × scene“

➨ faster “ray × solid” test
» bounding solids with efficient intersection algorithms

➨ less “ray × solid” tests
» bounding volume hierarchy, space subdivision (spatial data 

structures), directional techniques (+2D data structures)

  less rays
» dynamic recursion control, adaptive anti-aliasing

  generalized rays (carrying more information)
» polygonal ray bundle, ray cone, ..
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Bounding solid
  intersection is [much] faster than with an original 

object
– sphere, box (axis-aligned “AABB” or arbitrary orientation 

“OBB”), intersection of strips, ..

  a bounding solid should enclose an original object as 
tight as possible

eficiency of a bounding solid .. middle ground between  
 and 
– total asymptotic complexity is still O(N)
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Bounding solid efficiency

Expected intersection time ray vs. object:

B + p · I < I

➨ I  ..  intersection time with an original object

➨ B ..  intersection time with a bouding solid

➨ p ..  probability of hitting a bounding solid (how 
many rays hit a bounding solid in total)
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Bounding solid efficiency

pA/pB = 0.20

pA/pB = 0.23

pA/pB = 0.50
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Combined bounding solids

  better approximation of an original shape

➨  unions and intersections of simple bounding 
shapes:
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Convex shapes
  bounding solid for convex shapes

➨  intersection of strips (“k-dops” system)
– strip = space between two parallel planes
– efficient computation of d and D constants is necessary:

T T T
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Bounding solids – an efficient algorithm
  intersections with all bounding solids

  intersected bounding solids are sorted in ascending 
order from the ray origin

  original objects will be checked (intersected with the 
ray) in the same order

 if there is an intersection and all bounding solids 
with closer intersection were already tested, the 
intersection is the closest one
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An efficient algorithm
1

2

3

1
2



Speedup  2018 © Josef Pelikán,  http://cgg.mff.cuni.cz/~pepca 12 / 49

Bounding Volume Hierarchy (BVH)
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Hierarchy
 ideal asymptotic complexity is O(log N)

 efficient for well structured scenes
– many well separated small objects / clusters
– natural in CSG representation (cutting a CSG tree)

➨ automatic construction is possible
– very complex optimal methods
– suboptimal incremental algorithm

 in case of “AABB“ it is called R-tree (Guttman, 1984)
– see: database spatial query technology
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Efficiency of a hierarchy

pi ..  probability of hitting
         the i-th bounding solid

Ii ..  time for objects inside of the i-th bounding solid

B ..  intersection time with the
         bounding solid
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Efficiency of a hierarchy

S, Si .. surface area of a shape
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Incremental construction ideas
  create an empty hierarchy (tree root)

  take the 1st object and insert it into the root
– root bounding solid must be updated

  for the nth object there are options (in one node):
– object will be stand-alone (w/o any bounding solid)
– object will have new bounding subsolid
– object will go inside an existing bounding solid

➨  order of insertion objects does matter !
– some defined 3D order and random shuffle
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Bounding volume hierarchies

➨  “Sphere tree” (Palmer, Grimsdale, 1995)
– simple test and transformation, worse approximation

➨  “AABB tree”, “R-tree“ (Held, Klosowski, Mitchell, '95)
– simple test, comples transformation

➨  “OBB tree” (Gottschalk, Lin, Manocha, 1996)
– simple transformation, more complex test, good approx.

➨  “K-dop tree” (Klosowski, Held, Mitchell, 1998)
– more complex transformation and test, excellent approx.
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“Cutting” CSG tree
 efficient for subtractive set operations (intersection, 

difference)

➨ primary bounding solids are assigned to (finite) 
elementary solids
– analytic computation

➨ bounding solids are propagated from leaves to the 
root node 

➨ subtractive operations can reduce bounding solids 
in ancestors (arguments)
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“Cutting” CSG tree
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Space subdivision (spatial directories)
  uniform subdivision (equal cells)

+  simple traversal & addressign
–  many traversal steps
–  big data volume

  nonuniform subdivision (mostly adaptive)
+  less traversal steps
+  less data
–  more complex implementation (data struture & 

traversal)
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Uniform subdivision (grid)

Cell   contains
list of intersected
objects
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Grid traversal (3D DDA)
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Grid traversal (3D DDA)

➨  ray: P0 + t · p1   for  t > 0

  for the given direction  p1  there are precomputed 
constants    Dx, Dy, Dz:
– distance between subsequent intersections of the ray and 

the parallel wall system (perpendicular to x, y, z)

  for the  P0  there is an initial cell [ i, j, k ]  and 
quantities  t, Lx, Ly, Lz:
– ray parameter t, distances to the closest walls in the x, y, z 

system
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Grid traversal (3D DDA)

  processing in the cell [ i, j, k ]  (intersections)

  stepping to the next cell:
–  D = min {Lx,Ly,Lz};    /* assumption: D = Lx */
–  Lx = Dx; Ly = Ly - D; Lz = Lz - D;

–  i = i ± 1;       /* according to the sign of P1x */

  end conditions:
– an actual (the closest) intersection was found

» the intersection is in the current cell
– no intersection was found and the next cell is outside of 

the grid domain
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Nonuniform subdivision of space

