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Introduction

This thesis describes a procedural hair generator, which is a part of the Stubble
project – a tool for hair modeling in Autodesk Maya1. Stubble was developed
as a software project at Faculty of Mathematics and Physics, Charles University
in Prague, under the supervision of Ing. Jaroslav Křivánek, Ph.D., and has been
successfully defended in January 2012. Since creating a procedural hair generator
is a complex task, my contribution to the Stubble project was from the beginning
considered as a diploma thesis and therefore it covers both the software project
and the diploma thesis.

Stubble project

The Stubble project’s main goal was to reimplement a commercial tool for hair
modeling Shave and a Haircut2. This goal was given to us (team members of
Stubble project) by UPP3, which is a company focused on visual effect creation
and movie post production. They have used Shave and a Haircut for creating
hairs on animal and human bodies for CG animated scenes, however they were
unsatisfied with it in several ways, especially in the procedural hair generation
part of Shave and a Haircut. See Figure 1 for a demonstration of a CG animated
character with hairs/fur.

Figure 1: An example of an animated film using computer generated fur. Image
Copyright c© 20th Century Fox.

The most important aspect of Stubble which is similar to Shave and a Haircut
is that final hairs (I will refer to them in the following text as interpolated or

1http://usa.autodesk.com/maya/
2http://www.joealter.com/
3http://www.upp.cz
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generated hair) are never directly modeled by the user, instead they are inter-
polated from hair guides (see Figure 2). These hair guides are few hairs (from
a hundred to several thousands) that can be directly modeled by the user in
Autodesk Maya using specialized tools such as a tool for brushing or a tool for
hair cutting. Modeling the final hair instead of the hair guides would be nearly
impossible or at least very time consuming and time means money for companies
such as UPP. It is also important to mention that both the generated hair and
the hair guides must grow from a model surface defined by a triangular mesh.
This surface represents a human or an animal skin.

Procedural generation 
 & rendering

Figure 2: From the hair guides through interpolation and procedural generation
to the final image rendered by the 3Delight RenderMan.

One key difference between Shave and a Haircut and Stubble is that in Shave
and a Haircut the hair guides are always placed at each vertex of the triangular
mesh on which hair grows, therefore the number of the hair guides is determined
by the triangular mesh. This is a severe limitation from the user’s point of view,
since she/he cannot for example use a high polygon count mesh with a low number
of hair guides. On the other hand, if the hair guides are only allowed to grow
from the mesh vertices, hair interpolation is much easier, since every hair can be
interpolated from three hair guides that lie at vertices of the triangle from which
interpolated hair grows. Since UPP wanted to select the number of the hair
guides independently of the resolution of the skin mesh, Stubble places the hair
guides in a different way. Furthermore, UPP desired that both the interpolated
hair and the hair guides are distributed on a model according to a given density
texture. This affects the design of my procedural hair generator in several ways,
as will be discussed later.

Another important advantage of Stubble is that it can generate the interpo-
lated hair during rendering without the need to store hair geometry as Shave and
a Haircut does. This is mainly important from a performance point of view, as I
will discuss later in my thesis.

For more information about the Stubble project please refer to its documen-
tation (it can be found on the accompanying CD, see Chapter A).
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Thesis goals

As I have already mentioned, the goal of this thesis is to create a procedural
hair generator. In order to achieve this goal, I have to accomplish the following
important subtasks.

Hair root placement. I have already mentioned that both the generated hair
and the hair guides are distributed on a model surface with a density proportional
to a 2-dimensional texture (later referred to as a density texture). One way to
approach the hair root placement is to use a sampling algorithm of a triangular
mesh (model). Since no sampling algorithm existed that was sufficiently fast
for my purposes or could support a non-uniform distribution of samples (i.e. a
distribution defined by a density texture), I have developed a novel fast random
sampling algorithm for triangular meshes. Furthermore, my sampling algorithm
uses an innovative way to sample from a discrete probability distribution, which
can be used in other applications than mesh sampling.

Hair representation. Before I can make any steps in procedural hair gener-
ation, I need to determine how to represent the generated hair. Since I have
already discussed the hair root placement, it is obvious that I will represent each
hair fiber individually (and not for example only a surface of all hair combined as
a triangular mesh). However, I still have a number of options how to represent a
hair fiber.

Hair interpolation. A key feature of a procedural hair generator is interpola-
tion of hair from the hair guides. Since both the hair guides and the generated
hair are arbitrarily placed over a triangular mesh, I need to use a sophisticated
interpolation algorithm, which gives good results and is sufficiently fast. Fur-
thermore, the interpolation has to be consistent during an animation. The hair
guides can be manually or automatically (using hair dynamics) animated and al-
so the triangular mesh from which the hair grows can be deformed in the course
of an animation. All this must be taken into account when designing the hair
interpolation, so the generated hair appears to be smoothly animated.

Procedural generation of hair. The hair interpolation is only a small part
of the procedural hair generation. Shave and a Haircut uses many hair properties
to influence the generated hair. There are properties that influence hair geometry
by applying noise in many different ways, or that cause the hair to be cut at a
defined position. Another property defines that the hair should be generated in
strands, instead of single fibers. The hair can also have varying color, opacity
and width. All properties that are in Shave and a Haircut must also be in my
procedural hair generator and they must influence the generated hair in similar
manner. Achieving this is not easy, since Shave and a Haircut is a commercial
product and therefore no information is available on how it works internally. In
this thesis I will not mention how exactly can the user set these properties, since
that is a part of the Stubble UI, not a part of the procedural hair generator.
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Hair rendering. Of course as a final step, the generated hair must be rendered.
When a scene is rendered by specialized rendering software, it is usually output
to a scene file of a defined format from which it is loaded by the renderer. Shave
and a Haircut outputs complete hair geometry to the scene file. Since there can
be up to 150,000 hairs on a human head and up to millions hairs on an animal
body (even billions in reality, however such high numbers are never used) and each
hair fiber must be stored in the scene file, the scene file becomes exceedingly large
(several gigabytes for a single frame of an animation). Handling such huge files is a
bottleneck in rendering, therefore it is better to store only small amount of data to
the scene file, which is enough to define the generated hair. To generate hair from
the stored data during render time, a specialized library for the hair generation
must be created. This library is executed by the renderer and generates hair on
the fly, completely avoiding storing hair in scene files. This approach provides
a significant increase in rendering performance, which is always very important.
Another important thing is to write the hair generator in such a way that it can
easily be extended to support any renderer. In my thesis I will however mostly
aim at the RenderMan renderer.

Interactive display. Since the final hair is influenced by the hair guides and
the hair properties which are both handled by the user inside Autodesk Maya,
it is important to give the user at least some idea how the final hair will look.
Therefore the procedural hair generator should be able to generate hair and dis-
play it using OpenGL interactively in Autodesk Maya. Of course, only a small
amount of the final hair can be displayed at a sufficiently high rate.

Thesis overview

The rest of this thesis consists of the following chapters:

• Related work: In this chapter I describe related work in hair modeling
and sampling algorithms.

• Methods and algorithms description: This is the most important part
of my thesis. It discusses my sampling algorithm (Section 2.1), the hair
interpolation and the procedural generation (Section 2.2) and also the in-
teractive hair generation in Maya and the hair generation during rendering
in RenderMan (Section 2.3).

• Implementation: Here I discuss the implementation details of my hair
generator.

• Results: This chapter shows results of both my sampling algorithm (Sec-
tion 4.1) and the hair generator (Section 4.2).

• Conclusion: The conclusion of my thesis.
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1. Related work

In this chapter I describe the work related to hair modeling and mesh sampling.

1.1 Hair modeling

Hair modeling is addressed by many recent papers, since virtual hair appears in
both animated and live-action movies, or even in real-time computer animation,
for example in computer games. As discussed in [42] (which is along with [48]
an excellent overview of hair modeling), hair modeling can be divided into three
categories: hairstyling, hair simulation, and hair rendering. My thesis mainly
aims at hairstyling, which is concerned with defining the shape of hair. Hairstyling
can be further divided to attaching hair to skin, determining overall hair shape
and finally handling subtle hair details.

There are many methods to attach hair to skin, in some approaches [22, 47]
the user places hair locations on a 2d map which is then mapped by various
techniques on a 3d surface. An alternative approach is to place hair uniformly
over the skin [22, 8], which is close to reality for human head scalp, however
untrue for hairs over the whole body. Finally, hair can be placed according to a
density function, which can be for example defined by the user painting over the
3d surface [8, 17]. This is also the case of my hair generator (a density texture I
use can be created in Maya by painting over the surface).

Once hair is placed, its overall shape can be determined. There are again
many techniques to do that and they can be divided to three main categories:
geometry-based, physically-based or image-based techniques. Geometry-based
methods [46, 40] handle hair as geometric primitives and allow the user to handle
these primitives directly or via proxy, therefore using the hair guides falls into
this category. Physically-based approaches [47, 14] usually limit user handling
of hair and base hair appearance on physical simulations. Finally, image-based
techniques [43] model hair shape according to a photograph or a sketch of hair.

As the last step of hairstyling, subtle details of hair, such as curls or waves,
are determined. There are many methods to generate these details, most of them
[8, 47, 17] use user parameters such as magnitude or frequency that control curling
of hair, however some random offsets are always used to ensure non-uniformity
of hair. Alternative approaches use physically-based simulation of hair curliness
[5].

All of the above mentioned works discuss mainly modeling of hair on a human
head. There are also papers [21, 45, 25] focusing on modeling and rendering of
animal fur, which can also be created by my hair generator. While many of the
aforementioned works create more realistic hair than Shave and a Haircut, they
are not so wide-spread, since they usually have many limitations or do not offer a
sufficient freedom for a 3d artist as Shave and a Haircut does. In my thesis I was
given the task to create a hair generator similar to Shave and a Haircut, therefore
I focus on that task rather than trying to implement some features from recent
papers on fur or hair modeling.
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1.2 Mesh sampling

As I have already mentioned, I will use a mesh sampling algorithm to deter-
mine hair root positions on a given triangular mesh. Most recent papers about
sampling aim at generation of point distributions with blue-noise properties (see
[24, 11] for an overview), however, relatively little research has focused on random
sampling of surfaces embedded in 3D space, which is what I need for determin-
ing hair root positions. Surface sampling has been studied in different contexts
such as remeshing [39, 33], point-based graphics [13], texturing [23], realistic
rendering [20, 7, 9, 34], or non-photorealistic rendering [26]. The goal of these
techniques, however, is not to generate unbiased samples from a prescribed prob-
ability density (in my case defined by an arbitrary 2-dimensional texture). In
addition, their performance is usually insufficient for usage in a fast hair genera-
tor.

Several recent papers have addressed surface sampling with stratification [27]
or blue-noise properties [6, 44, 10]. However, the quality of the resulting dis-
tribution comes at the cost of relatively low sampling performance (not more
than 400,000 samples per second on GPU reported by [44]). Another important
limitation of these methods is that they generate uniform samples without the
possibility of controlling the sample density. Bowers et al. [6] does discuss a non-
uniform version of their sampling algorithm but according to their measurements,
it is 18 times slower than the uniform variant (approximately 10,000 samples per
1∼2 seconds on GPU). This is an important limitation for my purpose, therefore
I have to turn away from sampling algorithms that generate high quality samples
and more concentrate on sampling speed.

Fast unbiased sampling of meshes is discussed in [28, 10] but these techniques
are limited to uniform distributions. A widely known approach to generalize
such techniques to generating samples with any given density is rejection sam-
pling [31, p. 671]. Rejection sampling is usually a very fast generator of random
samples; however its performance decreases greatly for highly varying densities
(for example density defined by an HDR texture). The aforementioned program
Shave and a Haircut uses a similar technique to rejection sampling to generate
hair root positions. As was told me by UPP employees, highly varying density
textures are often used to define distributions of hair over a surface. In those cas-
es, performance of hair generation done by Shave and a Haircut is significantly
reduced.

As rejection sampling, my algorithm is able to generate samples with arbitrary
density, however with roughly the same speed as uniformly distributed samples,
even for highly varying textures. Furthermore, my algorithm consistently out-
performs any of the existing alternatives by a large margin.
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2. Methods and algorithms
description

In this chapter I will first describe my sampling algorithm (Section 2.1) of triangu-
lar meshes, that I use to determine the hair root position. Next, I will talk about
the procedural hair generation, which includes the hair interpolation, applying
noise on the generated hair, defining hair color and more (Section 2.2). Finally,
I will discuss in Section 2.3 how is the generated hair displayed interactively and
rendered by RenderMan.

2.1 Sampling of triangular meshes

This section describes a new mesh sampling algorithm. I use this algorithm
for determining hair root positions on a given model with hair density defined
by a 2-dimensional texture as described in Section 2.2.3, however it has other
applications as can be seen in Section 2.1.8.

2.1.1 Problem definition

Given a set of n triangles {Ti}ni=1, Ti ⊂ R3, T = ∪ni=1Ti, a density function f :
[0, 1]2 → R+ represented by an image texture, and a mapping m : T → [0, 1]2 that
maps the texture onto the triangles, I want to draw samples from a distribution
with the probability density function (PDF) p : T → R+ (w.r.t. the surface area
measure) given by:

p(x) =
f(m(x))∫

T f(m(x′))dA(x′)
(2.1)

See Figure 2.1 for an illustration.

2.1.2 Possible approaches

A straightforward solution to the above problem is to use rejection sampling :
1) Pick a triangle Ti proportionately to its surface area,
2) Propose a sample x from a uniform distribution on Ti,
3) Generate a random number ξ from uniform distribution U(0,M), with M =

Figure 2.1: Input and output of a mesh sampling algorithm.
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(a) (b) (c)

Figure 2.2: In the preprocess, I subdivide each triangle (a) until the sub-triangle
size matches the density texture resolution (b), and subsequently resample the
density texture on the subdivided triangle (c). The different colors represent
various densities.

sup{f(u) | u ∈ [0, 1]2},
4) Accept x if ξ < f(m(x)), otherwise go to step 1.
This approach suffers from the usual disadvantages of rejection sampling. Effi-
ciency degrades rapidly for non-uniform density f , and the number of random
numbers used to generate one sample cannot be bounded prior to the calculation.

Another alternative would be to carry out the sampling in the [0, 1]2 texture
space, where the density function f is defined by an image that can be efficiently
sampled [31, p. 671], and then transform the samples to the triangles using the
inverse of the m mapping. However, generality of this approach is compromised
by the fact that m is often not invertible (e.g. for a tiled texture).

2.1.3 Algorithm overview

My approach does not suffer from the performance and generality issues of the
aforementioned alternatives. Consider a simple case, where the density texture f
is constant over the area of any one triangle. Mesh sampling problem would then
reduce to choosing a triangle from a suitable discrete distribution and drawing
a sample from a uniform distribution on the triangle. The main idea of my
approach is to map the general problem to this simplified case by subdividing the
triangles of the input mesh until the density texture f can be considered constant
over the sub-triangle area, and resampling the density texture on the subdivided
triangles (Figure 2.2). Doing so avoids problems due to the incompatibility of the
density texture and triangle mesh domains, and greatly simplifies the sampling
algorithm. This idea is similar to the Mesh Colors approach for texturing 3D
meshes [50], though the purpose is different.

My algorithm works in two stages. The preprocessing stage, executed once
for a given mesh and density texture, subdivides the input triangles and creates
a piece-wise constant PDF on the sub-triangles that can be efficiently sampled.
The sampling stage then draws samples from this PDF. In order to make the
approach practical, I use a memory-efficient representation for the subdivided
triangles and an accelerated procedure for generating surface samples from this
representation. The following subsections describe the technical details of my
sampling algorithm.
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2.1.4 Stage 1: Preprocessing

Pseudocode of the preprocessing stage is given in Figure 2.3. In this stage, I
subdivide the input triangles and effectively replace the desired sampling PDF
(Equation 2.1) by its approximation p′ that is constant over the area of each sub-
triangle. The PDF value for sub-triangle Di is determined by taking a (bilinearly
filtered) sample fi of the density texture at the sub-triangle’s barycenter. For
x ∈ Di, the approximate PDF is defined as

p′(x) =
fi∑ns

j=1 fj |Dj|
, (2.2)

where ns is the total number of sub-triangles and |Di| denotes the surface area
of sub-triangle Di.

To make the above PDF approximation accurate, I need to subdivide the in-
put triangles until the density texture can be safely considered constant inside
each sub-triangle. To achieve this goal, each triangle is subdivided so that its
sub-triangles are smaller than a texel of the density texture mapped on the tri-
angle (Figure 2.2). Because the m mapping is affine over each input triangle (as
per linearly interpolated per-vertex texture coordinates), the subdivision depth
can be determined directly from the number of texels mapped on the triangle.
Subsequently, I recursively replace sub-triangles with the same PDF value (if all
4 sub-triangle siblings has the same PDF value) by their parent, so that the total
number of resulting sub-triangles is minimized.

Sampling of the piecewise constant PDF p′ involves picking a sub-triangle with
probability PDi

=
∫
Di
p′(x)dA(x) = fi |Di|/

∑ns

j=1 fj |Dj|, generating a sample in
the sub-triangle, and mapping it to the original mesh triangle. For this purpose,
the preprocessing stage calculates and stores the cumulative distribution function
(CDF) Fi =

∑i
j=1 PDj

. I also need to store for each sub-triangle, a reference
to the parent input triangle, as well as the barycentric coordinates of the sub-
triangle inside the parent triangle. Why that is necessary will be obvious from
the sampling stage description.

I take advantage of the fact that the subdivision scheme is the same for all
triangles, so a unique sub-triangle index is sufficient to determine its barycentric
coordinates (see Figure 2.4). A separate pre-computed table accessed by the
sub-triangle index stores the actual sub-triangle barycentric coordinates. This
significantly reduces memory consumption, since for each sub-triangle I only need
to store its CDF value Fi and two indices (a parent triangle index and a sub-
triangle index). In my implementation, I use 4 byte value for each of the three
aforementioned values; therefore a sub-triangle takes up only 12 bytes in memory.
During the preprocessing stage I need to efficiently determine a sub-triangle index
for each sub-triangle. As can be seen in Figure 2.4, a whole triangle has a sub-
triangle index 0. Index of each sub-triangle Di which has a parent sub-triangle
Di−1 (i.e. the sub-triangle Di is not a whole triangle) can then be calculated
as index(Di) = 4 · index(Di−1) + j, where j ∈ {1, 2, 3, 4} is the number of Di−1
sub-triangle child.

The calculation of the pre-computed data structure which stores sub-triangle
barycentric coordinates is described in Figure 2.5). Before I can calculate barycen-
tric coordinates for each sub-triangle, I need to determine the maximum subdi-
vision depth of any triangle. This is easily done by iterating over all triangles
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For each mesh triangle T :

1. Calculate the area of T . The subdivision depth i is now 0. Mark the triangle
T as the sub-triangle D0 (Di denotes any sub-triangle in the subdivision depth
i).

2. If the subdivision depth i is less than maximum (more than one texel of the
density texture is mapped on the sub-triangle Di):

(a) Subdivide the sub-triangle Di to four smaller sub-triangles Di+1.

(b) For each sub-triangle Di+1 store the index of the triangle T and the sub-
triangle Di+1 position inside T .

(c) Increase the depth of recursion i by one and call step 2. for every sub-
triangle Di+1 of the sub-triangle Di.

3. Otherwise (the maximum subdivision depth was reached):

(a) Calculate the probability PDi
of the sub-triangle Di as the area of Di

multiplied by the density texture value mapped on Di’s barycenter.

(b) While each of four sub-triangles Di with the same parent sub-triangle
Di−1 are not subdivided and have the same probabilities PDi

:

i. Discard sub-triangles Di and use their parent Di−1 instead with the
probability PDi−1

= 4PDi
.

ii. Decrease the subdivision depth i by one and if i = 0 exit the while-
cycle.

(c) Store sub-triangles probabilities PDi
.

Figure 2.3: The preprocessing stage of my algorithm.

and calculating how many texture texels are mapped on each of them. From
the texture texel count I can easily determine maximum sub-triangle count. The
number of sub-triangles of a single triangle in depth d is 4d and because there
must be at least as many sub-triangles as there are texels on a single triangle, I
come to the equation texelCount(T ) ≤ 4d, where texelCount(T ) is the number of
texels mapped on a single triangle T . I can then derive the maximum subdivision
depth dmax as:

dmax =
log2 (maxT (texelCount(T )))

2
(2.3)

Since I need to store a sub-triangle index of every sub-triangle in depth d =
0, .., dmax, the pre-computed data structure will hold

∑dmax

d=0 4d = (4dmax+1 − 1)/3
sub-triangles, however the memory consumed by the pre-computed data structure
is still negligible.
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Figure 2.4: Index of a sub-triangle uniquely determines its position inside the
parent triangle.

1. Allocate an array to hold all sub-triangles barycentric coordinates in depth d =
0, .., dmax.

2. Put a whole triangle barycentric coordinates ((0, 0), (1, 0), (0, 1)) to the data
structure.

3. Mark head as a pointer to the data structure start, tail as tail = head+1 and
finally end as a pointer pointing just beyond the data structure end.

4. While tail 6= end

(a) Select the barycentric coordinates of the sub-triangle Di−1 at which head
is pointing.

(b) From these coordinates calculate barycentric coordinates of the sub-
triangles Di, which are children of the sub-triangle Di−1.

(c) Store calculated coordinates to the positions tail + j, j = 0, 1, 2, 3

(d) tail = tail + 4, head = head+ 1

Figure 2.5: The calculation of the pre-computed data structure which stores sub-
triangle barycentric coordinates.

