

Acceleration Techniques for Ray-Tracing

© 1996-2024 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz https://cgg.mff.cuni.cz/~pepca/

Takes most of the CPU time (Whitted: up to 95%)

Scene composed of **objects** (CSG: elementary solids)

- CSG: sphere, box, cylinder, cone, triangle, polyhedron...
- number of objects ... N

Naïve algorithm tests **every ray** (up to the proper recursion depth **D**) against **every object**

- O(N) tests for one ray

Classification

- Faster "ray × scene"
 - faster "ray × solid" test
 - » bounding volumes with more efficient intersection algorithms
 - less "ray × solid" tests
 - » <u>bounding volume hierarchy</u>, <u>space subdivision</u> (spatial data structures), <u>directional techniques</u> (+2D data structures)

² Less rays

- » dynamic recursion control, adaptive anti-aliasing
- ⁶ Generalized rays (carrying more information)
 - » polygonal ray bundle, ray cone...

Bounding volume

Intersection with bounding volume is [much] faster

- sphere, **box** (axis-aligned "AABB" or "OBB" with arbitrary orientation), intersection of strips...
- A bounding volume should enclose an original object as tight as possible

Eficiency of a bounding volume ... middle ground between **1** and **2**

- total asymptotic complexity is still O(N)

Bounding volume efficiency

Expected intersection time ray vs. object

? B+p·l < l ←

I ... intersection time with an original object

B ... intersection time with a **bounding volume**

p ... probability of hitting a bounding volume (percentage of rayhits in total)

Bounding solid efficiency

Combined bounding solids

Better approximation of an original shape

Unions and intersections of simple bounding shapes

Bounding solid for **convex shapes**

Intersection of strips ("k-DOP" system)

- strip = space between two parallel planes
- efficient computation of **d** and **D** constants is necessary

$$\mathbf{d} = \min_{[x,y,z] \in \mathsf{T}} \{ a\mathbf{x} + b\mathbf{y} + c\mathbf{z} \}, \quad \mathbf{D} = \max_{[x,y,z] \in \mathsf{T}} \{ a\mathbf{x} + b\mathbf{y} + c\mathbf{z} \}$$

Intersection using bounding volumes

- Intersections with all bounding volumes
- Intersected bounding volumes are sorted in ascending order from the ray origin
- Original objects will be checked (intersected with the ray) in the same order

If there is an intersection and all **bounding volumes with closer intersection** were already tested, the intersection is the closest one

An efficient algorithm

Bounding Volume Hierarchy (BVH)

Ideal asymptotic complexity is O(log N)

Efficient for well structured scenes

- many well separated small objects/clusters
- natural in CSG representation (cutting a CSG tree)

Automatic construction is possible

- building optimal tree would be very complex
- suboptimal algorithms many different principles

In case of "AABB" it is called **R-tree** (Guttman, 1984)

see: database spatial query technology

Hierarchy efficiency

- B ... intersection time with the bounding volume
- **p**_i ... probability of hitting the i-th bounding volume

 $I_i \dots$ time for objects inside of the i-th bounding volume

 $P(d), P_i(d) \dots$ area projected from the direction **d S**, **S**_i ... surface area of a shape For a single direction **d** $\mathbf{p}_{i} = \mathbf{Pr}(\mathbf{hit} \mathbf{C}_{i} | \mathbf{hit} \mathbf{C}) = \frac{\mathbf{P}_{i}(\mathbf{d})}{\mathbf{P}(\mathbf{d})}$ $\mathbf{p}_{i} = \frac{\int \mathbf{P}_{i}(\mathbf{d}) \, \mathbf{d}\mathbf{d}}{\int \mathbf{P}(\mathbf{d}) \, \mathbf{d}\mathbf{d}} = \frac{\mathbf{S}_{i}}{\mathbf{S}}$

For every direction and **convex objects**

"Sphere tree" (Palmer, Grimsdale, 1995)

- simple test and transformation, worse approximation

"AABB tree", "R-tree" (Held, Klosowski, Mitchell, 1995) – simple test, complex transformation