Octree:
13 cells
(grid: 17 cells)

     (3 objects tested)
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Adaptive subdivision systems
➨ octree (division in the middle)

– representation – pointers, implicit representation or hash 
table (Glassner)

➨ KD-tree (Bentley, 1975)
– static division: in the middle, cyclic coordinate component
– adaptive: both components and bounds are dynamic

➨ [general BSP-tree]
– dividing planes have arbitrary orientation
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Octree storage by Glassner
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Octree storage by Glassner

➨ each individual cell has its signature
– root  .. 1
– ancestors of the root  .. 11 až 18, .. etc.
– each voxel (potential cell) has its specific signature

➨ actual tree nodes are stored in sparse hash table
– hash-function example: Signature mod TableSize
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Tree traversal (Glassner)

 point on the ray .. [ x, y, z ]
– associated voxel's signature  .. [ 1 ÷ 8 ] k

➨ look for all prefixes of the code in the hash table
– the 1st (shortest) found prefix defines the current cell

➨ after cell processing the point [ x, y, z ] is moved in 
the direction of the ray (p1)

–  the new point is localized, ...
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KD-tree (static variant)

KD-tree:
7 cells
(5 objects tested)
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Adaptive subdivision criteria

  limited number of objects and subdivision depth
– if a cell is intersected by more than M objects (e.g. 

M = 4 .. 32 ), subdivide it
– maximal subdivision level is K (e.g. K = 5 .. 25)

  limited number of cells or memory occupation
instead of subdivision depth limit:

– subdivision is finished after filling the whole dedicated 
memory

– subdivision controlled by a breadth-first traversal 
(FIFO data structure holding candidate cells)
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Traversing adaptive subdivision
➨ marching the ray: finding the next cell from the root 

(see Glassner's method)

➨ preprocessing: tree traversal used for dividing the ray 
into individual segments (intersections with cells)
– t  parameter segments for individual cells

➨ additional support data  (à la “finger tree”)
– pointer to the neighbour cell (on the same tree level)

 recursive depth-first traversal with heap
– heap: list of potentially intersected cells (ordered from the 

most promising ones)



Speedup  2018 © Josef Pelikán,  http://cgg.mff.cuni.cz/~pepca 33 / 49

“Mailbox” technique

A
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C

1: nil

4: intersection

5: intersection
1 2 3

4
5

The intersection must be in the current cell (else it is cached)



Speedup  2018 © Josef Pelikán,  http://cgg.mff.cuni.cz/~pepca 34 / 49

Abstract space division

 no need to test (even to access!) lists of objects, which 
were already tested

 list of objects needs to be processed only in a cell with 
different (bigger) set of objects

➨ cells can share equal object lists
– tested lists are marked by a special flag
– processing only nonmarked lists
– mailbox technique is used on the object level
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Abstract space division
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Macro-cells (Miloš Šrámek)

Cell    contains
“safe distance”
(empty space)
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Directional speedup techniques
  utilizing directional cube:

➨  light buffer
– speeding up shadow rays to point light sources

➨  ray coherence
– for all secondary rays

  5D ray classification

  image plane directory (visibility precomputation)
– only for primary rays
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Directional cube (adaptive)
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Directional cube

  axis-oriented

  cube faces divided into cells
– uniform or adaptive division
– every cell stores list of relevant objects (can be ordered by 

the distance from the cube)

➨ HW rasterization and visibility (depth-buffer) can 
be used for uniform division
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Light buffer

 speeding up shadow rays

➨ directional cube in every point light source
– possible visibility of objects from the light-source point
– some cells might be covered completely by one object 

(everything else is in shadow)

➨ for a shadow ray only objects projected in the relevant 
cell are considered
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Ray coherence
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Speedup utilizing coherence

 for every secondary rays
– reflected, refracted, shadow

 assumed bounding solid: sphere

➨ directional cube placed in every center of bounding 
sphere
– list of projected objects/light sources in every cell

»  coherence condition is used
»  lazy evaluation!

– lists can be ordered by distance from the cube
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5D ray space
  rays in 3D scene:

– origin  P0 - [ x, y, z ]

– direction [ ,  ]

  5D hypercube divided into cells
– every cell contains list of possible intersections for the 

associated ray pencil (“beam”)
– adaptive subdivision (merging neighbour cells with equal 

or similar lists)

➨  6D variant: one more quantity (time) for animations
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Ray classification

origin (2-3D) + direction (1D, 2D) = bundle / pencil
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Image plane directory

 for primary rays

 projection plane is (adaptively) divided into cells
– possible visibility of individual objects in a cell (together 

with order)

– complete coverage by one cell by one object is possible 
(hard to test)

➨ robust variant of used visibility method
– in most pixels it can be done with complete certainty
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Generalized rays

 computing more information about  f(x,y)
– for anti-aliasing (average color estimation) or soft shadows 

(shadow ratio)

– some restrictions to a scene are necessary

➨ forms of generalized rays
– rotational or elliptical cone, regular pyramid

– pyramid with polygonal cross section (polygonal scene, see 
the next slide)
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Polygonal scene

P0
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