Function Approximation & Spherical Harmonics

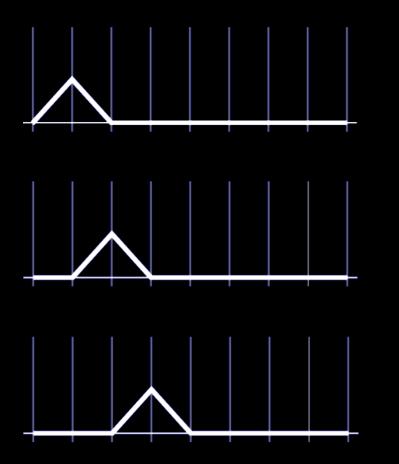
Function approximation

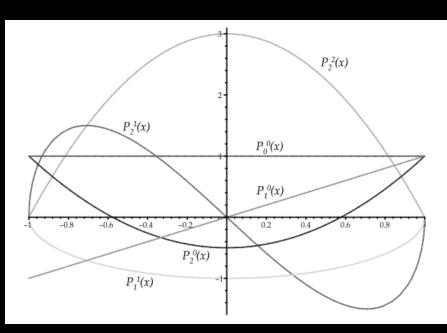
- G(x) ... function to approximate
- $B_1(x), B_2(x), \dots B_n(x) \dots$ basis functions
- G(x) is a linear combination of bases

$$G(x) = \sum_{i=1}^{n} c_i B_i(x)$$

Storing a finite number of coefficients c_i gives an approximation of G(x)

Basis functions

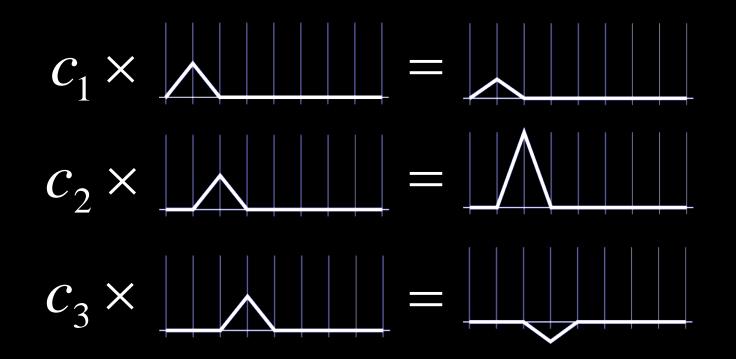




Function approximation

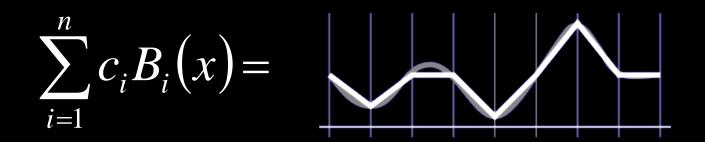
Linear combination

- sum of scaled basis functions



Function approximation

- Linear combination
 - sum of scaled basis functions



Finding the coefficients

- How to find coefficients c_i?
 Minimize an error measure
- What error measure?

 $-L_2$ error

$$E_{L_2} = \int_{I} \left[G(x) - \sum_{i} c_i B_i(x) \right]^2$$

Original function
Approximated function

Finding the coefficients

• Minimizing E_{L_2} leads to

$$\begin{bmatrix} \langle B_1 | B_1 \rangle & \langle B_1 | B_2 \rangle & \cdots & \langle B_1 | B_n \rangle \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \langle G | B_1 \rangle \\ \langle G | B_2 \rangle \\ \vdots \\ \langle G | B_2 \rangle \end{bmatrix}$$
$$\begin{bmatrix} \langle B_1 | B_2 \rangle & \cdots & \langle B_n | B_n \rangle \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \langle G | B_1 \rangle \\ \langle G | B_2 \rangle \\ \vdots \\ \langle G | B_n \rangle \end{bmatrix}$$

Where

$$\left\langle F \left| H \right\rangle = \int_{I} F(x) H(x) dx$$

Finding Coefficients

Matrix

$$\mathbf{B} = \begin{bmatrix} \left\langle B_1 \middle| B_1 \right\rangle & \left\langle B_1 \middle| B_2 \right\rangle & \cdots & \left\langle B_1 \middle| B_n \right\rangle \\ \left\langle B_2 \middle| B_1 \right\rangle & \left\langle B_2 \middle| B_2 \right\rangle & & \vdots \\ \vdots & & \ddots & \vdots \\ \left\langle B_n \middle| B_1 \right\rangle & \left\langle B_n \middle| B_2 \right\rangle & \cdots & \left\langle B_n \middle| B_n \right\rangle \end{bmatrix}$$

does not depend on G(x)

- Computed just once for a given basis

Finding the coefficients

- Given a basis {B_i(x)}
 - 1. Compute matrix **B**
 - 2. Compute its inverse B⁻¹
- Given a function G(x) to approximate
 - 1. Compute dot products

$$\begin{bmatrix} \langle G | B_1 \rangle & \langle G | B_2 \rangle & \cdots & \langle G | B_n \rangle \end{bmatrix}^T$$

