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Abstract

Local Principal Component Analysis (LPCA) is one of the popular techniques for dimensionality reduction and
data compression of large data sets encountered in computer graphics. The LPCA algorithm is a variant of k-
means clustering where the repetitive classification of high dimensional data points to their nearest cluster leads
to long execution times. The focus of this paper is on improving the efficiency and accuracy of LPCA. We propose
a novel SortCluster LPCA algorithm that significantly reduces the cost of the point-cluster classification stage,
achieving a speed-up of up to 20. To improve the approximation accuracy, we investigate different initialization
schemes for LPCA and find that the k-means++ algorithm [AV07] yields best results, however at a high com-
putation cost. We show that similar ideas that lead to the efficiency of our SortCluster LPCA algorithm can be
used to accelerate k-means++. The resulting initialization algorithm is faster than purely random seeding while
producing substantially more accurate data approximation.

Categories and Subject Descriptors (according to ACM CCS): I.5.3 [Pattern Recognition]: Clustering—Algorithms;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Precomputation-based and data-driven approaches have
emerged in computer graphics as important tools for im-
proving rendering performance and increasing image fi-
delity [Ram09, FH09]. Common to these techniques is
the need to compress large data sets consisting of high-
dimensional data points. One of the successful data compres-
sion approaches has been so called local principal compo-
nent analysis (LPCA), also known as clustered PCA (CPCA)
[KL97]. LPCA was shown to be effective for compres-
sion of transfer matrices in pre-computed radiance transfer
[SKS02, SHHS03, HR10] or of Bidirectional texture func-
tion (BTF) data sets [FH09, MMK03]. However, slow per-
formance of the data compression (often several hours for a
single data set) is a serious bottleneck in the data processing
pipeline. For instance, though PRT may be a useful tool for
scene relighting, the long pre-computation times (including
the data compression) may hinder its practical applicabil-
ity. Quite surprisingly, performance of data compression has
been largely unaddressed in previous computer graphics re-
search. Huang and Ramamoorthi [HR10] do accelerate the
transfer matrix pre-computation, however, they still rely on
the slow LPCA algorithm to compress the resulting data set.

In this paper we improve both performance and data ap-
proximation accuracy of the LPCA algorithm. Being a vari-
ant of k-means clustering, the bottleneck of LPCA consists
in the repeated classification of data points to the near-
est clusters. Due to the high data dimensionality, simple
approaches such as spatial data indexes [PM99, KMN∗02]
are ineffective at accelerating this process. Nonetheless, we
found that a significant speed-up can be achieved by tak-
ing advantage of the information gathered as the algorithm
progresses to eliminate some point-cluster distance calcula-
tions that provably cannot change current point-cluster as-
signment. Though this simple and effective idea (known as
SortMeans) has been previously used to accelerate k-means
clustering [Phi02, Elk03], to our knowledge our work is the
first to investigate its use in computer graphics. Our main
contribution, however, consists in extending the SortMeans
algorithm [Phi02] from the simple k-means problem (where
each cluster is represented by one mean point) to the LPCA
problem (where a cluster is represented by an affine sub-
space). In addition, we improve the approximation accuracy
of LPCA by seeding the clusters using the k-means++ al-
gorithm [AV07]. To minimize the performance impact of
this advanced initialization, we apply a variant of SortMeans
to cut some of the unnecessary distance calculations. We
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present extensive measurements of performance and approx-
imation accuracy of the presented algorithms for four radi-
ance transfer matrices (similar to [HR10]) and three BTF
data sets from the University of Bonn database. The speed-
up of classification is 5 to 20 for the coherent transfer matri-
ces and 1.2 to 1.6 for the complex BTF data. We show that
the k-means++ algorithm substantially improves the approx-
imation accuracy for the investigated data sets. Our results
could be useful both in and outside of computer graphics.

