Procedural Modeling of Urban Road Networks Supplementary Material

Jan Beneš¹ Alexander Wilkie¹ Jaroslav Křivánek¹
¹Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

1. Historical Context

Below, Historical Context values for all results are given. Note that $P(t, \alpha)$ is *fully defined* by means of $S_c(t)$, $S_w(t)$, $S_p(t)$, as mentioned in the caption of Figure 7, and only these coefficients are given in the table below. We use a step of our algorithm as the basic unit of time. All results were generated over the course of 300 steps.

	Historical Context parameters for Figures 11a, 11b, 11d, 11e, 11f, 12.										
Time	Step Center	Step Width	Step Height	Recommended Road Capacity	Major Road Coefficient	Minor Road Coefficient	Unbuilt Harbour Coefficient	Built Harbour Coefficient	Bridge Coefficient	Extendible Road Coefficient	Street Pattern
t	$S_c(t)$	$S_w(t)$	$S_p(t)$	$\boldsymbol{A}(t)$	$C_1(t)$	$C_2(t)$	$C_3(t)$	$C_4(t)$	$C_5(t)$	$C_6(t)$	K
1–8	2.3	0.5	100	300	0.85	0.4	50000	16666	50000	0.3	Medieval
9-34	2.3	0.5	100	800	0.25	6.3	5000	1666	50000	0.3	Grid
35-95	2.3	0.5	100	1100	0.25	6.3	5000	1666	50000	0.3	Grid
96-300	2.3	0.5	100	1100	0.25	6.3	5000	1666	50000	0.3	Erratic Grid

	Historical Context parameters for Figure 11c.											
Time	Step Center	Step Width	Step Height	Recommended Road Capacity	Major Road Coefficient	Minor Road Coefficient	Unbuilt Harbour Coefficient	Built Harbour Coefficient	Bridge Coefficient	Extendible Road Coefficient	Street Pattern	
t	$S_c(t)$	$S_w(t)$	$S_p(t)$	A(t)	$C_1(t)$	$C_2(t)$	$C_3(t)$	$C_4(t)$	$C_5(t)$	$C_6(t)$	K	
1–43	2.3	0.5	100	300	0.85	0.4	50000	16666	50000	0.3	Medieval	
44-60	1.9	1.5	40	300	0.125	0.1	5000	1666	50000	0.3	Medieval	
61-300	2.3	0.5	100	1100	0.25	6.3	5000	1666	50000	0.3	Grid	

Values of the time independent O_1, \dots, O_4 scalar constants.								
$\overline{\boldsymbol{o}_1}$	o_2	O ₃	o_4					
$0.3 \cdot (180/\pi)$	50	0.5	0.5					

2. Per-City Parameter Values and Timings

Per-City Parameter Values.									
Name	b	u							
Figure 11a	0.084	0.55							
Figure 11b	0.111	0.55							
Figure 11c	0.14	0.7							
Figure 11d	0.09	0.45							
Figure 11e	0.12	0.55							
Figure 11f	0.2	0.35							
Figure 12	0.108	0.55							

	Average running time over 5 runs in seconds.											
Figure 11a	Figure 11a Figure 11b Figure 11c Figure 11d Figure 11e Figure 11f Figure											
272.01s	150.53s	166.58s	157.256s	209.505s	149.753s	237.68s						

3. Notation

The symbols are split into three groups:

- 1. All functions and coefficients related to the *historical context*, that is those reused for a set of generated cities, are in upper-case bold, for example G(t), K(t), O_1 .
- 2. Values that are supplied or generated for each city are in lower case bold, for example t(t) and m.
- 3. Other, *non-input symbols*, mostly used in the description of the algorithm itself, are in a normal, non-bold font, for example t, G, α , and Cost(P).

In many cases, e.g. s and S, a lower-case letter will denote members of set denoted by the same upper-case letter. All of the pathfinding related symbols are in calligraphic letters. Functions used in pseudo-code are in in small-caps. Where possible, the first letter of the described term is used as a symbol, for example B for the built-up area.

		Historical Context (upper-case bold).							
	G(t)	Growth per simulation step, expressed in number of nodes $j \in J$ that will spawn new streets.							
	$\mathbf{K}(t)$	Sequence of minor road pattern definitions.							
	$\mathbf{R}(t)$	Major road construction parameters; an umbrella function, see below for a complete list.							
($P(t, \alpha)$	Turn angle penalty function, expressed using $S_c(t)$, $S_w(t)$, $S_p(t)$.							
ļ	$S_c(t)$	Center of the step function.							
	$S_w(t)$	Width of the step function.							
İ	$S_p(t)$	Height of the step function.							
1	$\boldsymbol{A}(t)$	Recommended major road capacity.							
$\mathbf{R}(t) = \langle$	$C_1(t)$	Major road edge cost coefficient for \mathcal{G}' .							
	$C_2(t)$	Minor road edge cost coefficient for \mathcal{G}' .							
ı	$C_3(t)$	Unbuilt harbor edge cost coefficient for \mathcal{G}' .							
1	$C_4(t)$	Built harbor edge cost coefficient for \mathcal{G}' .							
	$C_5(t)$	(Unbuilt) bridge cost coefficient for \mathcal{G}' .							
l	$C_6(t)$	Extendable road edge cost coefficient for \mathcal{G}' .							
	o_1	Edge slope coefficient.							
	o_2	Segment traffic capacity per unit WIDTH.							
	o_3	Trade route length coefficient.							
	o_4	Trade route cost coefficient.							
		Per-City Input (lower-case bold).							
	t (t)	Traffic for any city pair at time t							