2. ... (next slide)

Finding the coefficients

2. Compute coefficients as

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \mathbf{B}^{-1} \begin{bmatrix} \langle G | B_1 \rangle \\ \langle G | B_2 \rangle \\ \vdots \\ \langle G | B_n \rangle \end{bmatrix}$$

Orthonormal basis

Orthonormal basis means

$$\left\langle B_i \left| B_j \right\rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \right.$$

If basis is orthonormal then

$$\mathbf{B} = \begin{bmatrix} \langle B_1 | B_1 \rangle & \langle B_1 | B_2 \rangle & \cdots & \langle B_1 | B_n \rangle \\ \langle B_2 | B_1 \rangle & \langle B_2 | B_2 \rangle & \vdots \\ \vdots & \ddots & \vdots \\ \langle B_n | B_1 \rangle & \langle B_n | B_2 \rangle & \cdots & \langle B_n | B_n \rangle \end{bmatrix} = \begin{bmatrix} 1 & & 0 \\ 1 & & \\ 0 & & 1 \end{bmatrix} = \mathbf{I}$$

Orthonormal basis

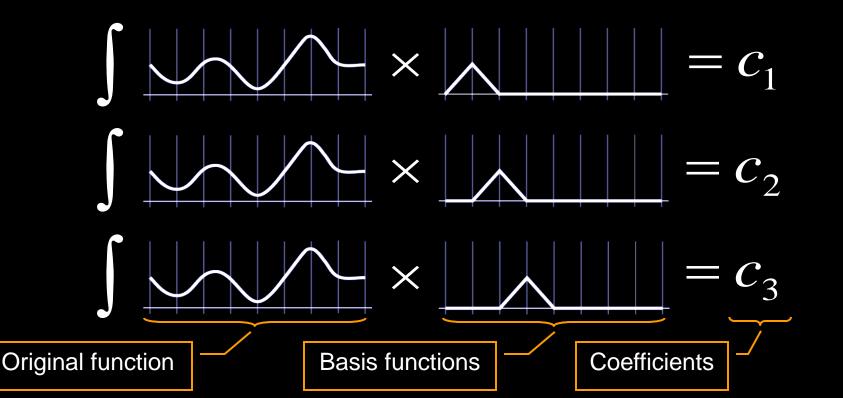
 If the basis is orthonormal, computation of approximation coefficients simplifies to

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \langle G | B_1 \rangle \\ \langle G | B_2 \rangle \\ \vdots \\ \langle G | B_n \rangle \end{bmatrix}$$

We want orthonormal basis functions

Orthonormal basis

 <u>Projection</u>: How "similar" is the given basis function to the function we're approximating



Another reason for orthonormal basis functions

Intergral of product = dot product of coefficients

 $f(x) = |f_i| |B_i(x)|$ $g(x) = g_i B_i(x)$

 $\int f(x)g(x)dx = |f_i|$

Application to Gl

Illumination integral

$$L_o = \int L_i(\omega_i) \text{ BRDF}(\omega_i) \cos\theta_i \, \mathrm{d}\omega_i$$

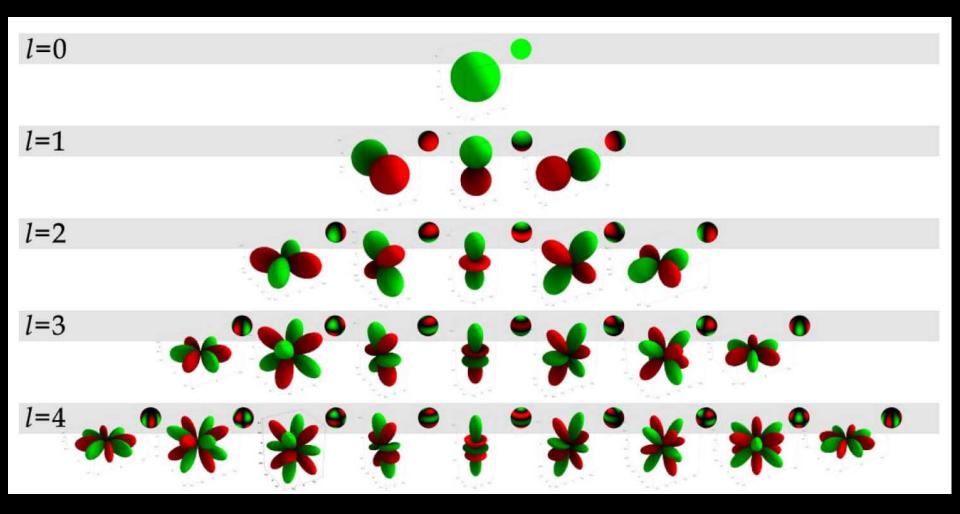
Spherical Harmonics

Spherical harmonics

- Spherical function approximation
- Domain I = unit sphere S
 - directions in 3D
- Approximated function: $G(\theta, \varphi)$
- Basis functions: $Y_i(\theta, \varphi) = Y_{l,m}(\theta, \varphi)$