2. Related Work

LPCA in computer graphics. Local principal compo-
nent analysis (LPCA) was devised by Kambhatla and
Leen [KL97] in the machine learning community. It was
introduced to computer graphics (under the name clustered
PCA) by Sloan et al. [SHHS03] who used it for the com-
pression of low-frequency light transfer matrices in pre-
computed radiance transfer [SKS02]. LPCA was later used
for all-frequency light transfer on glossy surfaces [LSSS04,
MSRB07, XJF∗08, HR10]. Mahajan et al. [MSRB07] adapt
the clusters to optimize a rendering performance metric, and
use a hierarchical splitting algorithm instead of k-means-
based clustering. Huang and Ramamoorthi [HR10] achieve a
substantial speed-up of LPCA compression by reducing the
size of the input data set. Our work, on the other hand, fo-
cuses on the acceleration of the LPCA algorithm itself and is
complementary to their work. LPCA is also one of the most
widely used algorithms for BTF data compression because it
provides both high compression ratio and low approximation
error [FH09, MMK03].

Acceleration of k-means and related methods. Despite a
wide range of LPCA applications, we are not aware of any
work on improving the algorithm’s performance. Most of the
previous research has focused on the acceleration of the sim-
pler k-means clustering. The idea is to reduce the number
of distance calculations when classifying data points to their
nearest cluster. Some works organize the data points in a spa-
tial data structure such as kd-tree [PM99,KMN∗02,Moo00].
With the exception of [Moo00] these approaches are ef-
fective only for low-dimensional data points. Other works
are based on using the triangle inequality to avoid unnec-
essary point-cluster distance calculation. Works of Hodg-
son [Hod88] and Phillips [Phi02] propose the use of an
upper bound on the distance between a data point and a
cluster. Our algorithm is based on their ideas, specifically
on Phillips’ SortMeans algorithm. We generalize the algo-
rithm to the more complex LPCA problem. More recent
works [Elk03, Ham10] add the use of a lower bound on
the point-cluster distance to make k-means clustering even
faster. The computation of the lower bound is, however, not
trivial in the case of LPCA, and we do not use it.

Initialization of k-means. The k-means algorithm is prone
to getting stuck in local minima of the objective function

thereby producing suboptimal clustering results. Random
restarts [KMN∗02] partially alleviate the problem at a high
computational cost. More advanced initialization algorithms
attempt to seed the centroids close to the target clustering.
The farthest-first heuristic [HS85] tends to place the initial
centroids on the outer hull of the space subtended by the data
points. The state-of-the-art k-means++ algorithm [AV07]
achieves better results by randomizing this process. In spite
of using a more advanced heuristic for choosing the first two
centroids, the variant of k-means++ described by Ostrovsky
et al. [ORSS06] did not significantly improve the results in
our experiments.

3. Preliminaries

3.1. Problem definition

We start by formally defining the data approximation prob-
lem that we address in this work. Let the input data set
X ⊂ Vd be a subset of a d-dimensional linear space Vd with
the dot product 〈·, ·〉, and let k and l be integers. The goal is
to choose k affine subspaces a1, . . . ,ak ⊂ Vd of dimension
up to l, l < d such that the following objective function is
minimized:

φ = ∑
x∈X

k
min
j=1

d(x,a j),

where d(x,a) is the distance of data point x ∈ X from affine
subspace a. The assignment of x to their nearest affine sub-
spaces induces a clustering (partition) of the data set X .

The distance d(x,a) is defined as [KL97]:

d(x,a) = ‖(x−µ(a))−xs‖, (1)

where µ(a) is the origin of a, dir(a) is its basis, and xs is the
orthogonal projection of (x−µ(a)) onto a:

xs =
l

∑
i=1
〈x−µ(a),diri(a)〉 ·diri(a). (2)

3.2. Local Principal Component Analysis (LPCA)

Finding the optimal solution of the above problem is
NP-hard, even just for two clusters of zero dimen-
sion [DFK∗04]. To find an approximate solution, Kambhatla
and Leen [KL97] proposed the local principal component
analysis (LPCA) algorithm as a modification of the classical
k-means algorithm (which solves the problem defined above
in affine subspaces with dimension of l = 0). The LPCA
algorithm proceeds as follows. In the first step, initial cen-
troids for the clusters are selected. Each data point x ∈ X
is assigned to the nearest (in terms of Euclidean distance)
cluster. In the second step, affine subspaces are found within
each cluster and are used as a low-dimensional approxima-
tion of the data points assigned to it. Both steps are repeated
several times. Then the dimension of the affine subspaces is
increased and the whole previous computation is performed
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again until the desired dimension of the subspaces is reached
[SHHS03].