2.1.5 Stage 2: Generating point samples

Given the data computed in the preprocessing stage, generating a random sam-
ple is straightforward. First, I choose a sub-triangle D from the precomputed
probability distribution (Section 2.1.6 provides details). I then draw a sample
from a uniform distribution on the selected sub-triangle using a standard ap-
proach [31, p. 670] as follows: Given two random numbers ξ1 and ξ2 from the
uniform distribution U(0, 1), the barycentric coordinates of the generated sample
are uD = 1−

√
ξ1 and vD = ξ2 ·

√
ξ1. Finally, I map the sample to the barycentric

coordinates (u, v) w.r.t. the parent mesh triangle:

u = uD · u1 + vD · u2 + (1− uD − vD) · u3
v = uD · v1 + vD · v2 + (1− uD − vD) · v3

where ui and vi are the barycentric coordinates of the vertices of sub-triangle D
inside its parent mesh triangle. I obtain ui and vi by a lookup in the pre-computed
sub-triangle position data structure using the sub-triangle index.
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As I will describe later, I also need one random number ξ to choose a sub-
triangle. Sub-triangles are drawn from a 1D discrete distribution, but random
number ξ is from continuous distribution U(0, 1), therefore for any ξ ∈ [Fi, Fi+1]
I will draw the same sub-triangle Di (Fi represents a value of the CDF F cor-
responding to the sub-triangle Di, as was defined before). Instead of generating
two random numbers ξ1 and ξ2 to sample the sub-triangle area, I can generate
only ξ2 and calculate ξ1 as ξ1 = (ξ − Fi)/(Fi+1 − Fi). In the end I only need 2
random numbers for each generated sample which goes well with the fact that I
am sampling a 2-dimensional surface. If I use a random generator which gener-
ates well distributed 2-dimensional points, good properties of these points have
higher chance to improve quality of the distribution of the samples generated by
my algorithm than if I would generate 3 random numbers per sample.

2.1.6 Fast sampling from a discrete 1D distribution

The first step of the procedure that generates a sample on the mesh involves
drawing a sub-triangle from a 1D discrete distribution given by the CDF F =
[F1, . . . Fns ]. The standard way to implement this is to use interval bisection
to find sub-triangle Di = arg mini {Fi > ξ}, where ξ is a random number from
U(0, 1) [31, p. 647]. Thanks to its logarithmic running time, this bisection algo-
rithm is usually considered efficient for practical purposes. However, the number
of sub-triangles can be large for complex meshes and the logarithmic search for
generating each sample may incur a significant overhead.

I substantially improve the efficiency of sampling from a 1D discrete distribu-
tion by means of a uniform grid G over the codomain of F (i.e. the [0, 1] interval)
created in the preprocessing stage. For each grid cell Ck = [Cmin

k , Cmax
k ] I compute

two indices Cbegin
k and Cend

k , as illustrated in Figure 2.6.

Cbegin
k = arg mini {Fi ≥ Cmin

k }
Cend

k = arg mini {Fi ≥ Cmax
k }

When drawing an element from the distribution (sub-triangle in our case),
I first generate a random number ξ from U(0, 1) as before, then I look up, in
constant time, the grid cell Ck for which ξ ∈ Ck, and finally I find the element
using the bisection algorithm limited to the domain [Cbegin

k , Cend
k ]. Since Cend

k =

Cbegin
k+1 for every k, I only need to store one index per each cell.

Both the grid resolution and the characteristic of the probability distribution
influence the performance of this approach. In my tests, the speedup due to grid-
based search compared to the usual bisection varied between 2 and 14. Please
note that this grid-based search is not limited to the particular mesh sampling
application considered here. It is a general procedure for accelerated sampling
from a 1D discrete distribution that may be used in other applications, such as
sampling HDR environment maps.

The results of testing the grid-based search and the full sampling algorithm
can be found in Section 4.1.1.

2.1.7 Random numbers

To generate a sample on a mesh I need to generate two random numbers first.
The sampling algorithm is written in such a way, that if random numbers are
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Figure 2.6: Uniform grid G built over the codomain of the cumulative distribution
function F .

well distributed in 2 dimensions (two random numbers give one sample in 2D),
samples on a mesh will also be nicely distributed. However generating well dis-
tributed random numbers in 2 dimensions is usually much slower than using a
normal random generator. As I have said before, I use the sampling algorithm to
generate both the generated hair and the hair guides root positions. Since there
is maximally few thousands of the hair guides, I use the 2,3 Halton sequence
(see Section 3.1.1) as the random numbers generator for my sampling algorithm.
On the other hand, there can be millions of the generated hair, so I use the F.
James random generator when generating their positions (see Section 3.1.1). In
my tests, the F. James random generator proofed to be 8 times faster than the
Halton sequence and as will be said later in Section 4.1.2, generation of random
numbers always takes significant amount of time in the generation of a sample
on a triangular mesh.

2.1.8 Sampling complex lights for Monte-Carlo rendering

I use the described sampling algorithm mainly for hair root positions generation;
however it has other applications such as sampling complex lights in Monte-Carlo
rendering (e.g. path-tracing). By a complex light I mean a light with a shape
defined by a triangular mesh and emissivity defined by a 2-dimensional texture
mapped on the mesh surface.

In Monte-Carlo rendering, Monte-Carlo methods are used to estimate the
value of the fundamental rendering equation:

Lo(p, ωo) =

∫
S2

f(p, ωo, ωi)Li(p, ωi)| cos θi|dθi (2.4)

I will not describe the equation nor the Monte-Carlo methods here (they are
more than extensively described in [31]). All that you need to know, is that
to efficiently evaluate the integral using Monte-Carlo random samples need to
be generated on the light surface according to the emissivity (areas with higher
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emissivity should receive more samples than areas with lower emissivity in order
to decrease the variance of the integral estimate). That is exactly what my
sampling algorithm does. Each generated sample must be also weighted by its
probability. Note that the PDF p′ used for sampling (Equation 2.2) will not, in
general, be identical to the desired PDF (Equation 2.1). In order for Monte-Carlo
to work correctly I need to use the probability from the probability distribution
described by Equation 2.2.

Of course it is also possible to generate samples uniformly on the light surfaces
without taking the emissivity into account. If I weigh the samples by correct
probability, Monte-Carlo will yield mathematically correct results, however the
variance of the integral estimate can be very large for highly varying emissivity
textures. Despite this pitfall, uniform sampling is used very widely in currently
existing rendering systems, because it is usually very fast and easy to implement.

(a) Uniform sampling (b) My sampling algorithm

(c) Reference

Figure 2.7: Sampling illumination from a complex luminaire using uniform and
my sampling algorithm.

Figure 2.7 shows three images of the same scene which has been only en-
lightened by the wall on which an HDR texture has been projected. This HDR
texture determines the emissivity of the light. All of the images were rendered
using path-tracer, however the first two images took an hour to render and the
last (i.e. the reference image) took 16 hours to compute. Uniform light source
sampling produces a highly noisy image and fails to reproduce the correct reddish
tone of the illumination from a HDR map (which is due to tiny high-intensity
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street lights that uniform sampling almost never samples). Light source sampling
using my algorithm, on the other hand, reduces the noise and reproduces the cor-
rect tint of the image early in the progressive computation. One might object
why I did not include rejection sampling of complex lights in the test. The reason
is that rejection sampling would only accept 1 in about 2500 samples in this case
and therefore it would took days to render anything reasonable.

2.2 Hair interpolation and procedural genera-

tion

The goal of this section is to describe all necessary theory which is required for
the procedural hair generation. The procedural hair generation may be divided
to several steps; each of them will be described closely in the following sections. A
diagram of the whole procedural generation can be found in Figure 2.12. Before
I describe the individual steps of the procedural hair generation in detail, I need
to explain how is each hair represented during the hair generation which is goal
of the next Section 2.2.1.

2.2.1 Hair representation

In order to select the best representation of hair, it is for the best to write down
what is expected from the representation. First of all the internal representation
of hair should be easily convertible to some geometric primitive which is easily
renderable by RenderMan (one of thesis goals is to support RenderMan) and
most importantly which resembles hair. Single hair fiber is usually rendered in
RenderMan as a curve of varying width along the curve length. I will also use a
curve in final rendering of hair, but I still have many choices which type of the
curve to choose, since RenderMan supports any cubic curve, that can be declared
by 4× 4 matrix (see [32, p. 68]).

As said in the introduction, I create basic hair geometry by interpolating the
hair guides. The hair guides are represented in the Stubble project as simple
polylines that are defined by the vertices through which the polyline go. I would
like to use a curve which could be defined by the same vertices as the hair guides
and still would resemble the same shape as the hair guide polyline. Therefore it
is an obvious choice to pick an interpolation curve, which passes through all the
vertices that defines it, rather than an approximation curve, which may not pass
through the vertices.

Many interpolation curves not only need vertices to define them, they also
need curve tangents at these vertices. This is a desirable effect for a 3d artist
since it gives her/him more control over the curve shape, however for a procedural
hair generation it means that it must supply more parameters for the curve. To
avoid generating the tangents I use the Kochanek-Bartels spline (see [2, p. 589–
593] for more information), which only needs the vertices and three other values
(tension, bias, continuity). The three values then control the behavior of the
curve tangents. To further simplify problem of defining the curve I use a special
type of the Kochanek-Bartels spline which is called the Catmull-Rom spline. The
Catmull-Rom spline is the Kochanek-Bartels spline with all three values set to
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zero, therefore vertices are all that is need to define the Catmull-Rom spline
(sometimes referred as the Catmull-Rom curve). Because of its simplicity, the
Catmull-Rom spline is one of the most used curves in Computer Graphics (along
with Bezier and NURBS curves).

As I have said, the Catmull-Rom spline is defined only by its vertices and
it passes through all of them. But this is only partly true. The first and the
last vertex are only reached by the curve if they are equal to the second and
to the one before the last, respectively. Position of the first and the last vertex
only influences the Catmull-Rom spline shape. Why they are exactly needed
will be more obvious in Section 2.2.8, where I will discuss how the Catmull-Rom
spline computes the curve tangents from the supplied vertices. For the sake of
simplicity, I will duplicate the first and the last vertex (see Figure 2.8), so the
Catmull-Rom spline will behave as a polyline, only it will be smoother. During
the hair generation I will usually ignore the duplicated first and last vertex (P0

and P6 in Figure 2.8), unless I need to compute directly with the Catmull-Rom
spline.

P0 = P1

P2
P3

P4

P5 = P6

P1

P2
P3

P4

P5

Duplication

Figure 2.8: The duplication of vertices P1 and P5 ensures the desired Catmull-
Rom spline behavior.

Of course defining a curve shape is not enough to create realistic hair. I also
need to select hair color, opacity and width. Since these parameters may change
along the curve length, I will define them for every vertex except the duplicated
ones and interpolate them between every two vertices (see Figure 2.9).

P2

P3

c2,o2

c3,o3w2

w3

+ =
Figure 2.9: Color ci, opacity oi and width wi are defined at the curve vertices
and interpolated in between.

Sometimes I will have to use a curve coordinate frame (i.e. s curve normal, s
tangent and s binormal at a defined position, see Figure 2.10) for some compu-
tations or as output to a renderer. I will also store the curve frame for the same
vertices as color, opacity and width.

The last parameter of the generated hair is its position on the model surface.
Not only is a root 3D position needed, but also a hair local coordinate frame
is required during hair generation. Do not confuse the hair local coordinate
frame (see Figure 2.11), which is one for each hair, with the curve coordinate
frame (see Figure 2.10), which is defined for each hair curve vertex separately.
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P2

P3

P4

N3
T3

B3

Figure 2.10: The curve frame defined at the vertex P3. The normal is denoted as
~N3, the tangent as ~T3 and the binormal as ~B3.

Furthermore, texture coordinates at the hair root position are stored. Finally I
also store the hair root position and the hair local coordinate frame for a mesh
rest position. The rest position of the model is the state of the model without any
transformations or deformations applied. Why all these parameters are necessary
will become clear in the following sections.

MODEL SURFACE

HAIR

N
T

B
HAIR ROOT

Figure 2.11: The hair local coordinate frame. The frame is defined by 3 perpen-
dicular vectors: the model surface normal ~N , the tangent ~T and the binormal
~B.

Note, that not all of these hair parameters are defined during a whole time of
hair generation, Figure 2.12 in Section 2.2.2 shows the lifetime of different hair
parameters.

2.2.2 Procedural hair generation pipeline

In this section I will describe the pipeline of the procedural hair generation I have
implemented. Figure 2.12 shows a diagram of the procedural hair generation
pipeline. The boxes represents individual steps that are responsible for creating
and changing the hair parameters described in the previous section. Furthermore,
Figure 2.12 shows a lifetime of the hair parameters and which pipeline steps
influence them.

Before I describe individual hair generation steps, I would like to mention here,
how user can influence them. As was said in the introduction, the generated hair
is interpolated from the hair guides, which are modeled directly by the user,
however this is not the only way the user can control the hair generation. Several
hair properties may be set that influence hair color, opacity, width and the shape
of hair curves (to avoid confusion I will address the properties that the user can
set as the hair properties and the hair vertices, normals etc. that are generated as

19



hair position

hair vertices

hair curve frame

color, opacity,
width

FOR EACH HAIR

Generate the root position of the hair

Determine the interpolation group and prepare the hair vertices

Determine the cut factor and remove vertices

Is the hair cut at its root?

Interpolate from the hair guides

Scale the hair

Apply noise on the hair curve shape

Remove degenerated vertices

Has the hair completely degenerated?

Select color, opacity, width

Transform the hair vertices to world space

Calculate the hair curve frame

Generate a strand of hair?Generate a strand of hair Generate a single fiber

YES

YES

YES NO

NO

GENERATED HAIR BUFFER

Figure 2.12: The procedural hair generation pipeline.

the hair parameters). These properties can be defined by a 2-dimensional texture
which is mapped on the surface model and therefore each individual hair can have
different properties. This answers the question why I need to remember texture
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coordinates of each hair root – I will use them to access the hair properties from a
texture. Furthermore, these textures may be modulated by a global value, which
enables the user to quickly change a hair property for all hairs. I will use the
following unified notification for hair properties:

• propertyT will denote a texture property and propertyT(u, v) the same
property evaluated at the hair root texture coordinates u, v.

• propertyG will denote a global property value (usually a texture modula-
tor).

I will mention each hair property when I will be talking about individual steps
of the hair generation pipeline.

Now I will only quickly describe the function of each step in the pipeline (the
boxes in Figure 2.12), but most of them will be mentioned again in more detail
in the following sections.

Generate the root position of the hair The root position of hair is generated
on the surface using the previously described sampling algorithm. As I have
mentioned in Section 2.2.1, not only is the 3D position of the hair root generated,
but also the hair local coordinate frame and more. See Section 2.2.3 for more
information.

Determine the interpolation group and prepare the hair vertices The
generator selects the interpolation group in which the currently generated hair
belongs. What are the interpolation groups will be discussed in Section 2.2.4,
however I can already mention here that each interpolation group tells among
other things how many vertices will represent every single hair from that group.

Determine the cut factor and remove vertices The user can define via the
hair property texture Cut MapT how much will each hair be cut. The value of
Cut MapT(u, v) for the currently generated hair is stored as the hair cut factor.
The hair cut factor value can go from 0, which means completely cut hair, to
1, which means that the current hair will not be cut at all. The hair cut factor
can also tell me how many hair vertices can be discarded from following pipeline
steps, since they do not influence the hair that remained after the cut. Cutting
the generated hair will be more discussed in Section 2.2.8.

Is the hair cut at its root? If the hair cut factor (described in the previous
paragraph) is equal to 0 I can discard whole hair and start with a generation of
next hair.

Interpolate from the hair guides This is one of the most important steps
in the pipeline. As its name suggests, it is responsible for the hair interpolation,
which is the basic element in determining a hair curve shape. See Section 2.2.4
for more details. One detail I have to mention here is that the hair interpolation
calculates the hair vertices in the hair local coordinate system. I will use them
in that coordinate system for several steps in the pipeline, until I convert them
to final world space coordinates.
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Scale the hair After the hair interpolation has given hair its primary shape,
I can apply some transformations on hair vertices. First of them is scaling, since
it is quite simple operation I will describe it here. Each of the hair vertices is
scaled by the scaletotal factor (by a scalar multiplication) The scaletotal factor has
two parts, a static and a random. The static part is calculated from the hair
properties as follows: scalestatic = ScaleG · ScaleT(u, v) and the random scale
is: scalerandom = 1− Random ScaleG · Random ScaleT(u, v) · ξ, where ξ is a
random number ∈ [0, 1]. scalestatic can increase/decrease hair scale unlimitedly,
since a value of ScaleG is not limited at all. On the other hand, Random ScaleG

is limited to the interval [0, 1], therefore scalerandom can only decrease hair size
by randomly downscaling it. The total scaletotal factor is then calculated as a
multiplication of scalestatic and scalerandom. As I have said before, hair vertices
are currently stored in the local hair coordinates, so the root of hair in the hair
local coordinates is (0, 0, 0) and therefore it is not influenced by scaling.

Apply noise on the hair curve shape Another step that influences the hair
vertices uses noise and several hair properties to create more realistically looking
hair. How exactly it is done is said in Section 2.2.5.

Remove degenerated vertices Some of the previous steps may have caused
that two vertices are equal (i.e. their position is the same). This is undesirable
for next steps and it could lead to wrong calculations, therefore I remove one
vertex from each two equal vertices.

Has the hair completely degenerated? If the previous step has removed all
hair vertices except one, the current hair has completely degenerated and can be
removed. The generator then immediately continues with a generation of next
hair.

Select color, opacity, width For this moment the generator has determined
the shape of the hair curve, so it focuses on selecting color, opacity and width of
the hair. See Section 2.2.6 for more details.

Transform the hair vertices to world space Before the last hair parameters
are calculated, the generator transforms the hair vertices from the hair local
coordinate system to a world space coordinate system. I do this because it is
much easier and efficient to output a bunch of hair curves to a renderer without
the need to tell the renderer how to transform them. However if the user wishes to
generate strands of hair (see following paragraphs), the transform is not applied
at this moment. The reason for this will become clear in Section 2.2.7.

Calculate the hair curve frame The generator still has to calculate the
hair curve frame (i.e. a normal, a tangent and a binormal at each hair vertex).
Tangents are generated first and are used to define the curve normals, which will
be later output to the renderer. The binormals are calculated only if the user
wishes to generate strands of hair (see next paragraph). The hair curve frame
calculation is described in more detail in Section 2.2.8.
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Generate a strand of hair? The user can specify whether the hair generator
will generate only single fibers of hair or whole strands. Depending on this, one
of the two following steps will be executed. What exactly I mean by hair strand
is described in Section 2.2.7.

Generate a single fiber The user wants to generate only single fibers, so
the generator takes the already calculated hair parameters, executes some final
computations and outputs the hair to the buffer where it awaits for rendering.
For more information about the final stage see Section 2.2.9.

Generate a strand of hair At this step the generator takes the so far gen-
erated single hair and creates from it a whole strand of hair. This process is
described in Section 2.2.7. After that for each single fiber from the strand, the
generator transforms its vertices to world space coordinates, calculates the hair
curve frame and executes the final stage mentioned in the previous paragraph.

Please note, that the actual implementation of the hair generator has some
minor changes from the pipeline described here (mostly for performance issues).
I don’t mention these details here to keep the pipeline description as simple as it
can be. The following sections describe details that were omitted from this brief
description of the hair generation.

2.2.3 Determining hair root positions

Determining hair root positions can be divided to two parts. In the first part,
the mesh sampling algorithm is executed and it yields a sample. The sample
consists of a triangle identifier and the barycentric coordinates of the sample in
the triangle. In the second part, the generator calculates from the sample the
hair root position along with the hair coordinate frame (see Figure 2.11, texture
coordinates and on the current state of the mesh and on the rest position mesh.
To ensure that the hair roots are generated on the same surface positions for
every animation frame (the hair generation must be executed again for every
frame), the mesh sampling algorithm uses the rest position mesh as input along
with Density MapT which defines hair distribution on the mesh surface. The
hair roots will of course undergo same transformations and deformations as the
animated mesh; however each of them will always be in the same triangle and at
the same barycentric coordinates during the whole animation.

The first part, generating the sample, is quite clear, so let’s move to discuss
the second part. There are two possible ways how the second part of this mesh
generation step will be executed. Which will be used depends on whether the
user wants to use mesh displacement. Mesh displacement is a method to add
additional details to model geometry during render time. These details are defined
by a single channel texture, which is mapped on the surface (see Figure 2.13).
Each point of the model is then displaced by a factor given by the texture along the
surface normal at the point1. So if mesh displacement is used, the generator needs

1Note that there is also vector displacement which can displace the point along an arbitrary
vector given by any three channel texture, however my generator does not support this type of
displacement yet.
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to recalculate a hair root position according to it as described in Section 2.2.3,
otherwise it can use more simple computations described in Section 2.2.3.

+ =

Mesh Texture Displaced mesh

Figure 2.13: The simple example of mesh displacement. The mesh on the left is
displaced by the texture in the middle. The displaced mesh can then be seen on
the right.

Standard root position calculation

The sample generated by the mesh sampling algorithm contains an identifier of
the triangle on which the sample lies. The generator first selects the triangle
vertices from the current state of the mesh. For each triangle vertex its 3D
world space position, surface normal, surface tangent and texture coordinates are
selected. Then I can easily calculate the root position, the normal etc. using
following formula:

rootvar = sampleu · v0var + samplev · v1var + (1− sampleu − samplev) · v2var
where vivar represents ith vertex position, normal etc. and sampleu, samplev are
the barycentric coordinates of the generated sample.

