Hardware pro pocitaovou grafiku
NPGR019

Hardware graphics effects

Josef Pelikan
Jan Horacek

http://cgg.mff.cuni.cz/
MFF UK Praha

2012



http://cgg.mff.cuni.cz/

Table of contents

@ Bloom Effect
© Ambient Occlusion
© Terrain Rendering

Q@ Literature




Bloom effect




Lowpass Image Filtering

@ Some fullscreen effects need to blur the image
@ In HDR rendering used to emphasize overexposed parts

@ "Cheap” effect to:

@ Increase realism (photo-like appearance)
@ Change mood of scene (dreamy-like appearance)

@ Often used as a means of calling a game Next-Gen




Box filter

@ Image subsampling

@ Simplest technique, has support on most current and even
older HW

@ Needs only rendering to buffer




Implementation

@ Render scene to offscreen buffer (texture)

@ Buffer for next step rendering half-size than current image
© Draw fullscreen quad with texture coordinates so that pixels
are placed inbetween current texels
o This performs linear interpolation of texels "for free” (in
texturing unit of graphics card)
@ Go to step 2 until sufficient resolution

© Map low-resolution result on fullscreen quad and alpha-blend
with scene




Properties

@ Advantages

e Very fast
e 2-4 iterations enough for strong effect




Properties

@ Advantages

e Very fast
e 2-4 iterations enough for strong effect

@ Disadvantages

e Resolution-dependent
e Linear filtering artifacts




Gauss filter

@ Overcomes the problem with linear filtering artifacts by
performing convolution with Gauss kernel

@ Does not suffer by linear artifacts

o Gauss filter separable: 2D convolution == 2x1D convolution




Implementation

@ Use row from Pacal’s Triangle as convolution kernel
o Caution: different rows have different o

1
1 1
1 2 1
1 3 3 1
14 6 4 1
1510 10 5 1




Implementation

@ Downsample to ease computational burden
@ Perform convolution in X direction
© Perform convolution in Y direction

@ Map filtered result on fullscreen quad and alpha-blend with
scene




CPU vs. GPU Performance Example

o Filtering 4096x4096xRGB image

@ "Stupid” implementation in C
e Simple for cycle, contains modulo for each pixel
e 7425ms




CPU vs. GPU Performance Example

o Filtering 4096x4096xRGB image

@ "Stupid” implementation in C
e Simple for cycle, contains modulo for each pixel
e 7425ms

e Optimized implementation in 1A32 assembler

e Special cases handled separately, around 600 instructions
e 1560ms




CPU vs. GPU Performance Example

o Filtering 4096x4096xRGB image
@ "Stupid” implementation in C
e Simple for cycle, contains modulo for each pixel
e 7425ms
e Optimized implementation in 1A32 assembler
e Special cases handled separately, around 600 instructions
e 1560ms
@ OpenGL ARB_fragment_program

o Around 30 instructions
o << 15ms




Examples




Examples

Halo 3 NFS: Most Wanted




Notes

@ Render in full resolution and then downsample/filter
o Otherwise temporal artifacts

@ Use alpha channel on non-HDR textures for bloom




Ambient Occlusion




Goal of Ambient Occlusion

Simulate ambient light coming from all directions

Take into consideration accessibility of polygon/point

Simple point light rendering creates unrealistic " hard”
appearance

Inner corners and holes appear darker




Raytraced version

@ From each point trace rays into surrounding
@ Discard rays that hit the object itself

@ Rays that do not hit any other polygon from the object
sample an environment map

@ Sum samples and use its average as incoming ambient light




Raytraced version




Preprocessing for realtime display

@ Preprocess with raytraced version

@ From each point trace rays into surrounding
@ Store unoccluded/total rays ratio F
© Store average direction of unoccluded rays B

o With good tesselation - enough per poly

o Coarse tesselation - use texture maps




Rendering on older HW

@ Use unoccluded/total rays ratio F for modulating color
texture (like lightmap)

@ Applicable as single pass even on HW like 3Dfx Voodoo2
@ Adds a sort of "visual depth” to the objects

@ Can be simply combined with many other effects




HW Preprocessing

Use array of lights surrounding the object (100-1000)

For each light create shadow map

Combine shadow maps during rendering
e Many textures = multiple passes

Need high precision accumulation buffer (16bit is not enough)

Computationally intensive, but still much faster than SW
raytracing




HW Preprocessing 2

@ Combining in camera space is good for single image display,
but not for realtime performance

@ Use vertex program for unwrapping model according to the
texture coordinates, other parameters stay the same

@ Render result into the texture instead of screen space

@ Use texture for realtime rendering




Environmental light on modern HW

e Environmental map in lat-long projection (mipmap friendly)

@ Precompute maps of B and F (offline, but only once for a
model)

@ During rendering use B as sample direction into the
environment map

@ Estimate sample area from F

@ Use fast HW mipmapping for sample area averaging




Environmental light on modern HW 2

@ Physically incorrect, but gives visually good results, incorrect
parts usually covered

@ Applicable on animated models - compute for keyframes and
interpolate B and F




Examples - Accessibility

Phong shading Accessibility coefficient




Examples - Normals

Model normals Average unoccluded ray B




Examples - Comparison of results

Phong shading Environment lighting




Terrain rendering




Terrain Rendering Approaches

@ Heightmaps
e Do not handle well complex geometry such as overhangs,
caves, etc.
@ Handcrafted

e Too painful work for more complex terrains
o Area limited




Terrain as a 3D function

o Inspired by volumetric data rendering (medicine, biology, etc.)

e Function f(x,y, z) = density

e Terrain generated as isosurface at f(x,y,z) =0

Flat land: f(x,y,z) =y
Planet: f(x,y,z) = /(X% + y? + z2)




Noise Function

Change density function with noise

Noise generated in 3D texture

o
o
o Different amplitudes and octaves generate different features
e density(x,y,z) + Am - noise(Oc - x,Oc - y, Oc - z)

°

Usually 8 octaves enough for creating terrain with all kinds of
features from the size of hills to the size of small crevices




Examples - Simple terrains




Creating Polygons

@ Divide world into blocks and generate & display only visible
blocks of 323 cubes

@ Sample density function and store it in 3D texture (a set of
2D textures)

© Use Marching cubes algorithm for creating polygonal surface
in geometry shader

© Calculate lighting and textures/texture coordinates
© Discard invisible blocks




Algorithm improvements

@ Geometry shader can generate only indices, move work to
vertex shader for generating actual parameters

@ Share vertices between neighbouring cubes

--q
.

y

QT
@l
@@

&
NV




Additional Effects

@ Warp world space coordinates to create organic-like effects

Warped world space coordinates




User Control

@ User data for manual control of various parameters can be
easily used

e For example landing pads for helicopters, roads, flat lands, ...
@ Textures for local control of noise behaviour

e Amount of noise, octaves/amplitudes, flat lands
e Rocky area, organic-like area, ...




Lighting

@ Ambient occlusion for terrain shading

@ Sample density volume by many samples in close
neighborhood of polygon for small crevices shading
@ Sample broader part of density function by fewer samples to
shadow big caves/valleys
e May reach outside the volume - sample directly function
instead of precomputed volume
@ Use soft decision version for smoother result
e Hard decision creates shading artifacts




Lighting Schema

Sampling point neighborhood




Dynamic objects

@ Density function may be used for other computation, such as
collision detection

o Density behaves similarly to distance function

@ Ambient light - sampling local neighborhood of object




Literature

o GPU Gems 1,2,3

e http://www.gamedev.net

e http://www.fusionindustries.com