Thanks to its simplicity, LPCA is one of the most widely
used algorithms in computer graphics for approximation
of high-dimensional signals. However, LPCA is computa-
tionally demanding when used for classification of high-
dimensional points into a high number of clusters. The in-
efficiency comes from the fact that no information is passed
from one stage to another: the point classification computes
distances to all PCA subspaces for each data point. Our goal
is to avoid unnecessary distance calculations by exploiting
the information computed in the previous iteration. Our ac-
celerated algorithm produces exactly the same clustering as
the original LPCA algorithm, but more quickly.

3.3. SortMeans: Acceleration of k-means Clustering

Our algorithm is based on the SortMeans algorithm pro-
posed by Phillips [Phi02] for accelerating the k-means prob-
lem, which is an instance of the data approximation problem
defined above, where the dimension of the affine subspaces
is l = 0. Phillips uses the triangular inequality to avoid un-
necessary point-cluster distance computations in the classi-
fication stage. For an arbitrary point x ∈ X and two clusters
ca and cb represented by their centroids µ(ca) and µ(cb), re-
spectively, the triangle inequality says

d(µ(ca),µ(cb))≤ d(x,µ(ca))+d(x,µ(cb))

or, equivalently

d(x,µ(cb))≥ d(µ(ca),µ(cb))−d(x,µ(ca)),

where d(·, ·) is the Euclidean distance between two data
points in Vd . Therefore if one knows that d(µ(ca),µ(cb)) ≥
2d(x,µ(ca)), then d(x,µ(cb))≥ d(x,µ(ca)), e.g. the distance
of x to cb cannot be lower than the one to ca and the compu-
tation of d(x,µ(cb)) can be safely avoided.

We briefly summarize the SortMeans algorithm [Phi02]
built around this idea. At the beginning of each iteration
SortMeans precomputes two k× k matrices (k is the number
of clusters), a distance matrix D and a permutation matrix
M. Elements of D are defined as D(i, j) = d(µ(ci),µ(c j)).
Rows of M represent permutations on the set of cluster in-
dices such that µ(cM(i, j)) is the j-th nearest centroid from
µ(ci).

For each data point x∈X , which was assigned to ci in the
previous iteration, the algorithm iterates over all other clus-
ters, keeping the minimal distance found so far, denoted dmin
(which is initially set to d(x,µ(ci))). Clusters are iteratively
processed in increasing order of their distances from µ(ci)
using M. If D(i,M(i, j)) ≥ d(x,µ(ci)) + dmin the nearest
cluster has been already found and the iteration is stopped.
Otherwise the actual distance d(x,µ(cM(i, j))) is computed.
If d(x,µ(cM(i, j))) < dmin, cM(i, j) becomes the new nearest
cluster and dmin = d(x,µ(cM(i, j))) is the new best minimal

distance. The computation above is then repeated for the
next nearest cluster cM(i, j+1) (if there is any, i.e. if j < k).

The SortMeans algorithm was used for accelerating k-
means clustering. In the next section we use it as a basic
building block for developing our new SortClusters LPCA
algorithm for accelerating the more general LPCA problem.

4. SortClusters LPCA: Acceleration of General LPCA

In this section we develop our SortClusters LPCA algorithm
as a generalization of the SortMeans algorithm [Phi02] de-
scribed above. Since clusters in LPCA are defined by affine
subspaces rather than just centroids, we need a definition of
distance between two subspaces. The subspace distance is
then used to develop a generalized triangle inequality for a
data point and two affine subspaces. Such a triangle inequal-
ity is in turn used in our SortClusters LPCA algorithm to
avoid unnecessary point-subspace distance calculations.

4.1. Distance Between Affine Subspaces and The
Generalized Triangle Inequality

Let aa,ab be arbitrary non-empty affine subspaces in Vd .
The distance between aa and ab is defined as [DK92]:

d(aa,ab) = inf{‖p−q‖; p ∈ aa,q ∈ ab} . (3)

Intuitively, the distance between two affine subspaces is
equal to the length of the shortest line that is orthogonal to
both subspaces.