To get the hair local coordinate system, the binormal must be calculated and
all three vectors (the normal, the binormal, the tangent) must be perpendicular
and have unit size. To achieve this, the normal is normalized first and then the
tangent is made orthogonal to the normal using formula:

tangent = tangent− (tangent · normal)normal

where · represents a scalar multiplication. After the tangent is normalized, the
binormal is calculated as binormal = tangent × normal, where × represents a
vector multiplication.

Finally the root position and the hair local coordinate system based on the
rest position mesh are calculated the same way as the properties based on the
current state of the mesh.

Mesh displacement

Before a displaced mesh is handled, the standard root position calculation as
described in the previous section is executed. The non-displaced position and the
coordinate frame of hair will be used to calculate the displaced position. The
hair root position on the rest position mesh is never displaced, since it is only
required for some internal calculations independent on mesh displacement.

There are two things that must be done when hair is generated on the dis-
placed mesh:
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1. First, the root position P ′ of hair in 3D space is calculated. This is quite
easy, all that is required is to get the position P and the normal N on the
non-displaced mesh and evaluate the texture, which defines the displace-
ment at the texture coordinates corresponding to the position P . Let’s
assume the displacement texture D returns float value D(u, v), then P ′ is
calculated as: P ′ = P +D(u, v) ·N .

2. The hair local coordinate frame on the displaced mesh, defined by the nor-
mal N ′, the tangent T ′ and the binormal B′, must also be calculated. Let’s
assume N ′ is already computed, then the calculation of B′ and T ′ is the

same as in the standard root position calculation: T ′ = ̂(T ·N ′) · (T −N ′)
and B′ = T ′×N ′, where T is the tangent on the non-displaced mesh and V̂
represents normalization of a vector. All that is needed now is to calculate
N ′. The calculation of a shading normal on a mesh surface with applied
bump-mapping described in [31] may be used for this purpose.

Before the normal N ′ is calculated, the generator must compute partial deriva-
tives of a normal and a position on each mesh triangle with respect to texture
coordinates.

Formula from [31, p. 142–143] describes the calculation of the position partial
derivatives: [

∂P/∂u
∂P/∂v

]
=

[
u1 − u3 v1 − v3
u2 − u3 v2 − v3

]
·
[
p1 − p3
p2 − p3

]
where pi is the ith vertex position, ui and vi are the texture coordinates at pi.
The calculation of the normal partial derivations is similar.

Since N ′ can be defined as N ′ = ∂P ′/∂u × ∂P ′/∂v (u, v are texture coor-
dinates), therefore ∂P ′/∂u and ∂P ′/∂v must be calculated. Using the formula
P ′ = P + D ·N and the chain rule, ∂P ′/∂u can be computed (and ∂P ′/∂v like-
wise) as:

∂P ′

∂u
=
∂P

∂u
+
∂D(u, v)

∂u
N +D(u, v)

∂N

∂u
≈ ∂P

∂u
+
D(u+4u)−D(u, v)

4u

N +D
∂N

∂u

The explanation of these formulas can be found in [31, p. 494–495]. To compute
derivatives of D(u, v) I use the following formula:

D(u+4u)−D(u, v)

4u

=
D(u+ width−1)−D(u, v)

width−1

where width is the width of the displacement texture D in texels (D(u,v+4v)−D(u,v)
4v

is calculated likewise).

2.2.4 Hair interpolation

As I have already mentioned several times, the most important part of the hair
generation is interpolation from the hair guides. Since the generated hair and
each hair guide are defined by vertices, the generator can interpolate the hair
by interpolating the hair vertices from the vertices of the hair guides. If the
hair has the same number of the vertices as each hair guide, the generator can
easily interpolate only the corresponding vertices: the first hair vertex will be
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interpolated only from the first hair guides vertices, the second hair vertex from
the second hair guides vertices and so on. This makes the hair interpolation lot
easier; however it limits the user in selecting the number of the hair vertices.
To remove this limitation and gain other advantages, the generator can use the
interpolation groups.

Interpolation groups

Both the hair and the hair guides can be divided to several interpolation groups.
The hair from one interpolation group will then be interpolated only from the
hair guides from the same interpolation group. The first advantage of using the
interpolation groups is that the user can specify the number of the vertices for
the hair and the hair guides per each interpolation group. This comes handy
when for example the user wants to model a horse with millions of short hairs
over the horse body, but with long hair on its tail and head. To represent short
hairs, few vertices per hair are enough, but for the long hair it is necessary to use
many vertices for smoother control over hair curve shapes. Using many vertices
for both short and long hair would unnecessarily increase the time spend on hair
generation.

Another huge advantage of using the interpolation groups is creating dis-
continuities in otherwise smooth interpolation. Now imagine the user wants to
generate hair on human head and he would like to create a ‘hair parting’. He
will use the tools from the Stubble software to brush the hair guides on the left
side of the head to left and the hair guides on the right side to right. However
if the user does not specify the interpolation groups, the hair growing between
the left and the right guides will be interpolated from both and therefore the
‘hair parting’ will not be created. To create the ‘hair parting’, the user must
create discontinuity by specifying two interpolation groups, one for the left side
of the head and one for the right side. See Figure 2.14 for a demonstration of
interpolation groups.

(a) Without the interpolation groups (b) With the interpolation groups

Figure 2.14: On the left image the ‘hair parting’ was created without the use of
the interpolation groups and in the right image the same ‘hair parting’ was made
with the use of two the interpolation groups.

The most easier and flexible way to define the interpolation groups is to use a
texture, let’s denote it as InterpolationGroupsT. The InterpolationGroupsT
texture is mapped on the model surface and each color from this texture then
defines one interpolation group. The user interface of Stubble also gives the us-
er the ability to choose the number of the vertices for each interpolation group.
When the hair generator wants to know, in which interpolation group the hair
is, it only has to evaluate InterpolationGroupsT at the texture coordinates
corresponding to the hair root position.
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Interpolation method

Now I have to determine how exactly I will interpolate the hair vertices. Let’s
assume that I have a function hairi(x). This function tells me a position of the
ith hair vertex for hair positioned at the point x (remember that I interpolate
each ith vertex of hair alone, so I have a special function for each vertex index
i). I will define the hair position x as the hair root position (or the hair guide
root position) on the mesh surface in its rest position state, therefore the hair
position x will remain the same during animation. Now my function hairi(x) is
defined only for x where any hair guide root lies, for easier notation let’s put all
x for which the function hairi(x) is defined to the set Gi. It is easy to observe
that ∀i, j : Gi = Gj, therefore I will denote G = Gi. For x /∈ G I will have to
use interpolation. Since the positions x ∈ G are more or less randomly scattered
through the 3-dimensional space (in fact they all are from the model surface,
however it is hard to use such coherency, so I will just assume they are randomly
scattered) and so are the positions at which I want to evaluate the function, I
need to use a special type of interpolation called Scattered Data Interpolation.
Scattered Data Interpolation is able to give me a value of my hairi(x) at any x
based on interpolation from the few defined hairi(x) values.

There are several ways to interpolate from scattered data, some of them are
described in [3] and [16]. However most of these methods are very slow and also
hard to implement in three dimensions. Here I will only describe three methods
that could be possible used for my hair generator.

Nearest neighbor The simplest method for interpolating scattered data is
called nearest neighbor. It is not even interpolation in correct sense, since for
any x /∈ G it only picks the closest x′ ∈ G and defines the hairi(x) value as
hairi(x) = hairi(x

′). This method creates horrible discontinuities everywhere,
not only where the user has specified by the interpolation groups.

Inverse distance weighting This method was first published by Shepard
in [36]. To evaluate hairi(x) for x /∈ G it first takes all x′ ∈ G and calculate
for each of them weight based on the distance to x. Then it interpolates hairi(x)
from all hairi(x

′), x′ ∈ G weighted by the calculated weights. The basic version
then looks like this:

∀x′ ∈ G : w(x′) =
1

dist(x, x′)p

hairi(x) =
∑
x′∈G

w(x′)hairi(x
′)∑

x′∈Gw(x′)

The symbol dist(x, x′) represents a distance between x and x′ and p is an user
parameter. Greater values of p assign greater influence to x′ closest to x and
for p approaching infinity, this method will behave as the aforementioned nearest
neighbor method.

The inverse distance weighting works quite well, however it can be rather slow
if I would calculate the value of hairi(x) from all hairi(x

′), x′ ∈ G. Therefore it
is better to use an modified version (see [3]), which incorporates only few closest
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x′ ∈ G that are within a sphere S(x, r) of a radius r with a center at x:

∀x′ ∈ G : w̃(x′) =

(
r − dist(x, x′)
rdist(x, x′)

)2

hairi(x) =
∑

x′∈S(x,r)

w̃(x′)hairi(x
′)∑

x′∈S(x,r) w̃(x′)

This modification makes inverse distance weighting very fast and still retains its
quality.

Natural neighbor The last method I describe first selects the domain D for
which I want to define hairi(x) and splits it to the Voronoi cells V (xj) according
to the vertices xj ∈ G. The Voronoi cell V (xj) is defined as:

∀xj ∈ G : V (xj) = {x ∈ D|d(x, xj) ≤ d(x, xk)∀xk ∈ G}

See [4] for more information about Voronoi diagrams (the Voronoi diagram is a
set of Voronoi cells). After the Voronoi cells V (xj) were calculated, I can evaluate
hairi(x) for x /∈ G. First I calculate another Voronoi cell V (x) for the point x:

V (x) = {y ∈ D|d(y, x) ≤ d(y, xj)∀xj ∈ G}

Then I select all xj ∈ G for which V (xj) ∩ V (x) 6= ∅ and put them to the set N .
Finally I calculate weights for xj ∈ N and evaluate hairi(x):

∀xj ∈ N : w(xj) =
vol(V (xj) ∩ V (x))

vol(V (x))

hairi(x) =
∑
xj∈N

w(xj)hairi(xj)

where the function vol(z) returns a volume of z. Since
∑

xj∈N w(xj) = 1, nor-
malization is not required. This method has several improvements which can be
found in [3]. This method gives great results, however is slow and hard to im-
plement (especially in higher dimensions than 2) compared to the previous two
mentioned.

Figure 2.15 shows a comparison of interpolation methods mentioned here. It
is obvious that the best results are from natural neighbor method, however since
it is hard to implement and very slow compared to the other two methods, I
choose inverse distance weighting method, which still gives good results and is
also very fast.

Interpolation details

I have picked inverse distance weighting method to interpolate hair; however there
are still some unresolved issues. First of all, inverse distance weighting method
selects several closest hair guides in a sphere of a radius r to interpolate hair. In
order for this to work, the user would have to choose the radius r. This radius
would vary for each scene and hair guides density. Therefore I will rather have the
user to pick the integer number n = Interpolation SamplesG, which will tell

28



Defined values Nearest neighbor
Inverse distance 

weighting Natural neighbor

Figure 2.15: The comparison of nearest neighbor, inverse distance weighting and
natural neighbor methods for colors on a 2 dimensional plane. The two left-
most images shows defined values for the interpolated function (top has 5 values,
bottom 50 values) and the images right of them shows different methods results.

the generator how many hair guides it should use to interpolate a single hair. The
generator then selects the n closest hair guides (let’s denote them as x′ ∈ Cn(x))
to the currently interpolated hair and calculate the radius r for inverse distance
weighting method as:

r = maxx′∈Cn(x)dist(x, x
′)

Since setting the radius r like this will result in zero contribution of the farthest
hair guide, I rather select the n + 1 closest hair guides (although this does not
ensure that n hair guides will have non-zero contribution).

Since x used as an input to evaluate the function hairi(x) is actually the hair
root position on the model surface, it would be preferable to calculate dist(x, x′) as
an geodesic distance between x and x′ on the model surface. However that would
be complicated and very time consuming, so instead I use Euclidean distance in
a 3-dimensional space.

During the interpolation I will need to quickly search for the n closest hair
guides. To do that I build a KD-Tree over the hair guides roots. KD-Tree is a spa-
tial data structure which recursively divides space to two nodes by a 2-dimensional
plane aligned with one of the three coordinates. The division continues until leaf
nodes in a hierarchy contains limited number of elements (in this case the hair
guides roots) or the recursion has reached a certain level. KD-Tree then can be
quired for the n closest points (the hair guides) from some arbitrary point x.
See [19] for more information about KD-Trees and for a description of the query
algorithm. Since I use the interpolation groups, I will have a different KD-Tree
for each group, so I can easily search for the closest hair guides from a desired
interpolation group.

One final problem that I have to discuss here is whether to use the world
coordinates of the hair vertices or the hair local coordinates of the hair vertices
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during the hair interpolation. It would make sense to use the world coordinates,
since the hair and the hair guides local coordinates systems will be different,
however there are at least two major problems with using the world coordinates
during the interpolation:

• First, when I have for example an ear of an animal, it has hair on both
of its sides. Since an ear may be quite thin, the hair on the one side may
be interpolated from the hair guides located on both sides of the ear. The
hair guides from the other side will surely point in nearly opposite direction
than the guides on the same side as the hair and therefore interpolated hair
geometry will not be correct.

• The other problem is that when the mesh on which hair grows is deformed,
it will change the world coordinates of the hair guides vertices and therefore
the interpolated hair will be also deformed, which is not correct behavior.
The interpolated hair should retain its shape, when the mesh underneath
it is deformed.

These two problems can be easily solved by interpolating the hair vertices in the
local coordinates systems. Furthermore if the hair interpolation is more consid-
ered as determining the shape of hair curves rather than interpolating individual
vertices, using different hair and hair guides local coordinates systems is actually
correct.

Figure 2.16 shows the final algorithm for the hair interpolation.

1. Select the closest hair guides from hair with the same interpolation group.

2. Among the closest hair guides choose the farthest one and use its distance from
the hair root as the sphere radius.

3. Calculate weights for the selected hair guides.

4. Select the vertices of the selected hair guides.

5. For i = 0, .., (the number of hair vertices)− 1

(a) Calculate the hair ith vertex using inverse distance weighting from the ith
vertices of the selected hair guides.

Figure 2.16: The final algorithm for the hair interpolation.

2.2.5 Influencing the hair curve by noise

After the generator has determined initial geometry of the currently processed
hair by interpolating from the nearest hair guides, it scales the hair vertices
according to the user parameters (as described in Section 2.2.2) and then it applies
noise to the hair vertices, which is the topic of this section.
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Before the noise is applied there is nearly no random element present in hair
geometry (only random scaling) and therefore the hair may look unnatural. Of
course the hair guides can be modeled is such way that they appear realistic,
however there is usually much more final hairs interpolated from the hair guides
than the hair guides themselves, so the realism of the hair must be delivered by
another step of the hair generation pipeline other than the hair interpolation. I
use two types of deformations, which use noise, to improve hair realism: Frizz
and Kink. Compare the picture of the generated hair with no noise and the image
of the hair with added the Frizz and Kink deformations in Figure 2.17.

(a) Hair with no noise (b) Hair with noise

Figure 2.17: The generated hair with no noise applied (left) and the same rendered
hair with the Frizz and Kink deformations applied (right).

Before I describe these two deformations, I will first talk about noise itself.

Noise

In general, noise is usually a smoothly varying function Rn → [−1, 1]. The func-
tion values appear random and have no obvious repetition. One huge advantage
of the noise function compared to a random generator, is that it is smooth, so
for two close input values the noise function returns two close output values. In
my case it means that two hairs that are close to each other will be deformed in
similar manner.

In my generator I use the noise function introduced by Ken Perlin (see [30]).
This function is known as Perlin noise. The function uses lattice build over Rn

(I will always use n = 3) and for each integer value (x0, . . . , xn−1) it returns a
gradient vector (these vectors are found by indexing to a precomputed table of
integer values). When the user supplies a parameter to Perlin noise, it selects
2n nearest lattice points and the corresponding gradient vectors. After that it
calculates weights of the 2n nearest lattice points as the scalar multiplication of
the gradient vector and the vectors from the corresponding lattice point to the
user input parameter (see Figure 2.18).
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Figure 2.18: The scalar multiplication of the gradient vectors (green lines) with
the vectors from the lattice points to the user input parameter (dotted lines) gives
the influence of each gradient to a noise value at the user input parameter (red
dot).

Finally a value of the noise function is interpolated from these 2n weights
based on the user parameter position among the 2n nearest lattice points. For
more details see the two aforementioned sources. Figure 2.19 shows an example
of Perlin noise on a sphere.

Figure 2.19: A rendered sphere with a color defined by a 2-dimensional variant
of Perlin noise (texture coordinates were used as an input).

In the hair generator I use a special type of Perlin noise function which returns
a 3-dimensional point instead of one value. It is defined as:

noise3D(~x) = [noise(~a0 +m0~x), noise(~a1 +m1~x), noise(~a2 +m2~x)]

where noise is the original Perlin noise function and ~ai,mi are some values that
shifts and scales the original user input. ~ai,mi depends on an implementation
of the noise3D function, in my generator I use the noise3D from the 3Delight
library.

Frizz

Now that I have talked about noise functions, I can begin to describe the first
deformation that uses it. As the name of Frizz suggests, it causes the hair curve
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to bend in randomly chosen directions. The hair bending is defined for a whole
hair fiber, so the generator needs to ask the noise3D function once for every hair.
In nature hair close to each other is frizzed in nearly the same way. I get this
for free from the Perlin noise function, I only have to make sure that I generate
a similar input for neighboring hair. Since I also want the noise to be consistent
with frame animation, I choose as input to the Perlin noise function the position
of the hair root on the rest position mesh.

Sometimes the user wants to change Frizz much slowly over the mesh, so the
hair looks all bend in the same direction, other time she/he wants more noisy
hair. This can be simply controlled by a frequency of the noise3D function (see
Figure 2.20). Since I use the hair 3D root position as the input, I can control the
frequency separately in 3 dimensions. The user can specify the frequency for all
three dimensions using both the global property Frizz ? FrequencyG and the
texture property Frizz ? FrequencyT, where the ? can be X,Y or Z.

(a) Frizz X Frequency = 0.2 (b) Frizz X Frequency = 2

Figure 2.20: A demonstration of Frizz X Frequency property influence on the
hair.

The final noise function input X component is calculated as:

input.x = Frizz X FrequencyG · Frizz X FrequencyT(u, v) · hairRoot.x

where hairRoot.x is the coordinate X of the hair root position on the rest position
mesh in the world space coordinates. The input Y and Z components are com-
puted likewise. The noise3D then returns the 3-dimensional point P ∈ [−1, 1]3

which I will use as the vector ~F and bend the hair in its direction (in fact, the
implementation of noise3D I use returns P ∈ [0, 1]3, so I have to scale it like this :
P ′ = 2(P−0.5) in order to get P ′ ∈ [−1, 1]3 and therefore F will go in all possible

directions). It would make sense to normalize ~F , however since normalization is
costly and it made nearly no difference in my tests, I don’t use it.

The user can also choose how much is each hair influenced by the vector ~F at
a hair root and at a hair tip (see Figure 2.21). The corresponding properties are
Root FrizzG, Root FrizzT, Tip FrizzG, Tip FrizzT. From these I compute
two scalar values that influence the hair bending:

frizzroot = Root FrizzG ·Root FrizzT(u, v)

frizztip = Tip FrizzG ·Tip FrizzT(u, v)

Now I want to influence each hair vertex (except the hair root vertex) by ~F ,
frizzroot and frizztip, so the resulting hair curve looks smoothly frizzed. That
could be achieved by creating the vector function frizz(t), that excepts the t

parameter of the hair curve and returns scaled vector ~F . The t parameter has
value 0 at the hair root and value 1 at the hair tip and between them is smoothly
changing along the curve length. More about curve parameters can be found in
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(a) Root Frizz = 3 (b) Tip Frizz = 3

Figure 2.21: Root Frizz and Tip Frizz control the amplitude of Frizz at the
hair root and at the hair tip, respectively.

Section 2.2.8 The scaling of the vector ~F depends on how close is the t parameter
to the tip or the root of the hair and on the frizzroot and the frizztip number. I
can’t use simple linear function, because then the generated hair would not look
natural. By trial and error I have determined the function frizz(t) as follows:

frizz(t) = ~F ·min (frizzroot · 4(t− t2) + frizztip · t2,max (frizzroot, frizztip))

where the minimum function makes sure that non of the hair vertices will be
frizzed more than is the maximum frizz defined by max (frizzroot, frizztip).

Frizzing the hair can be used for more than just a simple random bending of
hair. If the hair is frizzed with slowly changing noise, it looks like breeze playing
with hair or grass. Therefore I will upgrade the Frizz deformation noise to have
a dynamic part. I will keep the function frizz(t) as it is, but instead of F I will
use the new vector Fcombined, that will be the combination of F and the vector
Fdynamic, which will dynamically change during an animation.

As I have said, I would like to slowly change Frizz for all hair. Since I use
a noise function that receives a 3D point (or a vector) as input, the user needs
to supply a vector through property Frizz Anim DirectionG, which will de-
fine a direction of a noise change. Also I would like to know how fast noise
is changing during an animation time. That is defined by the hair property
Frizz Anim SpeedG and its texture variant Frizz Anim SpeedT. To com-
pute Fdynamic I use the noise function noise3D, which input component X is:

input.x =Frizz X FrequencyG · Frizz X FrequencyT(u, v)·
· dynamic.x · hairRoot.x

which is similar to the input used to compute F except dynamic. dynamic is a
3-dimensional vector and represents the noise change in time. It is calculated as:

dynamic =Frizz Anim SpeedG · Frizz Anim SpeedT(u, v)·
· time · Frizz Anim DirectionG

where time represents the current animation frame time.
Now I only need to merge F and Fdynamic together. For this purpose I have an-

other two hair properties associated with frizz, Frizz AnimG and Frizz AnimT.
From these two I calculate animationFactor:

animationFactor = Frizz AnimG · Frizz AnimT(u, v)

Finally I can compute the vector Fcombined as:

Fcombined = (1− animationFactor) · F + animationFactor · Fdynamic.
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It can be noticed that Frizz can make the hair grow larger. This is quite
annoying in the direction along a surface normal at the hair root position, so I
have made a little fix. I keep the X,Y components of Fcombined as they are, but
I will change the Z coordinate like this: Fcombined.z = −‖Fcombined.z‖, where ‖a‖
represents an absolute value of a. Since the Z coordinate base vector corresponds
to the surface normal, it will cause that the hair will bend more to the surface.