"OBB tree" (Gottschalk, Lin, Manocha, 1996)

- simple transformation, more complex test, good approximation

"K-DOP tree" (Klosowski, Held, Mitchell, 1998)

- more complex transformation and test, excellent approximation

K-DOP hierarchy – levels 0 & 1

K-DOP hierarchy – levels 2 & 3

Top-down construction

- classical time-efficient construction ("divide and conquer")
- sub-optimal ("local greedy") rules like SAH

Bottom-up construction

- theoretically better result efficiency but slower construction
- clustering (starting with single triangles)

Parallel construction

- GPU tree construction (Morton code based)

Surface Area Heuristics (SAH)

$$Cost(V \rightarrow \{L, R\}) = t_{tra} + t_{tri} \left(\frac{SA(V_L)}{SA(V)} N_L + \frac{SA(V_R)}{SA(V)} N_R \right)$$

- V ... parent volume
- *L*, *R* ... two children (*V*_L ... volume, *N*_L ... number of objects)
- *t_{tra}* ... traversal cost (bounding volume tests, recursion)
- *t_{tri}* ... object (triangle) intersection cost
- **SA(V)** ... surface area of the volume **V**

In a volume *V* we have *N* triangles

- a dividing plane divides V into L and R
- a plane leading to minimum expected intersection Cost has to be found
- plane orientation {x|y|z} is deterministic ("round-robin") or optimized as well

SAH decision

One more level

Efficient for **subtractive set operations** (intersection, difference)

Primary bounding solids are assigned to (finite) **elementary** solids

analytic computation

Bounding solids are propagated from leaves to the root node

Subtractive operations can reduce bounding solids in ancestors (arguments)

CSG tree "cutting"

Uniform subdivision (equal cells)

- + simple traversal & addressing
- many traversal steps
- big data volume

Nonuniform subdivision (mostly adaptive)

- + less traversal steps
- + less data
- more complex implementation (data struture & traversal)

Uniform subdivision (grid)

Grid traversal (3D DDA)

Ray $P_0 + t \cdot \vec{p}_1$ for t > 0

For the given direction \vec{p}_1 there are precomputed **constants Dx**, **Dy**, **Dz**

 distance between subsequent intersections of the ray and the parallel wall system (perpendicular to x, y, z)

For the P₀ there is an **initial cell** [**i**, **j**, **k**] and quantities **t**, Lx, Ly, Lz

- ray parameter **t**, distances to the closest walls in the **x**, **y**, **z** system

Processing in the **cell** [**i**, **j**, **k**] (intersections)

Stepping to the next cell

- D = min { Lx, Ly, Lz }; /* assumption: D = Lx */
- Lx = Dx; Ly = Ly D; Lz = Lz D;
- $i = i \pm 1$; /* according to the sign of P_{1x} */

End conditions

- an actual (the closest) intersection was found
 - » the intersection is <u>in the current cell</u>
- no intersection was found and the next cell is outside of the grid domain

Nonuniform subdivision of space

Octree (division in the middle)

- representation pointers, <u>implicit representation</u> or hash table (Glassner)
- KD-tree (Bentley, 1975)
- static division: in the middle, cyclic coordinate component
- adaptive: both components and bounds are dynamic
- SAH heuristics can be used

[General **BSP-tree**]

- dividing planes have arbitrary orientation

KD-tree (static variant)

Limited number of objects and subdivision depth

- if a cell is intersected by more than M objects (e.g. M = 4...32), subdivide it
- maximal subdivision level is K (e.g. K = 5...25)

Limited **number of cells** or **memory occupation** instead of subdivision depth limit

- subdivision is finished after filling the whole reserved memory
- subdivision controlled by a breadth-first traversal (FIFO data structure holding candidate cells)

Marching the ray – finding the next cell from the root

Preprocessing – tree traversal used for dividing the ray into individual segments (intersections with cells)

- t parameter segments for individual cells

Additional support data (à la "finger tree")

pointer to the neighbour cell (on the same tree level)