Lemma: The following generalized triangle inequality
holds for an arbitrary point x ∈ Vd and arbitrary non-empty
affine subspaces aa,ab ⊂ Vd :

d(aa,ab)≤ d(x,aa)+d(x,ab). (4)

Proof. For an arbitrary point x ∈ Vd using (3) we have

d(aa,ab) = inf{‖p−q‖; p ∈ aa,q ∈ ab}
≤ inf{‖p−x‖+‖x−q‖; p ∈ aa,q ∈ ab}
= inf{‖p−x‖; p ∈ aa}+ inf{‖x−q‖; q ∈ ab}
= d(x,aa)+d(x,ab).

4.2. The SortClusters LPCA Algorithm

We use the generalized triangle inequality (4) to reduce
point-subspace computations performed during the classi-
fication stage of LPCA in a similar way as in the Sort-
Means algorithm. The structure of our SortClusters LPCA
(SC-LPCA) algorithm is similar to the SortMeans algorithm.
However, instead of computing distances with respect to
the clusters’ centroids, we compute distances with respect
to affine subspaces. Following the SortMeans algorithm we
construct the distance and permutation matrices, D and M,
at the beginning of the classification stage. Elements of D
are set to distances between pairs of affine subspaces. After
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that, we loop over all data points and for each we find the
nearest affine subspace. The pseudo-code for searching the
nearest affine subspace for a given point is given in Algo-
rithm 1. The algorithm takes a data point x ∈ X , which was
assigned to the i-th affine subspace in the previous iteration,
and returns the index of the current nearest affine subspace.

Algorithm 1 Point-subspace classification
input : x . . . data point to be classified

i . . . index of the affine subspace to which x
was assigned to in the previous iteration

output : index of the new nearest affine subspace

dmin← d(x,ai)
imin← i

for j← 2 to k do
if (D(i,M(i, j))≥ d(x,ai)+dmin) then

break
end
dist← d(x,aM(i, j))
if (dist < dmin) then

dmin← dist
imin←M(i, j)

end
end

return imin

4.3. Efficient Evaluation of Inter-Subspace Distance

Determination of the distance between two subspaces de-
fined by (3) can be converted to the computation of the dis-
tance between a point and a linear subspace using the follow-
ing Lemma [DK92]: Let aa,ab ⊂ Vd be non-empty affine
subspaces. Then for arbitrary points p ∈ aa and q ∈ ab the
distance between aa and ab is equal to

d(aa,ab) = d(p−q, dir(aa)∪dir(ab)). (5)

The above Lemma gives us a recipe to compute the dis-
tance between non-empty affine subspaces aa,ab ∈ Vd . We
use Equation (1) to solve Equation (5). We put p− q =
µ(aa)− µ(ab) as x and use the affine subspace with origin
of 0 and basis of dir(aa)∪ dir(ab) as a. To evaluate Equa-
tion (1) we need to compute xs. It requires finding an or-
thonormal basis dir(aa)∪dir(ab) followed by the projection
of µ(aa)− µ(ab) onto this basis using (2). Orthonormaliza-
tion is, however, a computationally demanding task. Instead,
we can compute xs directly without explicit construction of
the orthonormal basis as shown below. Please, see [DK92]
for more details.

Let m and n be the dimension of dir(aa) and dir(ab), re-
spectively. To compute xs we need to find a solution z =
(z1, . . . ,zm,zm+1, . . . ,zm+n)T ∈Rm+n of the following linear
system and set xs = K · z:

G(K) · z = KT · (µ(aa)−µ(ab)),

where K = [dir1(aa), . . . ,dirm(aa),dir1(ab), . . . ,dirn(ab)],
and G(K) is the Gram matrix of all inner products of K.
We solve the linear system through the Cholesky decompo-
sition of G(K), since G(K) is positive semi-definite. Finally,
we compute the distance between aa and ab as d(aa,ab) =
‖µ(ab)−µ(aa)−xs‖.

5. Cluster Initialization

The very first step of the LPCA (and k-means) algorithm is to
choose k initial cluster centroids among the data points. We
found that the initialization has a significant impact both on
the approximation accuracy and—quite surprisingly—on the
performance of our SortClusters LPCA algorithm. We have
investigated random initialization with uniform probabil-
ity [SHHS03], random initialization based on distance sums
inpired by [HPB07], and the state-of-the-art k-means++ al-
gorithm [AV07].