So now that I have completely defined Frizz as the vector function frizz(t),
the generator will influence each hair vertex p (with the exception of the hair
root) as p = p + frizz(t), where t is the curve parameter at the hair vertex p
(curve parameters are explained in Section 2.2.8.

Kink

Kink also adds some noise to hair geometry, however in a different way than
Frizz. The major difference in the computation of Kink and Frizz, is that in Kink
the generator calculates the noise vector for each hair vertex separately, therefore
the resulting hair looks more crimped or kinkier. Another difference is, that Kink
does not have the dynamic part (i.e. does not change during animation), since
changing Kink would look more like each hair vibrating (which is really hard to
assign to some effect in reality).

Since I want a different noise vector for every hair vertex, I will not use the
hair root position as a noise input, but I will use the current value of each hair
vertex position in the world coordinates as the input. The hair vertices will be
transformed to the world coordinates using the local coordinate system based on
the rest position mesh. The transformed vertices will only be used as the input
for the noise function, the noise vectors will be applied on the non-transformed
hair vertices.

As with Frizz I will use the hair properties to control noise frequency (see
Figure 2.22). These properties are Kink ? FrequencyG and the texture prop-
erty Kink ? FrequencyT, where the ? can be X,Y or Z. So the final input for
the ith hair vertex noise vector Ki is calculated as (only a calculation of the X
coordinate is shown, Y and Z are similar):

inputi.x = Kink X FrequencyG ·Kink X FrequencyT(u, v) · hairV ertexi.x

where hairV ertexi.x is the coordinate X of the ith hair vertex in the world
coordinates.

(a) Kink X Frequency = 0.2 (b) Kink X Frequency = 2

Figure 2.22: A demonstration of Kink X Frequency property influence on the
hair.

The same way I control the amplitude of the noise (a scaling of a random
vector) in Frizz deformation, I do it in Kink (see Figure 2.23). The hair properties
Root KinkG, Root KinkT, Tip KinkG, Tip KinkT tell me how much should
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be the random vectors scaled. By combining the texture and the scalar properties
two scalar values are derived: kinktip and kinkroot. Since I use a different noise
vector for each vertex, I will have a different function that generates the noise
vector for each hair vertex. This also means I can use a linear function for scaling
the noise vectors, which I could not use in Frizz. The final vector function for
the ith vertex is:

kinki(t) = Ki · ((1− t) · kinkroot + t · kinktip)

(a) Root Kink = 3 (b) Tip Kink = 3

Figure 2.23: Root Kink and Tip Kink control an amplitude of Kink at a hair
root and at a hair tip, respectively.

Finally I influence each hair vertex p by the corresponding vector function:
pi = pi + kinki(t), where t is the curve parameter at the vertex pi position (see
Section 2.2.8). In Figure 2.24 you can see the difference between the Kink and
Frizz deformation.

Figure 2.24: In the left image you can see the hair influenced only by Frizz and
in the right one I have the hair with only applied Kink.

2.2.6 Hair color and other parameters

This section talks about selecting color, opacity and width of a single hair. As I
have said in Section 2.2.1 about hair representation, these hair parameters may
be defined for each hair vertex; however to make realistically looking hair, it is
enough to set these three hair parameters at the hair root and at the hair tip
and linearly interpolate them to each hair vertex. The interpolation is done just
before the generator output hair to a rendering buffer.

First I will talk about a color parameter. The generator receives the hair color
from the user in RGB color space and a renderer (all of the currently supported
ones) also expects RGB color as input. It would seem logical to keep the color in
RGB, but then I would have to interpolate in RGB color space, which is not very
good. For example if I interpolate between yellow color and blue color in RGB
space, I am going to lose saturation as I get closer to a middle and then start to
gain it again, when I get closer to yellow (see Figure 2.25).This is unnatural and
therefore I convert the color to HSV color space, in which I interpolate.

The selected colors for the hair root and the hair tip are stored in HSV color
space and converted back in RGB after they are interpolated to each hair vertex.
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RGB HSV

Figure 2.25: An example of a color interpolation in RGB color space and HSV
color space.

Interpolating in HSV color space is of course not an ideal solution, but I think it
is better than interpolating in RGB space. To convert colors from HSV to RGB
color space and back I use methods described in [38]. Both RGB and HSV colors
are stored as three scalar values, each RGB component and also the saturation
and the value component of HSV is from [0, 1], but hue is an angle so its value is
from [0◦, 360◦]. More about RGB and HSV color spaces may be found in [38].

Since hue is an angle, I have to be careful while interpolating it. I have to
choose the shortest route on a circle between two hues I am interpolating. From
now on I declare, that a counter-clockwise direction represents a decreasing of the
hue angle and clockwise represents an increasing of the hue angle. The counter-
clockwise distance ccw of hue1 and hue2 is calculated by:

ccw = hue1 ≥ hue2 ? hue1 − hue2 : 360 + hue1 − hue2

and the clockwise distance cw:

cw = hue1 ≥ hue2 ? 360 + hue2 − hue1 : hue2 − hue1

where ? and : represents the standard c language ternary operator. When I have
calculated ccw and cw, I choose which is shorter and interpolate hue:

• cw ≤ ccw: hue = hue1 + t · cw

• cw > ccw: hue = hue1 − t · ccw

where t is the interpolation parameter. After this calculation it may not be true
that hue ∈ [0, 360], but I can fix that by adding or subtracting 360 from hue.
Since the only difference between two possible interpolation calculations is that
cw is added and ccw is subtracted, I can easily interpolate hue like this:

huedist = cw ≤ ccw ? cw : −ccw

hue = hue1 + t · huedist.

Because I use HSV color space, I can apply some perturbation of hue, satura-
tion and value to a hair color. I calculate a random shift in hue (hueShift) like
this:

hueShift = Hue VariationG ·Hue VariationT(u, v) · 2(ξ − 0.5)

where Hue VariationG and Hue VariationT are the hair properties supplied
by the user and ξ is a random number from [0, 1].
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The hue variation property Hue VariationG can have value from [0, 180],
however formula 2(ξ − 0.5) ensures that hueShift ∈ [−180, 180] and therefore
hue can perturbate in both directions. The same way I calculate a random shift in
value (valueShift) and in (saturationShift), with use of the Value VariationG,
Value VariationT, Saturation VariationG and Saturation VariationT hair
properties. The resulting valueShift and saturationShift can be any value from
[−1, 1].

Before I can apply these shifts, I have to first select non-shifted hair colors.
There can be two types of the hair, which differ by the hair color. First is the
normal hair, which color is defined at the root and at the tip. But there is also
the mutant hair, which is defined by a single color all over the hair curve. The
mutant hair may represent for example gray human hair.

To choose whether the hair is normal or mutant I will use a random generator
and some hair properties, that define a probability of the mutant hair occurrence.
The formula to determine whether the hair is mutant is:

ξ < (Percent Mutant HairG ·Percent Mutant HairT(u, v) · 1

100
)

where ξ is a random number (ξ ∈ [0, 1]) and Percent Mutant HairG and
Percent Mutant HairT are the hair properties defined by the user. The hair
property Percent Mutant HairG can have any value from [0, 100], so I have to
transform it to [0, 1] by dividing with 100. From this formula it is immediately
clear, that hair is mutant with the probability of

Percent Mutant HairG ·Percent Mutant HairT(u, v) %

Now if the hair is mutant, the root and the tip of the hair will have the
same color. The color is calculated as a mix of two colors supplied by the user
Mutant Hair ColorG and Mutant Hair ColorT(u, v). The two colors are
mixed simply by a component-wise addition. After I have selected the hair color,
I can convert it to HSV color space and apply the hue, value and saturation shifts.

The hue shift is applied as follows (and likewise for value and saturation
shifts):

hue = hue− hueShift

After the shifts I have to make sure, that hue stays in [0, 360] by adding or
subtracting 360 and I also have to clamp value and saturation to stay in [0, 1].
Since the root color and the tip color are the same, no interpolation of color will
be done.

If the hair was not selected as mutant, I pick different colors for the tip and
the root of the hair. These colors are defined by the self-explanatory properties
Root ColorG, Root ColorT, Tip ColorG and Tip ColorT. Then I apply the
same steps as in the case with the mutant color with the difference, that root and
tip colors are mixed, converted and shifted separately. Since the root color and
the tip color may differ, I have to calculate huedist as specified above and store it
until I use it during the color interpolation.

Finally I am done with the hair colors and I can select the opacity and width
of the hair. Both the opacity and the width are defined by the user properties
that define the value at the hair root and at the hair tip. The opacity of the root
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is calculated as:

Root OpacityG ·Root OpacityG(u, v)

The tip opacity is calculated likewise. The width of root is then:

Root ThicknessG ·Root ThicknessG(u, v)

and the value for the hair tip is calculated likewise.
The selected color, width and opacity for both the tip and the root of the

current hair and huedist are stored for later use. The interpolation of these pa-
rameters to the hair vertices is described in Section 2.2.9.

2.2.7 Hair strands

(a) Single hairs (b) Hair strands

Figure 2.26: The difference between single hairs and hair strands consisting of 5
fibers.

This section describes the generation of the hair vertices of a single fiber in a
hair strand (see Figure 2.26 ). The number of fibers in each hair strand is defined
by the user property Multi Strand CountG. The hair I have generated so far
(let us refer to it as the main hair) will not be thrown away, since I will need its
hair vertices and its curve frame (see Section 2.2.8) to create each single fiber of
the hair strand. In other words, I want the main hair to influence the shape of the
hair strand. In order to achieve this, I put each fiber vertex Pi on a plane defined
by the main hair vertex PM

i and by the corresponding main hair curve normal
NM

i and the binormal BM
i as shown in Figure 2.27. I will denote this plane as

ρi. For this to work, each fiber has to have the same number of the vertices as
the corresponding main hair. For each fiber vertex Pi I need to determine its
position on ρi. Instead of using NM

i and BM
i as a position coordinate frame, I

will use the distance di between Pi and PM
i and the angle ϕi between NM

i and
the vector Pi−PM

i (see Figure 2.28), since it will allow me better control over the
fiber shape. Each fiber will be generated with the initial distance d ∈ [0, 1] and
the angle ϕ ∈ [0, 2π], from which I will calculate the distance di and the angle
ϕi of every fiber vertex Pi on the plane ρi. The initial d and ϕ differ for each
fiber and are generated by uniformly sampling a unit disc (this unit disc might
be deformed into ellipse, as will be discussed later). To uniformly sample a unit
disc I use the concentric sampling described in [31, p.665–667].

The hair properties defined by the user will influence the overall shape of the
hair strand by indirectly controlling a computation of the fiber parameters di and
ϕi. Texture hair properties will be always evaluated at texture coordinates of
the main hair root, since texture coordinates at the fiber root position are not
defined. First I will start with a description of those hair properties that control
the distance parameter di.
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Figure 2.27: The black polyline represents the main hair curve, the green lines
are the planes ρi. The red and the blue polylines represents fibers from the hair
strand.

B

N

P

φ
d

Figure 2.28: This image represents one ρi plane. B and N are the binormal and
the normal of the main hair curve. The blue point P is the generated fiber vertex,
with its distance d and its angle ϕ.

The hair properties controlling the distance parameter di are Tip SplayG,
Center SplayG, Root SplayG and their texture versions (see Figure 2.29).
These properties specify the distance di on the planes ρi defined by the main
hair tip vertex, the center vertex and the root vertex. I will define the function
splay(t) (t is the hair curve parameter), that will calculate the distance di on the
remaining planes as follows:

splay(t) = 4(t− 0.5)2 · borderSplay(t) + (1− 4(t− 0.5)2) · centerSplay

where borderSplay(t) and centerSplay are defined as:

borderSplay(t) =

{
Tip SplayG ·Tip SplayT(u, v), if t > 0.5

Root SplayG ·Root SplayT(u, v), if t ≤ 0.5

centerSplay = Center SplayG ·Center SplayT(u, v)

The function splay(t) was defined by error and trial to enable the user good
control of a fiber distance from the main hair and to interpolate the fiber distance
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smoothly over the fiber length. Once I have defined splay(t) I can calculate the
fiber vertex Pi distance di on the plane ρi as: di = d · splay(t).

(a) Root Splay = 2 (b) Center Splay = 2

(c) Tip Splay = 2

Figure 2.29: A demonstration of an influence of Tip Splay, Center Splay and
Root Splay properties on the hair strand.

(a) Twist = 0 (b) Twist = 5

Figure 2.30: A demonstration of the Twist property.

The hair property that only influences the angle ϕi is TwistG and its tex-
ture version TwistT (see Figure 2.30). For easier explanation I will denote the
combined twist property as:

twist = TwistG ·TwistT(u, v)

As this property’s name suggests, it defines a twisting of the fiber around the
main hair. I achieve this twisting by adding a small angle to the initial angle ϕ
on each plane ρi. So each ϕi is calculated from the previous ϕi−1 by adding some
angle. I will have to eventually calculate the fiber vertex position Pi from the
distance di and the angle ϕi (see Figure 2.28). To do that I need to know sinϕi

and cosϕi. Because calculating these functions takes a lot of time, I will only
calculate them for the initial angle ϕ and then use fast formulas below to get the
sine and cosine of ϕi from the sine and cosine of ϕi−1.

The twist gives a difference between an angle at the fiber root and an angle
at the fiber tip. To calculate ϕi, I need to know how much should I add to ϕi−1.
I will denote that value as twisti:

twisti = ϕi − ϕi−1

To calculate twisti I simply uniformly divide the twist, so:

∀i : twisti =
twist

Nvertices

where Nvertices is the number of vertices of each fiber. Since twisti is same for
all i I will denote it as twist∗. Finally I can calculate the desired sine and cosine
value of ϕi from the sine and cosine value of ϕi−1 using following formula:

sinϕi = sinϕi−1 · cos twist∗ + cosϕi−1 · sin twist∗
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cosϕi = cosϕi−1 · cos twist∗ − sinϕi−1 · sin twist∗
where ϕ0 is defined as the initial angle ϕ.

There are three more hair properties that influence fibers in the hair strand.
They all have a scalar and a texture variant.

1. Aspect (see Figure 2.31): On each plane ρi a vertex of every hair in the
strand lies on a circle of radius di (where it lies on this circle is determined
by the angle ϕi). The property Aspect can deform this circle into an
ellipse. This ellipse will have the same radius as the circle in the normal
NM

i direction and the radius di ·AspectG ·AspectT(u, v) in the binormal
BM

i direction (NM
i and BM

i are from the curve frame of the main hair).

2. Offset (see Figure 2.32): This property will be applied after the fiber vertex
Pi position was calculated and it will offset Pi in the normal NM

i direction.
Pi closer to the fiber tip will be displaced more:

Pi = Pi + OffsetG ·OffsetT(u, v) · t3 ·NM
i

where t is the fiber curve parameter.

3. Randomize Strand (see Figure 2.33): Finally I scale each fiber vertex in
the strand by the factor:

scale = (1−Randomize StrandG ·Randomize StrandT(u, v)) · ξ

where ξ is a uniform random number (ξ ∈ [0, 1]). For each fiber in the hair
strand I generate a new ξ.

(a) Aspect = 0 (b) Aspect = 1

Figure 2.31: The Aspect property

(a) Offset = 0 (b) Offset = 5

Figure 2.32: The Offset property
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(a) Randomize Strand = 0 (b) Randomize Strand = 5

Figure 2.33: The Randomize Strand property

Now that I have described every hair property that influences the vertices
of each fiber, I can show the complete equation for the calculation of each fiber
vertex:

Pi = scale ·
[
PM
i + di · (cosϕi ·NM

i + sinϕi ·AspectG ·AspectT(u, v) ·BM
i )

+ OffsetG ·OffsetT(u, v) · t3 ·NM
i

]
(2.5)

where scale has been defined during the property Randomize Strand descrip-
tion and t is the fiber curve parameter.

Figure 2.34 shows a flowchart of a fiber generation.

Sample a unit disc uniformly

Calculate initial distance d and angle 

For every fiber vertex :

Generate a single fiber

NO

ϕ

Determine angle   i and distance di ϕ

Calculate a vertex position based on the angle, 
the distance and the hair properties 

Transform vertices

Calculate a fiber curve frame

Figure 2.34: A flowchart of the hair strand fiber generation. The red rectan-
gle groups the steps that generate the fiber vertices. These steps were closely
described in Section 2.2.7.

After the fiber vertices have been generated, I need to execute several more
steps before the whole strand is ready for rendering. First of all I set the color,
width and opacity of hair strand fibers from the corresponding hair parameters of
the main hair. Afterwards I transform the fiber vertices from the main hair local
coordinate frame to the world space coordinates. Then for each fiber I calculate
its curve frame. Finally I finalize and output each fiber exactly as I do it with a
single hair in non-strand generation (see Section 2.2.9).
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2.2.8 Handling the Catmull-Rom spline

As I have said before, hairs generated by my generator are in fact the Catmull-
Rom curves. In the following text I talk about some important features of these
curves that I use during the hair generation.

Curve parametrization

Several parts of my generator need the hair curve to be parametrized. That means
that the curve (let’s denote it as C) will behave as a function of the parameter t:

C(t) ∈ R3, t ∈ [0, 1]

C(0) = P1, C(1) = PN

where P1 is the curve start in R3 (in my case the first hair vertex) and PN is the
curve end (the last hair vertex). Generally t does not have to be from [0, 1], but
in my generator it will be. Inside my generator I use the curve parametrization
when I want to interpolate any value smoothly along a curve length. For example,
the hair color is defined for the hair root and the hair tip and I have to interpolate
it for the rest of the curve. If I have the curve parametrized, I can easily define
the function color which will return the color of the curve at any point:

color(0) = hair root color, color(1) = hair tip color

∀t ∈ (0, 1) : color(t) = t · color(1) + (1− t) · color(0)

Then the point C(t) of the curve will have the color color(t). Since the hair
curve is defined by several vertices P0, P1, . . . , PN , PN+1, sometimes during the
hair generation I need to know the curve parameter t value that corresponds to
the given hair vertex Pi:

t : C(t) = Pi

This is influenced by how I choose to parametrize the hair curve. The most
common and easiest way to parametrize a curve is to use uniform parametrization,
which means that the curve parameter change dt between two neighbor vertices
defining the curve C is constant:

C(0) = P1, C(dt) = P2, C(2dt) = P3, . . . , C((N − 1)dt) = C(t) = PN

∀i = {1, . . . , N} : C

(
i− 1

N − 1

)
= Pi

Now it might be confusing what C(t) corresponds to P0 and PN+1 ? The answer
is simple: none. As explained in Section 2.2.1, the first and the last vertex are
there only to define the curve shape, but the curve does not need go through
them. Furthermore, for my hair curves the following statement is always true:

P0 = P1, PN = PN+1

The uniform parametrization is very simple, however it has one pitfall, it may not
be consistent along a curve length. Meaning that the color(t) function, I have
defined earlier ,may change faster for some parts of the curve C. Figure 2.35
shows an example of the uniform parametrization which is not consistent along
a curve length. More about Catmull-Rom parametrization can be found in [49].
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P0 = P1

P2
P3

P4

P5 = P6

0

1

1/4 1/2 3/4

Figure 2.35: The uniform parametrization of the hair curve. The green numbers
represent the parameter t value at a given hair vertex.

Cutting the curve

One of the hair properties, that can be set by the user, tells me how much shall
each hair be cut. The property value can be between 0 and 1 and corresponds
to the curve parametrization. Therefore if user says the curve should be cut at
0.5, the curve will end at C(0.5) (C was defined in the previous section). To be
able to cut the hair curve C at any parameter value tcut, I have to be able to
recalculate some of the hair vertices positions in a such way that the hair curve
C ′(t) after the vertices recalculation has the following properties:

C ′(1) = C(tcut), C
′([0, 1]) = C([0, tcut])

where C([a, b]) = {C(t)|t ∈ [a, b]} (and the same for C ′) and C is the curve before
the vertices recalculation.

Before I discuss how to recalculate the hair vertices, I first need to explain
how is C(t) calculated for any t. Since I use the cubic Catmull-Rom curve,
the curve may be divided to segments C([a, b]), where a, b are curve parameters
for two neighboring hair vertices: C(a) = Pi and C(b) = Pi+1. Each segment
C([a, b]) is then only influenced by the 4 closest hair vertices Pi−1, Pi, Pi+1, Pi+2

(see Figure 2.36), where again C(a) = Pi and C(b) = Pi+1. To calculate the

P0 = P1

P2
P3

P4

P6 = P7

P5

Figure 2.36: The green curve segment is only influenced by the 4 closest (green)
vertices.

Catmull-Rom curve C(t) for t ∈ [a, b] I have to first recalculate the parameter t
in such a way, that the new parameter t′ will be 0 for t = a and 1 for t = b:

t′ =
t− a
b− a
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and then I can compute C(t) as follows:

C(t) = [t′3, t′2, t′1, 1] ·M ·


Pi−1
Pi

Pi+1

Pi+2


where M is the 4× 4 matrix which defines the Catmull-Rom basis.