Recursive depth-first traversal with heap

heap – list of potentially intersected cells (ordered from the most promising ones)

"Mailbox" technique

The intersection must be in the current cell (otherwise it is postponed)

Macro-cells (Miloš Šrámek)

Directional acceleration techniques

Utilizing **directional cube**:

Light buffer

- speeding up <u>shadow rays</u> to point light sources

Ray coherence

- for all <u>secondary rays</u>

5D ray classification

Image plane directory (visibility precomputation)

- only for primary rays

Directional cube (adaptive)

Axis-oriented

Cube faces divided into **cells**

- uniform or adaptive division
- every cell stores list of relevant objects (can be ordered by the distance from the cube)

HW rasterization and visibility (depth-buffer) can be used for uniform division

Speeding up shadow rays

Directional cube in every point light source

- possible visibility of objects from the light-source point
- some cells might be covered completely by one object (everything else is in shadow)

For a **shadow ray** only objects projected in the relevant cell are considered

Ray coherence

For every **secondary rays**

- reflected, refracted, shadow

Assumed bounding solid: sphere

Directional cube placed in every **center of bounding sphere**

- list of projected objects/light sources in every cell
 - » coherence condition is used
 - » lazy evaluation!
- lists can be ordered by distance from the cube

Rays in 3D scene

- origin $P_0[x, y, z]$
- direction [ϕ , θ]

5D hypercube divided into cells

- every cell contains list of possible intersections for the associated ray pencil ("beam")
- adaptive subdivision (merging neighbour cells with equal or similar lists)

6D variant – one more quantity (time) for animations

origin (2-3D) + direction (1D, 2D) = bundle / pencil

For primary rays

Projection plane is (adaptively) divided into **cells**

- possible visibility of individual objects in a cell (together with order)
- complete coverage by one cell by one object is possible (hard to test)

Robust variant of used visibility method

- in most pixels it can be done with complete certainty

Computing more information about **f(x,y)**

- for anti-aliasing (average color estimation) or soft shadows (shadow ratio)
- some restrictions to a scene are necessary

Forms of **generalized rays**

- rotational or elliptical cone, regular pyramid
- pyramid with polygonal cross section (polygonal scene, see the next slide)

Polygonal scene

.

11

)1

RT acceleration on GPU

BVH hierarchy used in **rendering**

- RTX cores (NVIDIA)

BVH **construction** can be done on GPU as well

- CUDA cores (NVIDIA)

Morton Codes or Extended Morton Codes (linearization)

- Lauterbach et al (2009) or Vinkler et al (2017)
- LBVH construction parallel!

11

Morton code based BVH tree

Grid $2^k \times 2^k \times 2^k$

- 3k bits [x:k, y:k, z:k]
- direct point localization

Interleaving **x**, **y** and **z** into one **3k bit code**

- 2D example

Sorting triangle codes

- parallel radix-2 sort
- tree node = interval of indices [l_i, r_i)

Parallel radix sort on GPU (CUDA)

Split and Compaction kernels

Split: two work queues

- input [m] → output [2m]
- all Splits in parallel
 - » read(i) → write(2i)
 - » read(i) → write(2i + 1)

Compaction:

the **output** queue is
 compacted back to the **input** queue

Overall O(n log n)

- 1. Determine the **best split position**
- **3k** threads ... **k** uniform split candidates for each axis
- if number of triangles is not greater than k, triangle positions are used (= full SAH evaluation)
 - » testing triangle by triangle, updating AABBs
 - » at the end, the thread computes its cost
 - » parallel_reduction(min) determines the best option
 - log₂k steps (binary reduction using syncthreads())
- 2. Reordering the primitives
- no splitting of triangles \rightarrow in place operation, using **indices** only
 - » 1/0 classif. of every triangle in the block, parallel sum \rightarrow node size
 - » creating the nodes and their AABBs

J. Hendrich: *Adaptive Acceleration Techniques for Ray Tracing*, PhD thesis, ČVUT, 2023

- rearranging the BVH
- 5D shafts

DirectX Raytracing (DXR)