- t(t) Traffic for any city pair at time t.
- *m* Terrain elevation map.
- nc List of neighboring cities.
- y List of all possible neighboring city pairs.
- y' An ordered list that is a subset of y.
- u Reuse coefficient for paths/roads during initial road network construction.
- c Number of neighboring cities, c = |nc|.
- **b** Coefficient that relates traffic t(t) and growth G(t) by $t(t) = b \cdot G(t)$

Non-input symbols.

- t Time, in steps (iterations) of the algorithm.
- T(...) Traffic over a segment or a trade route.
- $T_A(...)$ Available traffic capacity for a segment or a trade route.
 - G Planar graph representing the road network, G = (J, S).
 - j Node, an individual vertex of G.
 - J Set of all nodes, that is the vertices of G.
 - s Segment, an individual edge of G.
 - S Set of all segments, that is the edges of G.
 - \mathcal{G} Pathfinding graph, $\mathcal{G} = (\mathcal{L}, \mathcal{E})$.
 - \mathcal{L} Regular lattice, i.e. the set of vertices of \mathcal{G} . Spaced at ℓ units (metres). Subscripts L, W, F denote lattice vertices over land, water, and forbidden areas respectively.
 - \mathcal{E} Set of edges of \mathcal{G} . Subscripts L, W, H, B denote edges over land, water, harbor edges, and bridge edges respectively.
 - e Edge in \mathcal{G} .
 - ℓ Spacing of the regular lattice \mathcal{L} , in metres.
 - \mathcal{G}' Temporary copy of \mathcal{G} that allows for pathfinding over both the road network and terrain.
 - \mathcal{P} Path (sequence of edges) found in \mathcal{G} or \mathcal{G}' .
 - r "Square" radius up to which the vertices in \mathcal{L} are connected by edges.
 - p_i Pair of (distinct) cities in nc.
 - C Neighbouring city $C \in nc$.
 - P Trade route, represented as a sequence of segments s, that is edges in G.
 - P_i Set of all trade routes that connect the cities of the neighbouring city pair p_i .
 - $P_{i,j}$ The j-th trade route that connect the cities of the neighbouring city pair p_i .
 - P_A Trade route over existing roads proposal, running exclusively over segments, that is edges, in G.
 - P_B Trade route over both existing roads and free terrain, that is segments in G and edges in the pathfinding graph \mathcal{G} , after they are copied to \mathcal{G}' .
 - P_W The better of P_A , P_B .
 - α Angle between two consecutive segments, ranging from 0 (turn back) to π (no turn).
 - S City shell, the outer face of the planar graph G.
 - B Built-up area of the city.
 - $B_{B,i}$ Built-up block.
 - $B_{T,i}$ Terrain block.
 - FILL Fill operator that returns the set of points on the inside of a block or the city shell.
 - NB Neighborhood operator that returns the set of points in the neighbourhood of a block or the city shell.
- LENGTH(e) Length of and edge $e \in \mathcal{E}$.
 - COST(P) Cost of a trade route.
- WEIGHT(e) Weight of an edge $e \in \mathcal{E}$, that is the difficulty of getting from one vertex of the edge to another.
- WIDTH(s) Width of a road/segment $s \in S$, in metres.
- EUCLIDEANDIST(a,b) Euclidean distance between the positions of two objects a and b.
 - RANK(z) Ranking function of nodes z that can grow new minor roads.
 - SMOOTHSTEP(x) Smooth step function $3x^2 2x^3$.
 - Z Set of nodes from which new minor roads may be grown.
 - Z' List of nodes in Z ordered by RANK(z).
 - z Nodes in either Z or Z'.
 - q Nucleus of city growth.
 - q_N Nuclei nearest to a given node z.
 - q_C Nuclei on the initial road network that is the closest to geometrical center of the map X.
 - Q Set of city growth nuclei.
 - STRENGTH(q) Strength of nucleus, $STRENGTH(q) \in (0,1)$, with 0 for no influence at all and 1 for maximum influence.
 - μ Expected value of the number of cities c.
 - ϕ Global angular offset of neighbouring cities. $\phi \in (0, 2\pi)$.
 - θ_i Per-ray perturbation of the *i*-th neighbouring city. $\theta_i \in \langle -\frac{\pi}{2c}, \frac{\pi}{2c} \rangle$.
 - $E_{L,\max}$ Maximum edge slope for an edge $e \in \mathcal{E}$.
 - $E_{L,\mathrm{cut}}$ Maximum allowed edge slope for any edge $e \in \mathcal{E}$.
 - X Geometrical center of the map.