Now that I know how is the Catmull-Rom curve calculated, I can easily cal-
culate were was the curve C cut (C(tcut)) and use it as the last vertex of the new
curve C ′. If C(tcut) ∈ C[(a, b)] then I will define the curve C ′ after cut using the
hair vertices P0, P1, . . . , Pi = C(a), C(tcut), Pi+1 = C(b) (see Figure 2.37). The
curve C ′ will end at C(tcut) however as [12, p. 425] suggests, it may differ from
C, so C ′([0, 1]) 6= C([0, tcut]). This is of course an undesired effect, but it will be
hardly noticed since the only two effected segments of the curve are those defined
by Pi−2, . . . , C(tcut) and Pi−1, . . . , Pi+1, and their difference from the correspond-
ing C segments will be only subtle (the curve still has to pass through all of its
defining vertices).

P0 = P1

P2
P3

P4

P6 = P7

P5

P0 = P1

P2
P3

P4

P6 = P7

P5 =Cut P5
P6

Figure 2.37: The curve is cut between the vertices P4 and P5, the curve after the
cut is defined by the green vertices

Since cutting the hair curve may result in throwing away several vertices (e.g.
P6, P7 in Figure 2.37), I may use that to speed up the hair generation and never
calculate these vertices. If N is the number of the hair vertices and the curve is
cut at tcut, I only need to calculate:

N ′ = max (dtcut ·Ne+ 2, N)

I have to be careful with one thing though, I can’t calculate the curve parameter t
corresponding to Pi using the new number of vertices N ′, since it would result in
a wrong calculation of some hair parameters. For example, if I have a curve with
a color which is smoothly interpolated from yellow at the curve root to red at the
curve tip and I cut this curve in a half, I want the color to go only to something
between yellow and red. Therefore I need to calculate the curve parametrization
using the original number of the hair vertices N .

Calculating bounding box

For rendering purposes I sometimes need to calculate the smallest possible bound-
ing box (see Section 2.3.2), that contains all generated hair. The most simple way
to this is to calculate a bounding box of each hair and join these bounding boxes
together.
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Calculating a bounding box of the Catmull-Rom curve is not easy, since it
does not lie inside a bounding box of the vertices that defines it (see [12, p. 425]).
However there are some other curves that have this property, one of them is Bézier
curve (see [2, p. 578–584]). This is great, since I can convert the hair vertices to
Bézier curve control vertices in a way that will make the resulting Bézier curve
identical to the Catmull-Rom hair curve.

Both the Catmull-Rom and Bézier cubic curves are evaluated by the following
formula (M is the matrix representing a curve type):

C(t) = [t3, t2, t1, 1] ·M ·


P0

P1

P2

P3


where Pi are the vertices defining one segment of the curve C and t is the curve
parameter.

If CR is the Catmull-Rom curve matrix, Pi are the original hair vertices, B
is the Bézier curve matrix and PB

i are the Bézier curve vertices, the following
calculations can be used to convert Pi to PB

i :

[t3, t2, t1, 1] · CR ·


P0

P1

P2

P3

 = [t3, t2, t1, 1] ·M ·


PB
0

PB
1

PB
2

PB
3



M−1 · CR ·


P0

P1

P2

P3

 =


PB
0

PB
1

PB
2

PB
3




0 1 0 0
−1

6
1 1

6
0

0 1
6

1 −1
6

0 0 1 0

 ·

P0

P1

P2

P3

 =


PB
0

PB
1

PB
2

PB
3


which directly leads to this:

PB
0 = P0

PB
1 = P1 + P2−P0

6

PB
2 = P2 + P1−P3

6

PB
3 = P3

I can then easily calculate the hair curve bounding box by converting the vertices
defining each hair curve segment and using the converted vertices to create the
bounding box.

Curve frame calculation

As I have already mention several times, I need to calculate the hair curve frame
at each hair vertex (see Figure 2.38).
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P2

P3

P4

N3
T3

B3

Figure 2.38: The curve frame defined at vertex P3. The normal is denoted as ~N3,
the tangent as ~T3 and the binormal as ~B3.

The calculation of the Catmull-Rom curve tangents at defining vertices is
quite easy (see [2, p. 590]). The computation of the tangent ~Ti at the vertex Pi

is as follows:
~Ti =

Pi+1 − Pi−1

2

I will also define the tangents for the first and the last vertex as:

~T0 = ~T1, ~TN+1 = ~TN

Now I have to calculate the curve normals. The normals will define how much
a hair fiber surface twists along the curve length (remember that the hair has
defined width, so this twist will be visible). To make the hair look realistic I will
use the Rotation Minimizing Frame method, which makes the twist as minimal
as it is possible. To compute Rotation Minimizing Frame I will use the fast
approximation proposed in [41].

Pi

Pi+1Ni
Ti

ρ1

1.Reflection

Pi

Pi+1Ni
Ti

ρ2

2.Reflection

Ti+1

Ni+1

Figure 2.39: The Double reflection method used for Ni+1 computation.

For the computation of the normal ~Ni at the vertex Pi I need to provide the
curve vertices Pi, Pi−1 and the corresponding tangents ~Ti, ~Ti−1. Furthermore, I
also need to know the normal ~Ni−1, therefore I have to choose the first normal
~N0 myself. I simply choose ~N0 to be equal to a surface tangent at the hair root
position. To calculate ~Ni I need to perform two following steps:

1. I define the plane ρ1, which lies at a middle of points Pi, Pi−1 and the normal
of ρ1 is vector (Pi − Pi−1). I use this plane to reflect vectors ~Ni−1 to ~NL

i

and ~Ti−1 to ~TL
i .

2. I define the plane ρ2 in similar manner as ρ1, however I will use the vertices
Pi + ~Ti and Pi + ~TL

i to define it. I use ρ2 to reflect the vector ~NL
i to ~Ni.
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Because this approximation of Rotation Minimizing Frame uses two reflections it
is called Double reflection method. Figure 2.39 shows the two reflections described
above.

Finally when I have both the tangents and the normals of the curve calculated,
I can simply calculate the binormal ~Bi at the vertex Pi as:

~Bi = ~Ti × ~Ni

Before I calculate ~Bi, I normalize tangents and normals, so ~Bi will be too nor-
malized. The curve frame vectors must be normalized in order for some of the
hair generation pipeline steps to work properly (e.g. hair strand generation, see
Section 2.2.7).

2.2.9 Finalizing hair

This section describes the last step of my hair generator, before the hair is sent
to a rendering buffer. Not all of the hair parameters that have been generated
are actually sent to the buffer. Some of the parameters have just served for
calculation of other parameters. Each hair is sent to the rendering buffer as the
hair vertices, for each of these vertices I sent only these additional parameters:
the color, the opacity, the width and the hair curve normal at a hair vertex. I
have mentioned in Section 2.2.1, that I need two additional vertices (the first
and the last) to define the Catmull-Rom curve. These vertices are not displayed;
therefore I will not define for them any of the aforementioned parameters.

Before I can output the hair, I have to perform these three last operations:

1. Remember that in Section 2.2.6 I have said, that I only store the color,
opacity and width of the hair root and the hair tip. So here I need to
interpolate these parameters to the remaining hair vertices.

2. I also need to cut the hair as the user has specified. How is this exactly
done is the topic of Section 2.2.8.

3. Finally there is one more task, I have never mentioned before. I remove
some of the generated hair vertices along with their parameters. This helps
reduce the rendering time and memory spent by a renderer, since both of
these depends on the number of hair vertices. Of course I want the hair
look nearly the same as it would look without removing vertices, therefore
I need to choose carefully which vertices will be discarded.

Figure 2.40 shows a flowchart of the last hair generation step. Most of the
flowchart should be self-explanatory; however I should mention some parts in
more detail. The determination of which vertex should be removed will be ex-
plained in Section 2.2.9. The interpolation of hair parameters is quite straightfor-
ward, I use the hair curve parameter t at the current vertex as the interpolation
parameter:

valuecurrent = t · valuetip + (1− t)valueroot
Where value is opacity or width. Remember that the hair color is stored in HSV
and its interpolation is more complicated (see Section 2.2.6). I also have to trans-
form the current vertex color to RGB before I send it to the rendering buffer.
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Finally I should emphasize, that if I cut the curve, the last vertex that is dupli-
cated and send to the rendering buffer, is not the last vertex of the original curve,
but the vertex instead of which I have used the cut position (see Section 2.2.8).
As the last, additional hair parameters (such as hair unique index) are sent to the
rendering buffer. They are trivially selected by the hair generator and I mention
them in Section 2.3.5.

Should this vertex be discarded?

FOR EACH HAIR VERTEX

Set the current vertex as the next vertex. 

Is the hair cut between this 
and the last processed vertex?

Output the hair vertex with its parameters

Duplicate the first and the last vertex and output them 
without width, color, etc.

YES

YES

NO

GENERATED HAIR BUFFER

Interpolate color, width and opacity 
to the current hair vertex.

NO
Calculate the cut position and use it instead of

the current vertex. 

Recalculate the curve frame at 
the new current vertex

Was the hair cut during this iteration?
OR

Was this the last vertex?

NO

YES

ITERATION END

        Output hair additional parameters

Figure 2.40: The flowchart of the last hair generation step. The last step cut
hair, removes unnecessary vertices and outputs hair parameters to the rendering
buffer. The nontrivial sub steps are described in text.

Discarding unnecessary vertices

As I have said before, I want to reduce the number of the hair vertices. Of course
I want to remove only those vertices, that do not affect the hair curve shape too
much, so the curve won’t change rapidly after the removal. Therefore I never
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remove the first and the last vertex (this also explains why I avoid testing vertex
removal if I process the vertex at the cut position – it is the last vertex).

To determine whether the vertex Pi should be removed, I use this simple
criterion: if the tangent ~Ti at the vertex Pi is similar to ~Ti−1 and also to ~Ti+1, the
vertex Pi can be removed since it influence on the hair curve shape is minimal
(see Figure 2.41).

Pi-1
Pi Pi+1

Ti-1
Ti Ti+1

Pi-1 Pi+1

Ti-1 Ti+1

Before removal After removal

Figure 2.41: The removal of a vertex that has been determined as unnecessary.

I still need to define, what similar tangents means. There is a plenty ways
to compare tangents, but I found measuring an angle between two compared
tangents as the best. The cosine of the angle between two vectors is calculated
easily by a dot product (tangents are normalized), so the vertex removal criterion
looks like this:

~Ti · ~Tj > Skip ThresholdG

where Skip ThresholdG is the hair property set by the user. The higher the
threshold is, the smaller the angle of two tangents must be in order to determine
them as similar (remember that the smaller the angle between two vectors is, the
higher will be the cosine of that angle).

2.3 Hair rendering

In this section I will describe how is the generated hair rendered by two different
rendering systems: RenderMan and OpenGL. RenderMan is used for rendering
quality images of scenes and OpenGL is used to display hair interactively during
modeling in Autodesk Maya.

2.3.1 RenderMan

I will first talk about what exactly is RenderMan and how can I generate hair in
it during render time (see Section 2.3.2), then I will discuss how I move hair data
to RenderMan (see Section 2.3.3). How RenderMan renders the generated hair
curves is the topic of Section 2.3.5 and finally I will describe how I generate hair
for RenderMan in Section 2.3.4.

2.3.2 Rendering with RenderMan

RenderMan is an API defined by Pixar for rendering of 3D scenes. I have picked
this API for hair rendering of its wide acceptance and because UPP uses one of
its implementations: 3Delight.

The RenderMan interface technical specification [32] allows two ways, how
to tell the renderer, what should be rendered. The first is by supplying a text
.RIB file, which includes RenderMan commands defined in the specification. The
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second way is to call c methods from the RenderMan implementation library.
These c methods correspond to the commands used inside the .RIB file. For my
purposes the second way will be more useful.

As I have said before, to render hair I will use the Catmull-Rom curves.
The details of how to render such curves with RenderMan are discussed in Sec-
tion 2.3.5. All you need to know for now is that there can be up to 150 000
hairs on a human head and even tens of millions hairs on an animal body. Ren-
dering such a vast number of the hair curves consumes a lot of computational
time and even more memory, therefore a typical way to do that, is to write all
needed rendering commands to a .RIB file and then send it along with textures
and other data files from a computer used by a graphics artist to a “rendering
farm”(a cluster of powerful computers used for rendering), where the scene with
hair inside the .RIB file will be rendered. As told to me by workers from UPP,
all the .RIB files used to render the whole movie are stored. Since each of these
files can reach up to several gigabytes of data, storing them all could be hard
to accomplish. The other problem is that hard drives speeds are quite low, so
generating and moving these big files is very time consuming.

There is a way to overcome these problems. The original idea is taken from
the article [35]. There is a special RenderMan command Procedural, that can
be written inside any .RIB file. Once the scene defined by this file is rendered,
the command executes a Dynamic-link library specified with the Procedural com-
mand, which can generate more scene data during the render by calling c methods
corresponding to the .RIB commands. These commands are immediately exe-
cuted and they are never stored to hard drive. This has two advantages: it keeps
the .RIB files small and it also moves the hair curve generation (which can take
a lot of time) from a graphics artist computer to the rendering farm.

There is one issue with the usage of Procedural. I need to know the bounding
box of the geometry generated by the executed dynamic-link library during the
.RIB file creation (before the geometry gets generated during the render time).
I could of course use some huge bounding box, but as suggested in the previous-
ly mentioned article, the smaller the bounding box is, the less memory will be
consumed by a RenderMan compliant renderer. The authors of the article also
explain that additional computational time is worth it, because insufficient mem-
ory is a bigger issue than slower rendering. Their idea how to generate the best
bounding box is quite simple: they generate exact hair curves geometry before
rendering to calculate the bounding box. Therefore hair curves geometry will be
generated twice: before the hair rendering for the calculation of the bounding
box and during the rendering. It is important to mention, that each Procedural
call only generates hair for a single frame of an animation.

To decrease memory requirements even further, I can divide hair to groups
called voxels (see Section 2.3.3) and for each voxel call the Procedural command.
This has another huge advantage and that is the fact, that independent Procedu-
ral calls are executed in parallel, therefore I can use only one thread inside my
Dynamic-link library and leave parallelization to the renderer, which is definitely
for the best.

The data needed for the hair generation inside the dynamic-link library will
be loaded from temporary files, which are described in Section 2.3.3.
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2.3.3 Exporting hair data

Before I can render my hair with RenderMan, I need to export data that will
be used by my generator to generate the final shair during rendering. The data
are exported for each animation frame separately. To generate the hair I need to
export:

• The triangular mesh from which the hair grows. Remember that in Sec-
tion 2.2.1 I have said, that I need both the hair position on the current
mesh (the mesh is usually animated, so by the current mesh I mean the
mesh in the currently rendered frame) and the hair position on the rest
position mesh (the mesh without any animation applied). Therefore I need
to export the current mesh and the rest position mesh.

• Generated hair geometry is mainly influenced by interpolation from the
closest hair guides, therefore I need to export hair guides geometry and
their positions. As said in Section 2.2.4, I use the rest position to search
for the closest guides, so I only export a 3D rest position of each hair guide
root. The hair guides may also be animated, so I need to export the hair
guides geometry for the currently rendered frame.

• Finally I need all the hair properties, which has been set by the user.

As I have said in Section 2.3.2, I will divide the hair into voxels and generate
the hair from each voxel independently on the other voxels. I have mentioned
that I do this to help the renderer to decrease memory consumption. However
this is achieved only, if the hair is split to the voxels according to hair position
in a scene, so the voxels have minimal overlap and the renderer can more easily
manage which voxel must be generated and which voxel can already be discarded.
Furthermore I will need my random sampling algorithm to generate hair positions
only for the currently processed voxel. Finally I also need to make sure, that the
hair stays in the same voxel during whole animation, because the generator may
generate the hair differently for each voxel in which it lies during an animation.

In order to achieve all of these goals, I calculate a bounding box of the rest
position mesh. I create an uniform grid inside the bounding box and I store each
triangle of the rest position mesh in one cell of the uniform grid in which the
triangle barycenter lies. A uniform grid resolution is based on the user property
Voxels DimensionsG. The user has to experiment with the resolution, since
for each scene a different resolution is for the best. Each cell of the uniform grid
now contains a part of the rest position mesh. From now on I will call these cells
the voxels and the hair inside each voxel will be generated only on the triangles
stored in the voxel. I also have to store for each voxel triangles of the current
mesh. A voxel will contain a triangle of the current mesh only if it contains a
corresponding triangle of the rest position mesh.

I have mentioned in the previous section that each Procedural call requires
a bounding box, which will contain all geometry that will be generated by the
Procedural call. Therefore before exporting the data I generate for each voxel the
hair that grows in it and calculate the bounding box as described in Section 2.2.8.
Since I don’t need to know other hair parameters than the hair vertices, I don’t
need to generate them and save a lot of computational time. Furthermore I can
execute this procedure in parallel (each voxel is calculated individually).
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There is one last thing I need to solve. The user defines the number of hairs
for a whole model (property Interpolated Hair CountG), not for each divided
part. So I need to calculate the number of hairs for each voxel. Back in Section 2.1
I have described the sampling algorithm and determined the probability that one
sample will be generated on a single sub-triangle. From these probabilities I can
easily calculate the probability of hair being generated in each voxel V :

PV =
∑
4i∈V

P (4i)

where 4i is a sub-triangle and P (4i) its probability. To determine whether 4i

lies in V I simply look if its parent triangle lies in V . When I have calculated PV

I can compute the number of hair generated in the voxel V as:

PV · Interpolated Hair CountG

So now I have described what data I export, but I still need to tell how I
export them. The easiest and most flexible way to export these data is to store
them to temporary files, from which my Dynamic-library that executes the hair
generation will read them. For each voxel I will store one file with a corresponding
part of the rest position mesh and the current mesh. I will also store there how
many hairs should be generated inside the voxel. These files are called Voxel
files. The other data (the hair properties, the hair guides) required by the hair
generator are same for all voxels, so I store them inside one file called Frame file.

The whole point of generating hair during rendering is that I don’t create
huge files with hair geometry. Voxel files and Frame file are very small compared
to a file with complete hair geometry; however it is still for the best to compress
them. I use zlib2 library to do so.

Of course I need to tell my Dynamic-library, which files it should use. This is
discussed in Section 2.3.4.

2.3.4 Hair generator for RenderMan

The hair generator for RenderMan is executed inside a Dynamic-library. This
library is called by the Procedural command from a .RIB file and may receive
any number of attributes. However these attributes are stored in text form and
3Delight implementation of RenderMan seems to have problem if these attributes
exceed certain range. Therefore I use them mainly to tell the library, which data
files it should load and use as input for the hair generator.

As I have explained before, each call of the library will generate the hair
inside one voxel and only for one frame of an animation. However, there is one
exception: if the user specifies that rendering should use deformation motion
blur (see Figure 2.42). Any geometry that wants to have deformation motion
blur applied in RenderMan must be created in between RenderMan commands:
RiMotionBeginV and RiMotionEnd. Only certain types of geometry are allowed
in between those two commands and Procedural is not one of them, therefore
I have to handle motion blur inside my library. RiMotionBeginV receives a
number of samples and their relative time compared to the current frame. There

2http://zlib.net/
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must be one and only one RenderMan command (geometry command, translation
command etc.) for each of these samples. For more information about motion
blur in RenderMan see [32, p. 96–98].

(a) Without motion blur (b) With motion blur

Figure 2.42: A demonstration of motion blur applied on a ball with fur.

My library needs information, how to handle motion blur and from where it
should load the hair data. This info is delivered via custom Procedural parame-
ters: the number of time samples, their relative time compared to the currently
rendered frame and for each of these samples one Frame file and one Voxel file
with the exported hair data.

When the input attributes are handled and the date files are loaded, my library
only executes the hair generator and render the hair curves (see Section 2.3.5)
for every time sample. Figure 2.43 shows a flowchart of my library.

2.3.5 Rendering curves

The last thing I need to talk about in connection with RenderMan is how can
I render the hair curves using RenderMan commands. First I have to tell Ren-
derMan that I want to render the Catmull-Rom curves using the RenderMan
command RiBasis. RiBasis requires four attributes: two matrices and two step
sizes. One matrix and step size are used to define a curve type and an interpola-
tion step in the direction of a U coordinate, the other two are used for the same
purpose in the direction of a V coordinate. The parameter V changes across a
length of the curve and the parameter U across a width of the curve. I will always
use the RiCatmullRomBasis matrix and RI CATMULLROMSTEP as the step
size in both directions.

After I have defined which curves I want to render, I can render them by
calling the function in RenderMan API called RiCurves (see [32, p. 84–85] for
function full specification).

The parameters of the function RiCurves are:
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ATTRIBUTES FROM RIB FILE Parse the attributes

More than one sample (Motion Blur)? RiMotionBeginV 

RiMotionEnd

FOR EACH TIME SAMPLE

NO

YES

FRAME FILE

VOXEL FILE

Read the input files for 
the current time sample

Generate the hair 

Render the hair

ITERATION END

More than one sample (Motion Blur)?
YES

Figure 2.43: A flowchart of my library for hair generation inside RenderMan.

• type: Specifies whether linear (RI LINEAR) or cubic (RI CUBIC ) curve
interpolation will be used. I will use cubic interpolation, since it gives a
smoother curve.

• ncurves : The number of curves drawn by one call of this function.

• nvertices : An array which each element holds a number of vertices defining
one curve geometry.

• wrap: This parameter says if the curves will be periodic (RI PERIODIC )
or non-periodic (RI NONPERIODIC ). A periodic curve end is connected
with its start. This is an unwanted behavior for hair, therefore I will use
the non-peridiodic curves.