© Josef Pelikán, https://cgg.mff.cuni.cz/~pepca

Ray Tracing Pipeline with new shader types

- Ray Generation (à la Compute)
 - » 2D grid scheme, no thread groups, no barriers
- Intersection
 - » custom shape, default = triangle. No payload access (geometry only)

– Any Hit

- » no guaranteed traversal order!
- » can terminate ray, can modify payload, for transparency...
- Closest Hit / Miss
 - » called after all "any hits"
 - » can read/write payload
 - » may call TraceRay() ... recursion (ray tracing)

Ray Generation shader example


```
// An example payload struct. We can define and use as many different ones as we like.
struct Payload
{
   float4 color:
   float hitDistance;
};
// The acceleration structure we'll trace against. This represents the geometry of our scene.
RaytracingAccelerationStructure scene : register(t5);
[shader("raygeneration")]
void RayGenMain()
{
   // Get the location within the dispatched 2D grid of work items
   // (often maps to pixels, so this could represent a pixel coordinate).
   uint2 launchIndex = DispatchRaysIndex();
   // Define a ray, consisting of origin, direction, and the t-interval we're interested in.
   RayDesc ray;
   ray.Origin = SceneConstants.cameraPosition.
    ray.Direction = computeRayDirection(launchIndex); // assume this function exists
   ray.TMin = 0;
   ray.TMax = 100000;
   Payload payload;
   // Trace the ray using the payload type we've defined.
   // Shaders that are triggered by this must operate on the same payload type.
   TraceRay(scene, 0 /*flags*/, 0xFF /*mask*/, 0 /*hit group offset*/,
             1 /*hit group index multiplier*/, 0 /*miss shader index*/, ray, payload);
    outputTexture[launchIndex.xy] = payload.color;
```

}

Closest Hit shader (color ← barycentric)

Two level structure

- Top-level AS are for animation (easy rebuild)
- Bottom-level AS represent scene geometry (trees over triangles)
- Instance descriptor connects a BLAS to TLAS
 - » transformation matrix

» shader table offset (material...)

"Reflections" demo (2018)

UE4, Epic, ILMxLAB, and NVIDIA

- https://www.youtube.com/watch?v=IMSuGoYcT3s
- the 1st demo of real-time ray tracing in Unreal engine
- "Cinematic Lighting in Unreal Engine", talk at GDC 2018

Hardware

NVIDIA DGX Station (to achieve 24fps@1080px)

- 4x watercooled Tesla V100
- 4-way NVLINK GPU interconnect

Scene

© clamchowder, Chips and Cheese

Acceleration 2024

Scene and AABBs

Total: 3,447,421 triangles

- one stormtrooper: 555k triangles in 17 sub-boxes
- the helmet alone: 110k triangles

BVH in action

© clamchowder, Chips and Cheese

Acceleration 2024

A. Glassner: *An Introduction to Ray Tracing*, Academic Press, London 1989, 201-262

A. Watt, M. Watt: *Advanced Animation and Rendering Techniques*, Addison-Wesley, Wokingham 1992, 233-248

V. Havran: *Heuristic Ray Shooting Algorithms*, PhD thesis, FEL ČVUT Praha, 2001

I. Wald, V. Havran: On building fast kd-Trees for Ray Tracing, and on doing that in O(N log N), IEEE Symposium on Interactive Ray Tracing, 2006

I. Wald: On fast Construction of SAH-based Bounding Volume Hierarchies, IEEE Symp. on Inter. Ray Tracing, 2007

A. Benthin, S. Woop, I. Wald, A. Afra: *Improved Two-Level* BVHs using Partial Re-Braiding, HPG'17, Los Angeles, 2017

M. Vinkler, J. Bittner, V. Havran: Extended Morton Codes for High Performance Bounding Volume Hierarchy Construction, HPG'17, Los Angeles, 2017

D. Meister, J. Bittner: *Performance Comparison of Bounding Volume Hierarchies for GPU Ray Tracing*, JCGT, vol. 11, No. 3, 2022

– https://github.com/meistdan/hippie

H. Samet: Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, 2006