- indexing: i = I(I+1) + m

The SH Functions



Spherical harmonics

$$y_l^m(\theta,\varphi) = \begin{cases} \sqrt{2}K_l^m \cos(m\varphi)P_l^m(\cos\theta), & m > 0\\ \sqrt{2}K_l^m \sin(-m\varphi)P_l^{-m}(\cos\theta), & m < 0\\ K_l^0 P_l^0(\cos\theta), & m = 0 \end{cases}$$

- K ... normalization constant
- P ... Associated Legendre polynomial
 - Orthonormal polynomial basis on (0,1)
- In general: $Y_{l,m}(\theta,\phi) = K \cdot \Psi(\phi) \cdot P_{l,m}(\cos \theta)$

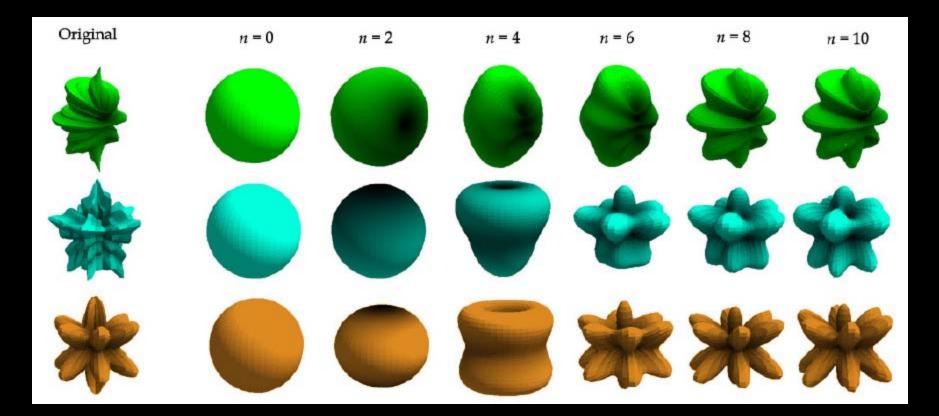
– $Y_{l,m}(\theta,\phi)$ is separable in θ and ϕ

Function approximation with SH

$$G(\theta,\varphi) = \sum_{l=0}^{n-1} \sum_{m=-l}^{m=l} c_{l,m} Y_{l,m}(\theta,\varphi)$$

- n...approximation order
- There are *n*² harmonics for order *n*

Function approximation with SH



Function approximation with SH

Spherical harmonics are <u>orthonormal</u>

Function projection

$$c_{l,m} = \left\langle G \left| Y_{l,m} \right\rangle = \int_{S} G(\omega) Y_{l,m}(\omega) d\omega = \int_{0}^{2\pi\pi} \int_{0}^{2\pi\pi} G(\theta,\varphi) Y_{l,m}(\theta,\varphi) \sin \theta d\theta d\varphi$$

- Usually evaluated by numerical integration
- Low number of coefficients
 - \rightarrow low-frequency signal

Product integral with SH

- Simplified indexing
 - $Y_{i} = Y_{i,m}$
 - -i = I(I+1) + m
- Two functions represented by SH $F(\omega) = \sum_{i=0}^{n^2} f_i Y_i(\omega)$ $G(\omega) = \sum_{i=0}^{n^2} g_i Y_i(\omega)$

$$\int_{S} F(\omega)G(\omega)d\omega = \sum_{i=0}^{n^{2}} f_{i}g_{i}$$

SH rotation

- Closed under rotation
- SH rotation matrix
- Fast rotation procedures exist

$R_{SH} =$	1	0	0	0	0	0	0	0	0	••••
	0	Χ	Χ	Χ	0	0	0	0	0	•••
	0	Χ	Х	Χ	0	0	0	0	0	•••
	0	Χ	X	X	0	0	0	0	0	•••
	0	0	0	0	Χ	Х	Х	Х	Х	•••
	0	0	0	0	Χ	Х	Х	Х	Х	•••
	0	0	0	0	Χ	Х	Х	Х	Х	•••
	0	0	0	0	Χ	Х	Х	Х	Х	•••
	0	0	0	0	X	X	X	X	X	•••
	:	:	:	:	:	:	:	:	:	•••

Representing BRDFs with SH

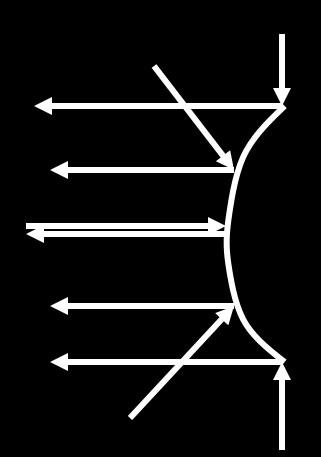
- For each $\omega_{\rm o},$ the BRDF lobe is a spherical function
- Idea:
 - Discretize ω_o
 - For each such ω_o , represent BRDF by a set of coeffs

Discretizing the hemisphere

- Want mapping between hemisphere and square
 - Low distortion (as uniform as possible)
 - Continuous
 - Fast mapping formulas

Paraboloid mapping

Paraboloid mapping



s = x / (1-z)t = y / (1-z)