• other parameters: The function RiCurves may have an unlimited number
of parameters. These parameters must come in pairs, where the first one
is called a token and specifies what the second parameter is. The second
parameter is an array of one or more elements. There are three types of
these additional parameters, which distinguish the number of the elements
in the second parameter that must be supplied to cover all curves.

– constant : Only one value is needed for all curves.

– uniform: One value for every rendered curve.
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– varying : There must nsegsi + 1 values per each curve, where nsegsi
is the number of the segments of the ith curve. How is the number of
the segments calculated is specified in the RiCurves documentation.
Since I use a non-periodic cubic curve, the number of the segments of
the curve is:

nsegsi =
nverticesi − 4

vstep
+ 1

where nverticesi is the number of the vertices of the ith curve and
vstep is the step size along the V coordinate (which changes across
the curve length). Since I use RI CATMULLROMSTEP as the step
size, vstep is 1. Finally I can get nsegsi = nverticesi − 3, so there
must be nverticesi − 2 values per each curve.

Among these additional parameters there is one that must be always spec-
ified and it represents curve vertices positions. This parameter is varying,
but it has an exception to the number of values, because there must be
nverticesi vertices specified for each curve. The parameter is announced
by the token RI P and the second part of the parameter is Rt Float array,
where three consecutive elements represent one vertex position.

• As the last parameter the value RI NULL must be input.

I can use these additional parameters predefined by RenderMan specification.
All of them are varying.

• RI CS : The parameter that specifies RGB colors of the curve vertices. Each
color is represented as three consecutive float values.

• RI OS : Opacities of the curve vertices. Like the color, the opacity is defined
by three float values.

• RI N : The curve normals specified at the curve vertices, again each normal
is input as three consecutive float values.

• RI WIDTH : A width of a curve at a curve vertex. Each width is represented
by a single float value.

These additional properties and the curve vertices directly correspond to the
hair parameters that are generated by my hair generator. Furthermore I define
additional custom variables that might be used by some specialized hair shaders
that compute hair final color (such as shaders that are used in UPP). The variables
are all uniform, therefore defined once per each hair:

• HAIR UV COORDINATE TOKEN : Parameter specifying texture coordi-
nates on the mesh where hair grows. One texture coordinate is represented
by two float values.

• STRAND UV COORDINATE TOKEN : Texture coordinates on the mesh,
where the main hair of a hair strand is located (see Section 2.2.7).

• HAIR INDEX TOKEN : The unique hair index represented by a single in-
teger.
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• STRAND INDEX TOKEN : The unique hair strand index.

It is important to mention that the user has the ability via the hair property
Calculate NormalsG to tell, whether the curve normals should be output by
the hair generator. If they are not sent to RenderMan, the renderer will calculate
them itself. However the normals calculated by the renderer may not be consistent
during animation, since they tend to point towards a camera.

2.3.6 Interactive rendering

This section will discuss interactive rendering of hair during modeling in Maya
Software. First I will describe in Section 2.3.6 how the interactive hair generation
and rendering fits into the Stubble project and then I will talk about rendering
the generated hair using OpenGL in Section 2.3.6.

Interactive generation and rendering overview

The interactive hair generation and rendering must react on changes done by the
user of the Stubble project. There are many different events that trigger 4 various
reactions of the interactive hair generation:

First generation I first generate enough mesh samples for a selected number
of the hairs, then I calculate the hair root positions and finally I run the
hair generation (including a preparation of the generated hair for OpenGL
rendering).

Mesh update I have to recalculate the hair root positions from the already gen-
erated mesh samples (the samples are stored from the first generation as
barycentric coordinates and triangle identifiers, so they ignore mesh defor-
mations and transformation) and run the hair generation.

Hair properties update I only need to run the hair generation.

Draw I draw the generated hair using OpenGL. The hair has been already gen-
erated by any of the previous actions.

To improve performance, the hair generation and the hair root positions calcula-
tion can be executed in parallel. The number of the hairs generated in the interac-
tive rendering is set by the user via the hair property Displayed Hair CountG
and is limited to 10000 for performance issues. Which events from the Stubble
project triggers which reaction is shown in Table 2.1.

Rendering hair with OpenGL

Rendering a curve in OpenGL is done by tessellating it to a number of lines which
are then displayed. This has however two pitfalls. First, tessellating the curve
is very expensive and second, lines can only have constant width. So instead of
rendering the hair as curves, I will connect the hair vertices with a quad created
by two triangles as displayed in Figure 2.44. This should be good enough for the
interactive rendering. As mentioned in Section 2.2.1, the hair curves are defined
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Event Reaction

Number of hair changed
First generation

New model
Model deformation

Mesh update
Model transformation
Hair properties update

Hair properties update
Hair guides update

Draw Draw

Table 2.1: The interactive hair generation reaction on different events from the
Stubble project. By model I mean the triangular mesh from which hair grows.

P1

P2

P3

P1
+−P1

−P2 P2
+

P3
+−P3

Figure 2.44: The representation of the hair in OpenGL. The red points represent
hair vertices and the black triangles are the final representation of the hair in
OpenGL.

by set of vertices and the first and the last of them are duplicated. Since I will
not render the hair as curves in OpenGL, I will ignore the duplicated vertices.

The size of the quad sides perpendicular to an imaginary line connecting the
hair vertices (i.e. a red line in Figure 2.44) will represent the hair width and
therefore the width will be linearly interpolated. The only problem I face with
this hair representation is that I need to create from one hair vertex Pi two
vertices P+

i , P−i of the quad. The logical solution of this problem would be to
calculate them as follows:

P+
i = Pi + ~Bi ·Wi, P

−
i = Pi − ~Bi ·Wi

where ~Bi is the curve binormal at Pi and Wi is the hair width (again at p).
This solution would correspond to RenderMan, where a curve width spans in a
curve binormal direction. However my hair generator does not output the curve
binormals, therefore I will use the curve normal ~Ni at Pi instead (remember that
the interactive rendering is here only to give the user some idea how will the hair
look like).

Each quad vertex will also have its RGB color and opacity represented together
as RGBA color. I shall get them from the corresponding hair vertex color and
opacity.
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Figure 2.45: The generated hair displayed by OpenGL in the Maya viewport.

Now that I have defined how I transform the generated hair data to colored
quads, I need to define how I will handle these quads, so they can be easily
rendered by OpenGL. As I have said before, each quad consists of two triangles.
I will store all their vertex positions and RGBA colors to a single array of float
numbers. Because I need to store 3 component position and 4 component color
for each vertex and there are two vertices for every hair vertex, I need to store 14
float numbers per hair vertex. Every time the hair is generated I will convert it to
this single array and send it to a graphics card memory through OpenGL Vertex
Buffer Objects (see [37, p. 93–100]). Then I can easily render the hair via few
commands of OpenGL without the need to call the hair generation again or move
any new data to the graphics card. This significantly speeds up the interactive
rendering time. Figure 2.45 shows the hair rendered by OpenGL during modeling
inside Maya.

60



3. Implementation

As has been already said, my hair generator is a part of the Stubble project.
The Stubble project is written in C++ and was developed in Visual Studio 2010
Professional and compiled for the x86-64 platform using the supplied Microsoft
compiler. The Stubble project consists of two dynamic libraries: the first is the
plugin to Maya for hair editing and the second is the hair generator library for
3Delight RenderMan.

In this chapter I will only describe those C++ classes of the Stubble project
that are used during the procedural hair generation. I will divide this chapter into
four sections, first I will shortly describe supplementary classes that are used by
the hair generator (Section 3.1), then I will talk about the class that encapsulates
the hair generator (Section 3.2) and how is it made to be renderer-independent.
Finally I will discuss the implementation of the hair generator library for 3Delight
RenderMan (Section 3.3) and the interactive hair generation used in the Maya
plugin (Section 3.4)

To make the description of the hair generator implementation clearer, I will
always use different text formats for methods, parameters and classes.

3.1 Supplementary classes

As I have already said, in this section I will talk about different supplementary
classes used by my hair generator. Some of these classes were written by other
members of the Stubble team, so I will mention here only some of their methods
that are used during the hair generation. I will not describe here how these classes
are connected to the hair generator that is the topic of the following sections.

3.1.1 Random generators

In this subsection I will describe classes for random numbers generation.

RandomGenerator

RandomGenerator is a class that serves as an interface for any random number
generator. It defines two methods that must be implemented by any random
number generator:

• uniformNumber() Returns a random float number from [0, 1].

• randomFloat(aMin,aMax) Returns a random float number from the inter-
val [aMin,aMax].

• reset() Resets random numbers generation.

None of these methods is virtual, since that would make generation of random
numbers slow. When I need somewhere to use different random number genera-
tors, I create a template class or a method with a random generator as a template
attribute. The template class or the method will then expect the supplied random
generator to have an interface same as RandomGenerator.
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JamesRandomGenerator

JamesRandomGenerator implements the random number generator described
by F. James (see [18]), which passes all tests for random number generators and
has a period of 2144. The actual implementation has been taken from the JaGrLib
project [29]. JamesRandomGenerator only implements the methods defined
by RandomGenerator.

HaltonRandomGenerator

HaltonRandomGenerator is a template class that is able to generate num-
bers from the Halton sequence (see [15]). The used base of the Halton sequence
is a template attribute. HaltonRandomGenerator implements the methods
defined by
RandomGenerator.

3.1.2 Triangular mesh storage

In this subsection I will describe classes that are used to store a whole triangular
mesh and also classes that store a single position on a triangular mesh.

UVPoint

UVPoint is a small class for storing a sample position on a triangular mesh.
The sample is stored as an identifier of a triangle, in which the sample lies,
and barycentric coordinates U, V of the sample inside the triangle. These three
parameter are stored in via the constructor of UVPoint and returned via simple
methods getTriangleID, getU and getV.

MeshPoint

MeshPoint is a class for storing a position on a triangular mesh and a local
coordinate frame defined by a normal, a tangent and a binormal of the mesh
surface at the stored position. All of the mentioned vectors and the position are
stored as Vector3D, which is a class for storing a vector or a position and it
is able to perform many operations defined on vectors. MeshPoint also stores
texture coordinates mapped on the surface at the stored position. It is mainly
used to store the hair root position (see Section 2.2.1). All stored parameters are
received via a constructor of MeshPoint (with the exception of the binormal,
which is calculated from the normal and the tangent) and are accessible by the
methods: getPosition, getNormal etc (see the source for the full list).

Furthermore, MeshPoint can be written and read to/from a binary stream
via operators >> and << (If MeshPoint is to be read from the binary stream, it
can be created using its default constructor with no parameters). MeshPoint is
sometimes used to store only the position without the normal, the tangent etc. For
that purpose it has a special constructor and also importPosition(aStreamIn)
which reads the 3D position from the binary stream aStreamIn.

MeshPoint has several additional methods that can come in handy when
dealing with the local coordinate frame stored in MeshPoint:
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• toWorld(aLocalVector) Transforms the vector aLocalVector from the local
coordinates to the world coordinates. The local coordinate frame is defined
by the vectors and positions stored by MeshPoint.

• getLocalTransformMatrix(aLocalTransformMatrix) Receives the matrix
aLocalTransformMatrix as a reference and makes it to be a transformation
matrix from the world coordinates to the local coordinates.

• getWorldTransformMatrix(aWorldTransformMatrix) It is nearly same as
the previous method, however it creates an opposite transformation: from
the local coordinates to the world coordinates.

Triangle

Triangle is a class for storing one triangle. Triangle is represented by its
three vertices, which are in fact MeshPoint classes, therefore for each ver-
tex I store more than just its position. The vertices are received via a con-
structor or can be read from a binary stream using the specialized constructor
Triangle(aInStream, aCalculateDerivatives). aInStream is the binary stream
and aCalculateDerivatives tells the constructor, whether it should calculate deriva-
tives (the derivatives will be explained shortly). Triangle can also exports its
data to the binary stream via the method exportTriangle(aOutputStream). The
three vertices can be accessed via methods getVertex?(), where ? can be 1, 2 or
3. getBarycenter() calculates a barycenter of the stored triangle.

I have already mentioned that Triangle is able to calculate the derivatives.
This is done by recalculateDerivatives() method. By the derivatives I mean
the derivative of the position and the normal on the stored triangle according
to the texture coordinates U and V . These derivatives are useful during mesh
displacement (see Section 2.2.3). The normal derivatives are accessible via meth-
ods getDNDU() (the derivate according to U) and getDNDV() and the position
derivatives via getDPDU() and getDPDV().

TriangleConstIterator

TriangleConstIterator serves as a simple iterator over mesh triangles. Each
triangle is returned as a constant reference to Triangle.
TriangleConstIterator is build over the standard C++ vector iterator and
has some specialized methods. Since it is very primitive I will not describe it any
further.

Mesh

Finally I will describe the class Mesh, which stores a triangular mesh. Mesh
can be initialized in 3 different ways:

• Via the constructor Mesh(aInStream, aCalculateDerivatives), which loads
triangles from the binary stream aInStream and calculate the derivatives
if aCalculateDerivatives is set to true (see Section 3.1.2 to know which
derivatives I mean).
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• Via the constructor Mesh(aTriangles, aCalculateDerivatives), which is the
same as the previous constructor, but it loads triangles from the list aTriangles.

• Mesh can be initialized by its friend class MayaMesh, which is a proxy
class for handling any triangular mesh stored inside Maya.

Mesh can export/import triangles to/from a binary stream via methods
exportMesh and importMesh. Using importMesh will throw away triangles al-
ready stored in Mesh.

Triangles stored in Mesh can be accessed by several methods:

• getTriangleConstIterator() Returns an instance of the iterator
TriangleConstIterator, which iterates over all triangles.

• getTriangle(aID) Returns a triangle as Triangle with the specific id
aID.

• getRequestedTriangles(aTrianglesIds, aResult) Returns the list of trian-
gles aResult whose identifiers are specified in the list aTrianglesIds.

• getTriangleCount() Returns the number of triangles stored in Mesh.

Mesh can also be used to convert a sample stored in UVPoint to a full
position MeshPoint:

• getMeshPoint(aPoint) Converts a sample aPoint to a full position
MeshPoint as described in Section 2.2.3.

• getDisplacedMeshPoint(aPoint, aDisplacementTexture,
aDisplacementFactor) Converts a sample aPoint to a full position
MeshPoint on a displaced mesh (see Section 2.2.3). The displacement
of the mesh is defined by the texture aDisplacementTexture scaled by
aDisplacementFactor.

Furthermore Mesh is able to calculate a bounding box of the triangles it
stores and return it via getBoundingBox(). I have already mentioned that there
is another class for handling meshes called MayaMesh. MayaMesh does not
store any triangles; it only works with triangles stored by Maya. MayaMesh
defines similar methods as Mesh, but it cannot calculate displaced position (since
it is never desired inside Maya) and also it cannot import triangles from a list or
a binary stream.

When hair is created on a given model, MayaMesh is connected to this
model and copy its triangles from Maya to Mesh. Mesh is then used as the rest
position of the model and MayaMesh is used to access the current state of the
model (deformed and/or translated) which is stored in Maya. MayaMesh has
the method getRestPose() which returns an instance of Mesh which holds the
mesh rest position.

Inside the RenderMan hair generator library (see Section 2.3.4) Mesh is used
to store both the rest position and the current state of the model on which hair
grows.
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3.1.3 Texture

Texture is used for storing a single image texture. I will describe here on-
ly the part that I use during the hair generation. Texture obtains texture
data from Maya or it can read it from a binary stream via its constructor
Texture(aIsStream) (exportToFile(aOutStream) exports data to the binary
stream). Texture can hold a single-channel texture or a RGB texture.

The most important methods of Texture for the hair generation are those
that return a texture value at a given position:

• colorAtUV(aU , aV , aOutColor) Returns an interpolated RGB color via its
parameter aOutColor from the image texture at the position (aU ,aV ).

• realAtUV(aU , aV ) Returns an interpolated value from the single-channel
texture at the position (aU ,aV ).

• derivativeByUAtUV(aU , aV ) Returns a derivation of the single-channel
texture at the position (aU ,aV ) according to the texture coordinate aU .
This is useful for mesh displacement (see Section 2.2.3).

• derivativeByVAtUV(aU , aV ) Same as the previous method, only the re-
turned derivation is according to the texture coordinate aV .

Sometimes I need to access the stored texture data directly. For that reason
these methods can be used:

• getRawData Returns a pointer to the texture raw data.

• getHeight and getWidth Returns a resolution of the texture, which is
important for raw data handling.

• getColorCompomentsCount Returns the number of the texture channels
(one or three).

3.1.4 UVPointGenerator

UVPointGenerator implements the mesh sampling algorithm described in
Section 2.1. UVPointGenerator has three public methods (including the
constructor):

• UVPointGenerator(aTexture, aMesh, aRelativeGridSize) The constructor
executes the preprocessing stage of the sampling algorithm. It first finds the
maximum subdivision depth for all triangles from aMesh in parallel. Then
it calculates the sub-triangle barycentric coordinate look-up table using the
private method computeSubTrianglesPositions(). After that it subdivides
the triangles and calculates their probabilities in parallel. aTexture is the
required density texture. Finally it calculates the cumulative distribution
function and build the uniform grid over it in a single thread. Grid cells
count is calculated as a product of aRelativeGridSize and a total number
of sub-triangles.
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• next(aSampleX , aSampleY ) Generates a single sample using two random
numbers aSampleX and aSampleY . Supplied random numbers can be gen-
erated by any random generator.

• getDensity() Returns a sum of sub-triangle probabilities without normal-
ization. This is used during the export of the hair data to calculate how
many hairs should be generated in a selected voxel (see Section 2.3.3 for a
description of the hair data export and the voxel definition).

3.1.5 InterpolationGroups

Class InterpolationGroups is used to handle the interpolation groups. The
interpolation groups are described in Section 2.2.4. The interpolation groups are
defined by colors of interpolation groups’ texture. The InterpolationGroups
constructor receives this texture as an instance of Texture. Inside the construc-
tor the texture raw data are obtained via the Texture method getRawData and
processed into a different texture representation, which instead of colors stores
corresponding interpolation group indices. Color is converted to an interpolation
group index by an additional look-up table. This look-up table is filled with dif-
ferent colors as the interpolation groups’ texture is processed. Each new color
receives a unique index — an interpolation group index.

As have been said in Section 2.2.4, the hair in a different interpolation group
can have a different number of the hair vertices. Therefore for each interpolation
group I store a number of segments (segments = vertices - 1).

During the hair interpolation I use these methods of InterpolationGroups:

• getGroupId(aU , aV ) Returns an interpolation group id from the stored
texture at the given texture coordinates (aU ,aV ).

• getGroupSegmentsCount(aGroupId) Returns the number of segments for a
selected interpolation group.

• getMaxSegmentsCount() Returns the maximum number of segments for all
interpolation groups. This is useful when I need to allocate an array for the
hair vertices, but I don’t know the hair interpolation group yet.

I also use the methods export/importSegmentsCountToFile to export/import
segments count for every interpolation group to/from a binary stream. Other
methods of InterpolationGroups are not used during the hair procedural
generation.

3.1.6 RestPositionsDS

RestPositionsDS is used for storing the root positions of the hair guides on the
rest position mesh. These positions are split to different groups corresponding
to the interpolation groups (each hair guide is in a single interpolation group).
Each group is then stored in a KD-Tree. I used these KD-Trees to query for the
closest hair guides from a given 3D position during the hair interpolation (see
Section 2.2.4). As with any other classes, I will describe here only those methods
of RestPositionsDS that are relevant to the procedural hair generation:
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• getNClosestGuides(aPosition, aInterpolationGroupId, aN , aClosestGuides)
Returns the aN closest guides to the position aPosition from the interpola-
tion group with id aInterpolationGroupId. The closest guides are returned
as a list of guides identifiers and distances to aPosition.

• exportToFile(aOutputStream) Exports RestPositionsDS to the binary
stream aOutputStream.

• importFromFile(aInputStream, aInterpolationGroups) Imports
RestPositionsDS from the binary stream aOutputStream and uses the sup-
plied InterpolationGroups instance to rebuild the inner KD-Trees.

Figure 3.1 shows dependencies between described supplementary classes.

RandomGenerator

Figure 3.1: Dependencies between supplementary classes. If a class A uses B, an
arrow goes from A to B.

3.2 Hair generator

The actual hair procedural generation is done inside HairGenerator (see Sec-
tion 3.2.4). HairGenerator communicates with the outer world via two other
classes. These two classes are different for RenderMan and the interactive ren-
dering and must implement methods defined by two classes (interfaces)
PositionGenerator and OutputGenerator (described in the following sec-
tions). For performance reasons I want to avoid the usage of virtual functions
during the hair generation, therefore the aforementioned classes are never used
through the interface, but they are given to HairGenerator as template at-
tributes. The references to existing objects of these classes are then received in a
constructor.

In this case PositionGenerator and OutputGenerator are not really
needed, but they are useful for showing which methods should be implement-
ed. Furthermore, HairGenerator also requires the HairProperties object
(see Section 3.2.3) which stores all properties of the generated hair (scaling, ran-
domization etc.). HairProperties is inherited by classes that handle the hair
properties for RenderMan and the interactive rendering. See Figure 3.2 for a
scheme diagram.
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PositionGenerator HairGenerator OutputGenerator

HairProperties

INDEPENDENT
COMPONENT

XY

XY PositionGenerator XY OutputGenerator

XY HairProperties

XY Renderer

Figure 3.2: A scheme of hair generation interfaces. The blue arrows represent data
flow, the dotted arrows point from a derived class to a base class. Independent
component represents a part which is same for RenderMan and the interactive
rendering, XY represents classes used inside for RenderMan rendering or the
interactive rendering.