				1					1	1			$\overline{}$
Contributions to road network modelling	Influence of neighbouring cities, formation of urban landscape, changing minor road patterns with time, effects of water transportation.	Synthesizes road networks from example fragments, introduces random walk road network syntehsis.	Tensor field driven minor andmajor road generation, easily steerable road network generation.	Scattered settlements, meaningful initial settlement positioning, roads connecting to neighbouring cities.	First to generate large-scale major road networks, graph pruning based road generation.	Interpolation of historical map "key-frames" by construction/destruction events, uses a scheduling algorithm.	Extender and connector agents generate minor roads, one kind of developer agent for each land use generates parcels.	First to generate urban road networks, introduced rule based pattern expansion for generating minor roads.	Agent based behavioral modelling, integra- tion with geometric modelling, road generation adapts to land use. Highly interactive.	Ability to model using target indicators, coupling of existing forward procedural modelling methods and inverse modelling to generate desired cities.	First to generate cities that grow over time, highly configurable land-use simulation.	Generates optimized urban layouts suitable for urban planning, hierarchically constructs layouts using either templates or streamline tracing.	Propose a measure for finding best intersection/outgoing roads match in example data.
Land Use	None	None	None	None	None	Input map interpolation	Agent based	None	Behavioral mod- elling	User-defined	Dynamic disequi- librium	none	No
Major Roads	Inter-city traffic simulation	Random walk over set of intersections	Tensor field tracing	None	Graph skeletons	Building/destroying roads be- tween key-frames	None	Follow population gradient	Sketched by user, possibly expansion	Rule based pattern expansion	Pattern expansion	Templates and/or streamline tracing	Pattern matching
Minor Roads	Rule based pattern expansion	Random walk over	Tensor field tracing	Shortest path	None	Building/destroying roads be- tween key-frames	Agent Based	Rule based pattern expansion	Enhanced rule based pattern expansion	Rule based pattern expansion	Rule based pattern expansion	Templates and/or streamline tracing	Pattern matching
Time progressions	Yes	Š	o _N	Yes	No.	Yes	Yes	Š	Š	Š	Yes	Š	Yes
Focus	Automatic	Automatic User-aided	User-aided	Automatic	Automatic User-aided	User-aided	Automatic	Automatic	User-aided	User-aided	Automatic	Automatic User-aided	Automatic
Method	Our method	Aliaga et al. [AVB08]	Chen et al. [CEW*08]	Emilien et al. [EBP* 12]	Galin et al. [GPGB11]	Krecklau et al. [KMK12]	Lechner et al. [LWW03]	Muller et al. [PM01]	Vanegas et al. [VABW09]	Vanegas et al. [VGDA*12]	Weber et al. [WMWG09]	Yang et al. [YWVW13]	Yu et al. [YS12]

Table 1: Basic comparison of methods that support road network synthesis.

References

- [AVB08] ALIAGA D. G., VANEGAS C. A., BENEŠ B.: Interactive example-based urban layout synthesis. ACM Trans. Graph. 27, 5 (2008). 4
- [CEW*08] CHEN G., ESCH G., WONKA P., MÜLLER P., ZHANG E.: Interactive procedural street modeling. ACM Trans. Graph. 27, 3 (Aug. 2008), 103:1–103:10. 4
- [EBP*12] EMILIEN A., BERNHARDT A., PEYTAVIE A., CANI M.-P., GALIN E.: Procedural Generation of Villages on Arbitrary Terrains. The Visual Computer (2012). 4
- [GPGB11] GALIN E., PEYTAVIE A., GUÉRIN E., BENEŠ B.: Authoring Hierarchical Road Networks. CG Forum 30, 7 (2011). 4
- [KMK12] KRECKLAU L., MANTHEI C., KOBBELT L.: Procedural interpolation of historical city maps. In EG 2012 (2012), Eurographics Association. 4
- [LWW03] LECHNER T., WATSON B., WILENSKY U.: Procedural city modeling. In 1st Midwestern Graphics Conference (2003). 4
- [PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of cities. In ACM SIGGRAPH 2001 (2001), ACM Press. 4
- [VABW09] VANEGAS C. A., ALIAGA D. G., BENEŠ B., WADDELL P. A.: Interactive design of urban spaces using geometrical and behavioral modeling. In SIGGRAPH Asia '09 (2009). 4
- [VGDA*12] VANEGAS C. A., GARCIA-DORADO I., ALIAGA D., BENES B., WADDELL P.: Inverse design of urban procedural models. *ACM Trans. Graph.* (2012). 4
- [WMWG09] WEBER B., MÜLLER P., WONKA P., GROSS M.: Interactive geometric simulation of 4D cities. CG Forum 28, 1 (2009). 4
- [YS12] YU Q., STEED A.: Example-based road network synthesis. In EG 2012 Short Papers (2012), Eurographics Association. 4
- [YWVW13] YANG Y.-L., WANG J., VOUGA E., WONKA P.: Urban pattern: Layout design by hierarchical domain splitting. ACM Trans. Graph. 32 (2013). 4