3.2.1 PositionGenerator

PositionGenerator serves as an interface for classes that generates the hair
root positions on a given triangular mesh. A class that implements
PositionGenerator will use the hair sampling algorithm defined by the class
UVPointGenerator (see Section 3.1.4) to generate samples (UVPoint) on
the mesh. Furthermore it needs a mesh storage class like Mesh or MayaMesh
(see Section 3.1.2) to calculate MeshPoint from the generated samples. See
Figure 3.3 for the PositionGenerator class diagram.

Figure 3.3: The PositionGenerator class diagram.

PositionGenerator defines these methods:

• generate(*) There are actually two methods generate(*), both of them
serve for the hair root position generation and return a hair position on
the current mesh and also on the rest position mesh. One of them has two
more parameters, that control mesh displacement (see Section 2.2.3) and
the generated hair root position is changed according to it.

• getHairCount() Returns the number of hairs that should be generated by
HairGenerator.
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• getHairStartIndex() Returns an index of the first hair. HairGenerator
uses this parameter to give each hair a unique index.

3.2.2 OutputGenerator

OutputGenerator (see Figure 3.4 for its class diagram) defines methods that
must be implemented by classes that are used as a proxy between HairGenerator
and a renderer. These classes store the generated hair data in their buffers and
then send them all at once to the renderer. It was already mentioned (see Sec-
tion 2.2.1), that each hair is represented by the hair vertices and for each of these
vertices (with an exception of the duplicated first and last vertex) I also store
color, width, opacity and the hair curve normal (the tangent and the binormal are
only used during the hair generation and are not sent to the renderer). Further-
more for each hair, HairGenerator also outputs a hair unique index, a strand
unique index, texture coordinates of the hair root and finally texture coordinates
of the strand main hair. However, only the output generator class for RenderMan
will use all these parameters (see Section 2.3.5).

Figure 3.4: The OutputGenerator class diagram.

Since different renderers use different types as input (e.g. a color component
may be defined as double or as float), it is for the best if both OutputGenerator
and HairGenerator are not dependent on any specific types. To achieve this,
OutputGenerator is a template, that receives a single class
tOutputGeneratorTypes as a template attribute. This class must define
a type for each hair parameter. For example, colors data type must be defined
by the type ColorType. Opacities, widths, normals, and positions have also
defined separate types like colors, hair/strand indices uses IndexType and the
UV coordinates of a single hair or a strand are stored as UVCoordinateType.
Any class that implements the interface OutputGenerator, must supply
tOutputGeneratorTypes with the types definitions as
the OutputGenerator template attribute. HairGenerator will also use
these types internally during the hair generation, since it will have access to their
definition via OutputGenerator. Figure 3.5 shows a diagram of this special
type handling.

For every mentioned hair parameter there is a method in OutputGenerator
that returns a pointer to an internal buffer which stores this parameter. These
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XY
XY OutputGenerator XY Renderer

OutputGenerator HairGenerator

INDEPENDENT
COMPONENT

XY OutputGeneratorTypes

Figure 3.5: The types for XY renderer are defined by class
XY OutputGeneratorTypes which is supplied to OutputGenerator
and through it to HairGenerator (red lines). The blue arrows represent data
flow and the dotted arrows point from a derived class to a base class.

methods are named *Pointer(), where the * can be color, opacity, position etc.
HairGenerator will use these methods to output the hair. These methods
must be called for each generated hair again, since the returned pointer points at
the first element of the buffer that is reserved for the currently generated hair.

The remaining methods defined by OutputGenerator control how many
hairs will be output, and how many vertices each hair will have. They must be
called in the following order (the methods beginHair and endHair will be called
more than once, but a call of the method beginHair must always be succeeded
by a endHair call):

1. beginOutput(aMaxHairCount,aMaxPointsCount) This method announces
that the hair generator wants to start outputting the hair. The parameters
aMaxHairCount and aMaxPointsCount are useful for an allocation of the
internal buffers. A total count of the outputted hair must never be greater
than aMaxHairCount and a number of vertices for each hair must not exceed
aMaxPointsCount. Since HairGenerator has an unlimited access to the
OutputGenerator internal buffers, no control of the buffers overflow
will be done by OutputGenerator.

2. beginHair(aMaxPointsCount): Announces that the next data incoming
through the *Pointer methods will be used for a new hair. Similar to the
previous method, aMaxPointsCount serves only as an upper limit of the
hair vertices count.

3. endHair(aPointsCount): This method must be called when all data for a
single hair was sent to the output generator. aPointsCount is the number
of the output vertices.

4. endOutput(): By calling this method, I tell to the output generator that all
hair has been output. This usually causes that the hair data are sent from
the internal buffers to the renderer.
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3.2.3 HairProperties

As I have stated before, the class HairProperties is used to store the hair
properties needed for the hair generation, but it is never used on its own, since the
hair properties are read-only outside the class HairProperties and their values
can only be set or changed by classes deriving from HairProperties. Therefore
for RenderMan and the interactive rendering I have special classes for storing
the hair properties, which inherit from HairProperties. HairProperties is
directly used only by HairGenerator.

Most of the stored properties are textures or scalar/color values and have al-
ready been described during the description of the hair generation. I will mention
here only those methods that are different from the rest of the properties.

• getInterpolationGroups() This method returns InterpolationGroups
(see Section 3.1.5) which stores interpolation groups.

• getGuidesSegments() This method returns a list of all hair guides. Each
hair guide is represented as a list of vertices. These hair guides vertices are
used during the interpolation described in Section 2.2.4.

• getGuidesRestPositionsDS() This method returns RestPositionsDS
(see Section 3.1.6) that is used during the hair interpolation to search for
identifiers of the closest hair guides.

3.2.4 HairGenerator

HairGenerator is a class that encapsulates the hair generation as it was de-
scribed in Section 2.2. HairGenerator receives by its constructor a refer-
ence to a class which implements the interface PositionGenerator and to a
class which implements the interface OutputGenerator. These references are
stored for later use. HairGenerator has only two methods for communication
with other classes:

• generate(aHairProperties) This method executes the hair generation. The
generator uses the properties stored inside the HairProperties instance
aHairProperties. The hair root positions are generated using the stored
reference to a descendant of PositionGenerator and the sgenerated
hair is sent to a descendant of OutputGenerator. The hair genera-
tion is split into several steps, each of these steps is represented by a pri-
vate HairGenerator method for higher readability. Since these methods
closely correspond to the already discussed hair generation steps, I will not
discuss them here.

• calculateBoundingBox(aHairProperties, aHairGenerateRatio,
aBoundingBox) This method is similar to generate, it also generates the
hair; however it never outputs any hair via OutputGenerator, it only
calculates the hair bounding box as it was describe in Section 2.2.8. The cal-
culated bounding box is returned via aBoundingBox. aHairGenerateRatio
influences how many hairs should be generated. PositionGenerator
returns via its method getHairCount() the number of the hairs to be gen-
erated. Here I multiply the returned number by aHairGenerateRatio. This
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can be used to limit the number of the hairs needed to calculate the bound-
ing box.

3.3 RenderMan support

As I have already said in Section 2.3.2, to enable rendering the hair with Ren-
derMan, I need to do two things: first I need to export the hair properties to the
temporary files and I also need to write a library that will create the hair from
the temporary files during rendering. Classes that are used to export the hair are
discussed in Section 3.3.1 and the library design is the topic of Section 3.3.2.

3.3.1 Exporting hair data

I have already talk about exporting the hair data in Section 2.3.3, so here I will
only discuss classes that are used for exporting the data and connections between
them.

SimplePositionGenerator and SimpleOutputGenerator

The classes SimplePositionGenerator and SimpleOutputGenerator im-
plement the methods defined by PositionGenerator and OutputGenerator.
SimpleOutputGenerator only declare the methods, but leave their imple-
mentation empty, since it will never receive any data from HairGenerator. On
the other hand, SimplePositionGenerator must generate the hair root posi-
tions as it was specified in Section 3.2.1. SimplePositionGenerator receives
through its constructor the rest position mesh, the current state of the mesh, the
number of the hairs and the first hair index. The implementation of the methods
defined by PositionGenerator is similar to RMPositionGenerator (see
Section 3.3.2), therefore I will omit its explanation here.

Voxelization

Section 2.3.3 talks about dividing hair into groups called voxels. This is a task
of the class Voxelization. I will briefly describe its important methods and
constructor, since most of the voxelization itself has already been discussed.

• Voxelization(aRestPoseMesh, aDensityTexture, aResolution) A task of
the constructor is simple. It divides triangles of the rest position mesh
(represented as an instance of Mesh) to the voxels. The voxels are cells
of the uniform grid build over the mesh triangles (here comes handy the
method getBoundingBox of Mesh). The uniform grid resolution is given
by the parameter aResolution. Furthermore, for each voxel I create an in-
stance of UVPointGenerator (for that I need aDensityTexture) and of
JamesRandomGenerator. I will use them later for the calculation of
a voxel bounding box. I also have to remember identifiers of the trian-
gles that lie inside a voxel. If any of the constructor parameters changes,
Voxelization must be reconstructed.
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• UpdateVoxels(aCurrentMesh, aHairProperties, aTotalHairCount) In this
method I calculate a bounding box of every voxel. First, for each voxel I will
calculate how many hairs will be generated in it and the first hair index for
each voxel, which will be used by the hair generator to give the hairs in the
voxels unique indices. The rest of UpdateVoxels is parallelized, each voxel
is handled individually. Before I calculate the bounding box, I need to split
the current state of the mesh aCurrentMesh to the voxels. This is done eas-
ily, since I have stored the identifiers of the triangles that lie in the currently
processed voxel and aCurrentMesh is the instance of MayaMesh, which
has a handy method getRequestedTriangles that returns triangles when
supplied a list of identifiers. When I have this, I can construct instances of
SimpleOutputGenerator and SimplePositionGenerator and use
them to create an instance of HairGenerator. Finally I execute the
method calculateBoundingBox of HairGenerator (this method requires
aHairProperties) and return the calculated bounding box. UpdateVoxels

should be called anytime the current state of the mesh changes or any hair
property changes.

• exportVoxel(aOutputStream, aVoxelId) This method must be called after
UpdateVoxels. It exports the voxel data (the number of hairs, the first hair
index, the part of the rest position mesh and the part of the current state
of the mesh) to the binary stream aOutputStream.

MayaHairProperties

MayaHairProperties is a descendant of HairProperties. It is able to re-
ceive user interface messages and changed the stored hair properties according
to the user actions. It also holds a pointer to the hair guides, so it can return
their vertices via HairProperties interface. MayaHairProperties has one
method, which is important for me and that is exportToFile(aOutputStream).
This method exports the hair properties (including the hair guides vertices) to
the binary stream aOutputStream.

HairShape - sampleTime

HairShape is the main class of the Stubble project and represents a hair node
inside Maya (a node is a scene object, such as a triangular mesh, a Bézier curve
or hair). It is very complex and has many functions, but here I am only in-
terested in its one particular method sampleTime(aSampleTime, aFileName,
aVoxelBoundingBoxes). sampleTime is responsible for exporting the hair data,
that will be used to render the hair at one given animation frame (aSampleTime).
First it exports the hair properties via the MayaHairProperties method
exportToFile. sampleTime receives the parameter aFileName, which is used
as the exported files name prefix. The file containing the hair properties has the
suffix .FRM. After exporting the properties, a Voxelization instance is creat-
ed (sometimes it already exists from a previous sampleTime call, so it can be
reused). The Voxelization instance is used to create the voxels and calculate
their bounding boxes. Each voxel is then exported to an individual file with the
suffix .VXi, where i is a voxel identifier. All the exported files are compressed
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using zip format. As a final step, all the voxel bounding boxes are returned via
aVoxelBoundingBoxes.

CachedFrame

CachedFrame is used for calling the sampleTime method of HairShape at
requested time samples and writing the Procedural commands to a RIB file (see
Section 2.3.2. These commands will cause that the renderer will call my library for
the hair generation. CachedFrame can be used to create several time samples
of the same HairShape instance, these time samples will be used by to create
a motion blur effect (see Section 2.3.4). CachedFrame has these important
methods and the constructor:

• CachedFrame(aHairShape,aNodeName,aSampleTime) The constructor of
CachedFrame calls the sampleTime method of the supplied HairShape
instance. sampleTime needs to know how to name the exported data files.
I export them to the directory STUBBLE WORKDIR/SCENE NAME,
where STUBBLE WORKDIR is an environment variable defined during
Stubble installation and SCENE NAME is the name of the current Maya
scene. The prefix of exported files is NODE NAME-TIME, where
NODE NAME is the unique name of HairShape instance (the parameter
aNodeName) and TIME is the time of the sample. I store the sample time,
the received voxel bounding boxes and the filename prefix for future use.

• addTimeSample(aHairShape,aNodeName,aSampleTime) This method can
be used to generate another time sample of aHairShape. It behaves the
same way as the constructor.

• emit() This method is responsible for writing the Procedural commands
to the RIB file. This is done once for each voxel by calling the command
RiProcedural (see [32, p. 87–92] for its full specification). RiProcedural

accepts two important parameters:

– args: The arguments for Procedural consists of two strings, the first
contains the name of my Dynamic-link library, that will generate the
hair. The second string consists of parameters that will be given to
my library. As has been said in Section 2.3.4, the parameters contains
a number of time samples, a name of frame file and a voxel file for
each time sample and relative samples time (e.g. if the sample times
are 7.5, 8.0 and 8.5, the relative values will be −0.5, 0.0 and 0.5).

– mybound: A bounding box of a voxel. Since I have one voxel bounding
box per every time sample, I need to merge them to a single one.

RenderManCacheCommand

I have already mentioned that I use the 3Delight implementation of the Render-
Man API. 3Delight is not only a standalone renderer, but also a plug-in for Maya1.
This plug-in allows rendering of scenes directly from Maya. To allow any custom

1http://www.3delight.com/en/index.php?page=3DFM_overview
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scene node (such as the Stubble hair) to be rendered, a special cache command
with a given interface must be created for the node. RenderManCacheCommand
represents this command for the Stubble hair. It implements the Maya interface
MPxCommand, which allows it to behave as a Maya command and therefore can
be executed from a special Maya language: MEL script. I also need to tell to the
3Delight plug-in, that I have defined such a command. This is done by redefin-
ing the simple MEL script command DL userGetGeoTypeData, which returns a
list of scene node types with associated commands. Furthermore, I need to de-
fine the MEL script command DL <custom type>CanUseObjectInstance, where
<custom type> is the name of the Stubble hair node type. All this command
does, is that it returns 0, which tells 3Delight, that commands used to render
the Stubble node (Procedural) are not simple geometry and therefore cannot be
instanced (see [32, p. 94–95] to learn what instantiation in the RenderMan API
means)

Finally I can discuss the implementation of RenderManCacheCommand.
There are several tasks that cache command must be able to do. They are all
defined in the specification of the 3Delight plug-in for Maya (see [1]) and are
distinguished by command arguments. I will discuss each of these tasks when I
describe RenderManCacheCommand methods.

To implement the MPxCommand interface I need to define two methods:

• creator(): This static method creates and returns an instance of my com-
mand.

• doIt(aArgumentsList): This method is called whenever my command is
executed from a MEL script. It receives the command arguments as its pa-
rameter. I use these arguments to distinguish what task should be executed.
For each task defined by the 3Delight specification I have one method.

The methods for handling the 3Delight tasks (the corresponding command
arguments are mentioned after a method name in brackets).

• sampleTime(-addstep -sampleTime<double><node>): This method takes
the selected <node> in the time frame <double> and stores it to an in-
ternal cache. The cache is represented as the standard C++ map, where
key is the <node> unique name and the value is a pointer to the class
CachedFrame (see Section 3.3.1). One node can be cached more than
once if motion blur is switched on and therefore more time samples of one
node are needed. If <node> is not yet in the cache, I create a new in-
stance of CachedFrame and store it to the internal cache (and with it
the first time sample), otherwise I find the corresponding CachedFrame
instance and call its method addTimeSample, which stores an additional
time sample.

• remove (-remove <node>): Removes the selected node from the internal
cache (with its time samples).

• emit (-emit <node>): Renders all time samples of the selected node by
calling the emit method of the node’s CachedFrame instance.

• flush (-flush): Clears the internal cache.
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• list (-list): Returns names of all cached nodes.

Figure 3.6 shows connections between classes used to export the hair data.

3Delight

VOXEL File

HairShape
sampleTime

Density texture,
Voxels resolution

Current state &
Rest position mesh

FRAME File

VOXEL File...

Sample time,
filenames prefix

RenderMan

Procedural
command

...

Sample time,
HairShape reference

Sample time,
HairShape unique id

Voxel bounding
boxes

Figure 3.6: A scheme of the hair data export. The blue arrows represent data
flow and green arrows represent output to files. Black and red boxes are classes
and a purple box represents a method.

3.3.2 Dynamic-Library for RenderMan

In this section I will describe important classes and methods used in the dynamic-
link library which generates all hair geometry by calling RenderMan API func-
tions. I need to define three functions that will be used by RenderMan to handle
the Procedural command.

• ConvertParameters(aParamString) This method receives Procedural pa-
rameters in the string aParamString and converts these parameters to a
binary format. The parameters are mentioned in Section 2.3.4.

• Subdivide(aData, aDetailSize) It is the main method of the library, it
receives the binary parameters aData created by ConvertParameters and
it is expected to call RenderMan API functions to generate geometry. The
parameter aDetailSize is not used by my library.

• Free(aData) This method has only one task and that is to free memory
allocated to store the binary parameters aData.

The flowchart of Subdivide has already been described in Section 2.3.4, so I
will only mention here the implementation of three important classes which are
required by HairGenerator and are responsible for most of the work done
in Subdivide. Figure 3.7 shows connections between classes used inside my
Dynamic-Library for RenderMan.

RMHairProperties The class RMHairProperties is used to load all hair
data from the compressed FRAME file and then distribute them through its
base class HairProperties. The contents of the FRAME file (and also of the
VOXEL file) has been described in Section 2.3.3.
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Figure 3.7: A scheme of the hair generation in Subdivide method of my Dynamic-
Library for RenderMan. The blue arrows represent data flow and green arrows
represent input from the files. Black and red boxes are classes and each orange
text describes data held in a nearby class.

RMPositionGenerator The constructor of RMPositionGenerator loads
the compressed VOXEL file that contains all data necessary to generate hair
positions on a triangular mesh. From these data and the hair density texture,
supplied as a parameter, I construct UVPointGenerator and the current state
of the mesh and the rest position mesh (stored as two instances of Mesh).

RMPositionGenerator implements the methods defined by the interface
PositionGenerator:

• generate(aCurrentPosition, aRestPosition). This method first generates
two random numbers using JamesRandomGenerator, then it uses these
samples as input of the UVPointGenerator method next to obtain a
sample on the triangular mesh. Finally it uses the two instances of Mesh,
one for the current state and one for the rest position state of the triangu-
lar mesh, to generate the hair root position via the method getMeshPoint.
getMeshPoint receives the generated sample as input and returns the po-
sition on the mesh as MeshPoint.

• generate(aCurrentPosition, aRestPosition,
aDisplacementTexture, aDisplacementFactor). This method works the same
as the previous method, but it generates a displaced position on the current
state of the mesh via method getDisplacedMeshPoint,which with addition
to the generated sample receives two parameters defining the displacement:
aDisplacementTexture and aDisplacementFactor.

• getHairCount() and getHairStartIndex() just returns the appropriated
values loaded from the VOXEL file.

RMOutputGenerator In the class RMOutputGenerator deriving from
OutputGenerator I call RenderMan commands that generate the hair. Ren-
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dering the generated hair in RenderMan has been already documented in Sec-
tion 2.3.5. An implementation of the methods defined by OutputGenerator
is straightforward and requires no explanation.

3.4 Interactive generation support

In this section I describe classes that are used to generate the hair interac-
tively during modeling in Maya. As it was with the RenderMan rendering,
I need three special classes for the interactive rendering that will be used by
HairGenerator. One of them, MayaHairProperties has been already men-
tioned. The whole interactive hair generation and rendering is handled inside
InterpolatedHair that will described as the last in this section.

MayaPositionGenerator MayaPositionGenerator implements the meth-
ods defined by PositionGenerator (see Section 3.2.1), however it never ac-
tually generates positions as RMPositionGenerator do. (see Section 3.3.2)
It receives already generated positions (both on the current state mesh and rest
position mesh) via its method set(mGeneratedPositions, aCount, aHairIndex)
along with the hair count (aCount) and the first hair index (aHairIndex). The
generate(*) methods then uses one of the already generated positions (that has
not been used before) each time they are called. reset() can be used to make
generate(*) methods to start giving away the generated positions from the be-
ginning.

MayaOutputGenerator The MayaOutputGenerator class receives all
the hair data (the hair vertex positions, the colors etc.) from HairGenerator
through the interface defined by its base class OutputGenerator (see Sec-
tion 3.2.2). Then it transforms these hair data and displays the hair using
OpenGL as it was decribed in Section 2.3.6).

MayaOutputGenerator has the method draw(), that causes drawing the
received data using OpenGL. draw first makes sure that the hair data were send
to a graphics card and then renders them. draw can be called anytime to draw
the hair, without the need to use HairGenerator to generate the hair again.

InterpolatedHair As has been already said, InterpolateHair encapsulates
the interactive hair generation and rendering inside Maya. InterpolatedHair
class is instanced and used by the Stubble project main class HairShape. Fig-
ure 3.8 shows connections between classes used to generate and render the inter-
active hair.

Since the generation of the hair can be quite slow, I divide the hair into
several groups which are generated in parallel (one thread per each group). Each
of these groups has its own set of objects for the hair generation stored in the
class ThreadData. To generate the hair inside Maya I need to have for each
ThreadData an instance of classes MayaPositionGenerator,
MayaOutputGenerator and HairGenerator (MayaHairProperties is
shared among all hair groups).
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ThreadData

Texture

UVPoint

MeshPoint
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Rest position
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Current state

Density texture

Figure 3.8: A scheme of the interactive hair generation. The blue arrows represent
data flow, black and red boxes are classes and each orange text describes data
held in a nearby class.

The constructor of InterpolatedHair only creates an empty ThreadData
instance for each computing thread. The hair is then generated and displayed as
reaction to the user events. These events and reactions on them are described in
Section 2.3.6. There are four different reactions, each of them corresponds to one
of the following methods:

• generate(aUVPointGenerator, aCurrentMesh,
aHairProperties, aCount): aUVPointGenerator is used to generate samples
(and I store them for later use) and aCurrentMesh makes the hair root
positions from them. I split the generated hair root positions uniformly
between the hair groups and for each group I send a block of these positions
to MayaPositionGenerator via set. MayaPositionGenerator will
then supply the hair root positions to the hair generator. The number of
the generated hairs is defined by aCount and is limited to 10,000. Finally
I generate the hair by calling the method propertiesUpdate.

• meshUpdate(aCurrentMesh, aHairProperties): This method reacts to a de-
formation or a translation of the mesh surface aCurrentMesh. Since I have
stored the generated samples, I can recalculate the hair roots position from
them using aCurrentMesh without the need to use UVPointGenerator.
This recalculation may be executed in parallel for each hair group. Finally
I call propertiesUpdate to generate the hair.

• propertiesUpdate(aHairProperties): This method generates the hair by
calling HairGenerator method generate for each hair group in a differ-
ent thread. I have to supply to this method the hair properties
aHairProperties.

• draw: Renders the previously generated hair. Each group of hair is rendered
by calling the draw method of MayaOutputGenerator. Because I use
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OpenGL to render the hair in Maya, I can’t execute rendering of the hair
groups in parallel.
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4. Results

I will divide the results chapter to two sections. In the first, I will show the results
of the sampling algorithm described in Section 2.1 and in the second I will show
the results of the procedural hair generation (see Section 2.2).

4.1 Sampling algorithm results

I test my sampling algorithm on 4 cores with 8 threads of a 3.07 GHz Intel Core
i7-950 PC with 6 GB RAM running Windows 7 64bit. I use density textures
with a resolution of 1024 × 1024 unless noted otherwise. To make full use of
the four available CPU cores, both the triangle subdivision and the sampling are
parallelized. Figure 4.1 shows sample distributions generated by my algorithm
for the three example models I use in my tests.

Bunny (70k) Dragon (202k) Buddha (1,087k)

Figure 4.1: Three different models with 7,000 point samples distributed uniformly
(top row) and according to simple density textures (bottom row). Triangle counts
for each model are listed in parentheses. Models are rendered in high resolution.
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4.1.1 Uniform Grid Performance

I start the evaluation by investigating the influence of the uniform grid resolution
on sampling performance as shown in Figure 4.2. I have used the Bunny model
and four different density textures for this test: uniform, checkerboard, Perlin
noise, and a HDR environment map. The highest sampling rate is achieved when
the number of cells is about four times higher than the CDF domain size (i.e. the
number of sub-triangles).
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Figure 4.2: Sampling rate of my algorithm for different grid sizes (reported as a
ratio of the CDF size).
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Figure 4.3: Performance of environment map sampling with and without uniform
grid-based CDF search.

As an entirely general technique, the grid-based CDF search that I use to
speed up the selection of sub-triangles in my mesh sampling algorithm can be
used for any other application that requires sampling from a discrete probability
distribution. As an example, I could use this technique to speed up computation
of lightning from an environment map. Figure 4.3 compares sampling from the
environment maps shown in Figure 4.4 with and without the grid. In the tested
cases the use of the grid led to a speedup between 5 to 14 when considering the
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environment map as a 1-dimensional probability distribution, and between 2 to
3 for a 2D distribution.

(a) Ennis (6144× 3072) (b) Grace (3072× 1536)

(c) Pisa (4096× 2048) (d) Uffizi (2400× 1200)

Figure 4.4: HDR environment maps used in my tests. The resolution of each
environment map is listed in parentheses.

4.1.2 Sampling Performance and Memory Consumption

I compare the performance and memory consumption of my mesh sampling algo-
rithm to rejection sampling (as described in Section 2.1.2) because it is the fastest
existing alternative. I consider two flavors of my algorithm – with and without
the uniform grid optimization described in Section 2.1.6 – and perform the test for
a number of different density textures: uniform, checkerboard and 2-dimensional
Perlin noise textures with different frequencies, and two HDR environment maps
from Figure 4.4 converted to a 1024× 1024 resolution.

Figure 4.5 plots the performance of the compared algorithms. With uniform
density texture, rejection sampling never rejects any samples; therefore the faster
sampling rate of my algorithm is only due to the uniform grid. Performance of
rejection sampling significantly deteriorates for non-uniform density textures (up
to 26 times for tested HDR textures), while my algorithm’s sampling rate drops
at most by 35% compared to sampling rate with a uniform texture. The drop
in performance of my algorithm is mainly caused by the fact, that for uniform
texture no triangle need to be subdivided and therefore total number of sub-
triangles is much lower than when any highly varying texture is used.

Break-down of the time my algorithm spends on sampling reveals that 2.5%−
51.2% is spent on selecting a sub-triangle by searching the CDF, while random
number generation takes 16.8% − 33.5% (using James random generator, see
Section 3.1.1), and the rest (i.e. generating sample position in a sub-triangle and
transforming it to the parent triangle) takes 32%−64% of the time. The fact that
substantial fraction of the time is spent on random number generation suggests
that my algorithm does not leave much space for performance improvement other
than micro-optimization.
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Figure 4.5: Sampling rate (in million samples per second) for rejection sampling
and my algorithm (without and with grid). Three different models with a uniform
density texture, checkerboard and noise textures with different frequencies, and
two HDR textures were used in this test.

Table 4.1 top shows the time spent on the mesh and density texture pre-
processing. Rejection sampling has the shortest preprocessing time since it only
creates the CDF based on triangle areas. My algorithm needs to subdivide trian-
gles, calculate their probabilities based on the density texture, create the CDF,
and build the uniform grid. The grid construction time is negligible (3 − 4%)
compared to the rest of preprocessing. Since triangle count for the Buddha mod-
el (1,087k) is higher than the texel count of the density texture (1,024k), only
few triangles are subdivided and the preprocessing time for my algorithm is only
slightly higher than for rejection sampling.

Memory consumption of rejection sampling and my algorithm is shown in
Table 4.1 bottom. Even though my algorithm has higher memory cost in most
cases, it is still insignificant with respect to the usual computer’s memory size.
Both preprocessing time and memory consumption of my algorithm depends on a
sub-triangles count, therefore the measured values are lowest for the checkerboard
2 × 2 texture (where most of the triangles with dark texture part are discarded
completely) and highest for highly varying HDR textures.

Finally I test the influence of a density texture resolution on my sampling
algorithm. Figure 4.2 shows preprocessing time, memory consumption and sam-
pling speed for the bunny model with an HDR density texture of different resolu-
tions. Increasing the tested density texture resolution two times causes four times
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Preprocess [ms] Bunny Dragon Buddha
Rejection sampling 6 11 67
My algorithm w/out grid 65− 68 67− 69 68− 71
My algorithm w/ grid 67− 70 68− 72 71− 74

Memory [MB] Bunny Dragon Buddha
Rejection sampling 4.3 4.8 8.1
My algorithm w/out grid 2.8− 17.8 4.3− 17.8 14.4− 17.9
My algorithm w/ grid 3.9− 23.7 5.5− 24.1 21− 25

Table 4.1: Preprocessing time in milliseconds (top) and memory consumption in
megabytes (bottom) for rejection sampling and my algorithm (without and with
grid). Same models and textures as in Figure 4.5 were used. The lowest values
were measured for the checkerboard 2 × 2 texture and the highest for the HDR
textures.

higher preprocessing time and memory consumption, however sampling speed is
decreased at most by 30%. Rejection sampling algorithm does not depend on a
density texture resolution at all, but since a density texture resolution sufficient
for hair modeling will usually be around 1024 × 1024, my sampling algorithm
dependence on a density texture resolution is only a small disadvantage.

Measured value 512× 512 1024× 1024 2048× 2048
Preprocessing time [ms] 14 70 253
Memory consumption [MB] 5.6 23.7 76.2
Samples per second [106] 44.2 39.8 28.2

Table 4.2: Preprocessing time in milliseconds (top), memory consumption in
megabytes (middle) and sampling speed (bottom) of my algorithm with uniform
grid for the bunny model. The same HDR density texture with different resolu-
tions was used during the testing.

In summary, my mesh sampling algorithm offers a speed-up between 3 and 26
compared to rejection sampling (for the tested density textures and models) and
it is up to 200× faster than the Poisson-disk sampling algorithm presented in [44]
running on a GPU. The usage of the uniform grid improves the mesh sampling
performance up to 7 times.

4.2 Procedural hair generation results

In this section I will analyze the speed of my hair generator (Section 4.2.1) and
I will also show some visual results of my hair generator (Section 4.2.2).

4.2.1 Hair generation performance

The time needed for the hair generation compared to overall rendering will be
mentioned in the following section. Here I will discuss how much time is taken by
individual hair generation steps. To do so, I am using Visual Studio 2010 Profiler
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on a fully optimized code with debug symbols. I run the profiler on a single
thread of a 3.07 GHz Intel Core i7-950 PC with 6 GB RAM running Windows 7
64bit. The test scene consist of one Bunny model (see Figure 4.1) with a high-
frequency Perlin noise density texture of 1024×1024 resolution. In all tests, 1000
hair guides are used and each hair is interpolated from the 3 closest hair guides.

Figure 4.3 shows a breakdown of the hair generation to individual steps for a
scene with 1, 000, 000 single hairs (without strands) with 5 annd 15 segments. It
is easily observable, that one of the most expensive steps are Frizz and Kink. This
is caused by the fact that they use the Perlin noise function, which is quite slow.
Since Kink calls the Perlin noise function for every hair vertex (see Section 2.2.5),
it becomes a severe bottleneck for the 15 segments hair. The interpolation of hair
from the closest hair guides is also time consuming; both the interpolation itself
and the search of the closest hair guides are responsible for that. Finally, sending
the generated hair to RenderMan takes also significant amount of time, especially
for the 15 segments hair. Please notice that thanks to my fast sampling algorithm,
the generation of samples for the hair root calculation (the calculation of the hair
root position from a sample is represented by a different step: Hair root) does
not delay the hair generation.

5 segments 15 segments
Step CPU Time Internal body CPU Time Internal body
Generate sample 2.90% 97.87% 1.64% 95.45%
Hair root 8.07% 56.49% 5.73% 64.29%
Interpolate 26.62% 12.50% 17.86% 21.88%
Frizz 10.47% 16.47% 7.14% 28.65%
Kink 18.85% 10.78% 28.01% 8.63%
Other properties 10.41% 13.61% 5.28% 13.38%
Curve frame 2.71% 6.82% 4.50% 9.92%
Finalizing hair 5.98% 38.14% 11.64% 36.42%
Random numbers 0.43% 100.00% 0.30% 100.00%
Output hair 8.26% 0.00% 13.73% 0.00%
Rest 5.30% N/A 4.17% N/A

Table 4.3: A breakdown of the hair generation to individual steps for a scene with
1, 000, 000 single hairs (without strands) with 5 (left) and 15 (right) segments.
Internal body value indicates how much work was done by a hair generation step
excluding the work done by external functions that were called by it (e.g. math
functions, Perlin noise, RenderMan functions).

Similar to the previous table, Figure 4.4 shows a breakdown of the hair gen-
eration to individual steps, however this time I generate 200, 000 hair strands
each consisting of 5 fibers with 5 and 15 segments. Remember that each fiber
of a single hair strand is computed from one generated hair, so the hair root
calculation, Frizz, Kink, the interpolation and other properties computation are
executed only 200, 000 times, therefore they are not so expensive as they were
in the previous test. On the other hand, for every fiber I need to execute the
curve frame calculation and the finalizing hair step, which use time consuming
mathematical operations (e.g. square root calculation), so these steps become
more significant than in the previous test. Finally, generation of a hair strand
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fiber from a single hair is displayed as the hair strand step. As in the previous
test, sending the hair to RenderMan is expensive, especially for the 15 segments
hair.

5 segments 15 segments
Step CPU Time Internal body CPU Time Internal body
Generate sample 3.11% 95.4% 0.73% 100%
Hair root 3.70% 68.00% 2.70% 59.46%
Interpolate 14.67% 13.13% 7.14% 34.69%
Frizz 5.04% 8.82% 3.21% 34.09%
Kink 9.93% 5.97% 12.17% 11.98%
Other properties 3.70% 8.00% 2.70% 10.81%
Curve frame 10.07% 8.82% 12.03% 13.33%
Finalizing hair 16.59% 33.04% 23.40% 34.58%
Hair strand 10.07% 8.82% 12.03% 13.33%
Random numbers 0.30% 100.00% 0.07% 100.0%
Output hair 17.63% 0.00% 25.00% 0.00%
Rest 5.19% N/A 3.72% N/A

Table 4.4: A breakdown of the hair generation to individual steps for a scene with
200, 000 strands each consisting of 5 fibers with 5 (left) and 15 (right) segments.
Internal body value indicates how much work was done by a hair generation step
excluding the work done by external functions that were called by it (e.g. math
functions, Perlin noise, RenderMan functions).

Generator Files output Rendering Hair interp. Total HD space

Mine 3.7s 38.69s 3.28s 45.67s 5.27MB
Shave and. . . 73.57s 79.12s ? 152.69s 495MB

Table 4.5: Results of rendering a model consisting of 19,800 triangles with million
hairs. Faster rendering of the hair generated by my generator is caused by the
fact, that no huge scene files with hair geometry need to be read and parsed by
the renderer. Instead, the hair is generated on the fly during the render time
from the hair guides.

Finally, I also compare the speed of my hair generator to Shave and a Haircut.
I do it by rendering million hairs on a simple sphere consisting of 19, 800 triangles.
Since Shave and a Haircut creates a hair guide for each mesh vertex, using meshes
with higher polygon count causes performance issues for Shave and a Haircut. For
my hair generator I use the same number of the hair guides as Shave and a Haircut
generates and both mine and Shave and a Haircut ’s hair guides have 5 segments.
I use uniform density texture, since I want to compare hair generation speed, not
sampling speed. Finally, I use 5 different textures with resolution 1024× 1024 to
set 5 hair properties and therefore increasing size of the temporary files used by
my hair generator (Shave and a Haircut ’s temporary files contains hair geometry,
so they are not influenced by this). In Table 4.5 you can see the time and the
hard drive space consumed during image rendering by Shave and a Haircut and
by my hair generator. The Files output time is the time spend on the creation
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of all files needed for rendering. Since Shave and a Haircut generates hair during
Files output, I cannot measure the time needed for hair generation. In this test
I have used the same machine and renderer as those described in the following
section.

4.2.2 Visual results

Here I show several models with the hair (or grass) generated by my hair gener-
ator. Images were rendered using a free license of 3Delight RenderMan, which is
only able to use 2 threads during rendering. In the description of each image I
also mention the time spent on the hair generation and the total rendering time.
To make the hair look more realistic, I use the specialized Kajiya-Kay shader
(see [21]) to calculate the generated hair final color. All images were rendered
on two threads of a 3.07 GHz Intel Core i7-950 PC with 6 GB RAM running
Windows 7 64bit. Since I have only 6 GB RAM and also limited computational
power, numbers of generated hairs (for fur) are quite low.

For each image I will mention hair generation time, a scene file output time
(including hair bounding box calculation) and finally total rendering time, which
includes the two aforementioned times. Figure 4.6 shows hair on a human head
rendered from two positions and Figure 4.7 shows different hair colors with differ-
ent hair noisiness. Figures 4.8 and 4.9 show fur generated by my hair generator,
notice how hair density changes over the creatures surface. Finally, Figure 4.10
shows that my generator is also able to generate grass.

(a) Front view (b) Side view

Figure 4.6: Blond hair consisting of 100, 000 hair strands (each consisting of 7
fibers, each fiber has 10 segments). The scene files were created in 1.54 seconds
and the hair generation took 1.23 seconds. Rendering of the front view took
287.09 seconds and rendering of the side view 313.97 seconds.
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(a) Blond hair (b) Red hair

(c) Brown hair (d) Black hair

Figure 4.7: Four different hair styles and colors, each of them has 100, 000 hairs
(each hair has 10 segments). The time spent on the creation of scene files was
between 0.8–0.9, on the hair generation 0.5–0.6 and on rendering 161–409 seconds.
Rendering time was mainly influenced by hair fibers length.
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Figure 4.9: An alien creature with 1.6 million hairs (each hair consisted of 5
segments) was rendered in 281.87 seconds, the scene file was created in 1.05
seconds and the hair generation took 4.5 seconds.
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Conclusion

The goal of this thesis was to create a procedural hair generator for the Stubble
project that would be able to generate hair in similar manner as Shave and a
Haircut. Furthermore, this procedural generator should be able to work both
interactively during modeling in Stubble project and also it should generate hair
during rendering by specialized rendering software without the need to export all
hair geometry to a renderer. All of these goals were successfully achieved.

4.3 Summary

One of the first tasks I had to solve, was to determine how to distribute hair root
positions on a given model surface according to a density stored as 2-dimensional
texture mapped on a model surface. For that purpose, I have developed a fast
sampling algorithm of triangular meshes that generates random samples accord-
ing to a density texture. My sampling algorithm is up to 26 times faster than the
fastest alternative — rejection sampling.

The hair generated by my generator is influenced by the hair guides and the
hair properties. The hair guides are few hairs directly modeled by a 3d artist;
each generated hair is interpolated from a selected number of the closest hair
guides. I have discussed different hair interpolation algorithms along with an
implementation of the chosen one. The hair properties were mainly taken from
Shave and a Haircut and my hair generator had to be made in such a way that
changing the hair properties would have the same effect as in Shave and a Haircut.
This was not an easy task since Shave and a Haircut is a commercial product and
I had no access to its source code. The hair properties fall into several categories,
some cause change of hair geometry by applying noise, others influence hair color
and width or tell the hair generator to create hair strands instead of single hairs.
All of these properties were mentioned in the description of my hair generator.

One of the crucial differences between my hair generator and the hair generator
from Shave and a Haircut is that it is able to generate the final hair on the fly
without the need to store hair geometry in files with the rest of the rendered
scene. This makes the rendering process very efficient. To implement the hair
generation during rendering I export data such as the hair guides or the hair
properties to files (with insignificant size compared to a scene file with complete
hair geometry), that I later use to generate hair by my library which is executed
by the renderer.

My hair generator is easily expandable to support numerous renderers. This is
mainly achieved by its universal implementation. Thanks to this, I was also able
to easily make the interactive hair generation and hair rendering by OpenGL. My
hair generator currently supports two rendering softwares: 3Delight RenderMan
and mentalray. Support for mentalray was written by another team member of
the Stubble project using my hair generation library.

One of the original tasks of my thesis was handling of collisions of the gener-
ated hair with a model surface. The current implementation of my hair generator
relies on the fact that collisions of hair guides with the surface are handled within
the Stubble project and so in many cases it is unnecessary to handle collisions of
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the generated hairs with the surface. Of course this is not true for many scenes,
especially when very long hairs are generated. The main reason why I avoid
generated hairs collisions handling is because it would be very time consuming.

4.4 Future work

There are several tasks that could be addressed in future. First of all, I would like
to improve my sampling algorithm, so it is able to generate blue noise distributions
of samples in a very fast way. Such a fast sampling algorithm could be used by
many applications as suggested by numerous papers mentioned in Chapter 1.

As I have mentioned above, collisions of the generated hair with a model
surface are not currently implemented for performance reasons; however I believe
that if an approximation of the model surface was used along with some simplified
hair–surface collisions reactions, it could be possible to handle the collisions for
small counts of the generated hair (by small counts I mean around 100,000 which
is sufficient for a human head).

The hair generated by my procedural hair generator can be rendered by 3De-
light RenderMan, mentalray and OpenGL. In the future, I would like to extend
this list to Pixar’s RenderMan PRMan and Arnold renderer. Both of these ren-
derers are often used by 3d artists.

Finally, I would like to speed up hair generation by implementing some fea-
tures mentioned in [35], such as reducing generated hair numbers along with hair
width increase when the hair is viewed from a huge distance or motion blur is
applied on it.
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A. Attached CD’s content

There is an attached CD to my thesis, which is structured in the following way:

• source This folder contains the source of whole Stubble project, which
includes my hair generator. The sub-folder Stubble contains the source of
the plugin to Maya and the sub-folder StubbleHairGenerator contains
the hair generator library for 3Delight RenderMan.

• external This folder contains several libraries which are used by the Stubble
project.

• manual This folder contains both the developer and the user manual for
the Stubble project. Some of the information inside the developer manual
concerning the hair generation may be outdated.

• thesis-source Here you can find the source files (e.g. LATEX documents) of
my thesis.

• Furthermore, the root of the CD contains my thesis as thesis.pdf and
the Stubble project instalator stubble-setup.exe. For instructions about
Stubble installation and using Stubble (including the hair generation) see
the Stubble user manual.
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