Distance sums-based initialization. For each data point
xi, we compute the sum of squared distances to other data
points, αi = ∑x∈X ‖x−xi‖2, and use it as a probability dis-
tribution for picking the k initial cluster centroids.

k-means++. The first centroid is chosen from among the
data points at random with uniform probability. Distance to
all other data points is then used as a probability distribution
for choosing the second centroid. When a new centroid is
chosen, all remaining data points are classified to their near-
est centroid. The updated distance to the nearest centroid for
each data point is then used as a probability distribution for
choosing another centroid, and so on until we have k initial
centroids.

The k-means++ initialization produces by far the most
accurate data approximation, however the computation cost
can be high (on a par with one iteration of k-means). Below,
we describe our new SortMeans++ algorithm which uses the
ideas on which the SortMeans algorithm is built to accelerate
the k-means++ initialization.

5.1. SortMeans++: Accelerated k-means++

The structure of our SortMeans++ algorithm is similar to
k-means++ but we eliminate some of the point-cluster dis-
tance calculations when a new cluster is created. For each
data point, the algorithm maintains the distance to its near-
est cluster in point N and the index of its nearest cluster
in point I. Similar to k-means++ we start by choosing the
first centroid xnew ∈ X at random with uniform probabil-
ity. Point N is initialized with distances to this centroid, i.e.
N(i)← ‖xnew− xi‖, and point I is initialized with all ones
(index of the only existing cluster). The following steps are
then repeated until the desired number of clusters is created.

1. Pick a new centroid xnew ∈ X at random with probabil-
ity proportional to N, and create a new cluster cnew with
µ(cnew) = xnew.
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(a) Horse (b) Dragon (c) Happy Buddha (d) Walt Disney (e) 16 x Error Image

Figure 1: Scenes used in our experiments. We tested our SortClusters LPCA (SC-LPCA) for compression of transfer matrices
for these scenes. The models in 1a, 1b, and 1c are made of glossy materials represented using Phong’s BRDF with exponent
from 10 to 30. The model in 1d is represented using Ward’s BRDF with the roughness of 0.1. Compared to LPCA, we achieve
a 5× to 20× speed-up using SC-LPCA, while providing identical output. For the sake of completeness, Figure 1e shows a 16×
amplified difference between renderings of Walt Disney Hall using the original and compressed transfer matrix.

2. Compute the distance from the new cluster to all existing
clusters, dnew(i)←‖µ(cnew)−µ(ci))‖.

3. Loop over all data points xi ∈ X and check if the new
point cnew is closer than their currently assigned clus-
ter. If dnew(I(i)) ≥ 2N(i), then the assignment of xi can-
not change and we can safely skip the calculation of the
point-cluster distance ‖µ(cnew)−xi‖. Otherwise, we cal-
culate the distance and if it is smaller than N(i), we up-
date N(i) and I(i). After that, we proceed to the next data
point.

6. Results

We compare our algorithm (SortCluster LPCA) with the
original LPCA [KL97] for compression of PRT and BTF
datasets. Both algorithms were implemented in C++ using
Intel MKL library for matrix computations. All measure-
ments were performed on a PC with Intel Xeon W3540, 2.93
GHz and 14GB RAM. We use all 4 CPUs exploiting the par-
allelism of MKL routines yielding the CPU load of about
90% (as reported by Windows 7 Task Manager).

6.1. Compression of PRT data

We tested our algorithms on PRT data matrix precomputed
for three different scenes shown in Figure 1. According to
[NRH03] we use a raw lighting basis of cubemap pixel lights
when computing the transfer matrix. The cubemap resolu-
tion is 6× 32× 32. We account for self-shadowing effects
only and we eliminate visibility alias by applying a 4× 4
super-sampling to estimate the light transfer for each cube-
map pixel. We used k = 256 clusters for the matrix compres-
sion, and up to l = 24 basis vectors for each cluster. Accord-
ing to Sloan et al. [SHHS03] we perform several iterations
of LPCA before we increase the dimension of PCA clus-
ters. More specifically, we use the following iterative scheme
(0:15), (2:10), (4:7), (8:5), (12:4), (16:2), (24:1), where the
first number is the maximum dimension of PCA subspaces
and the second one is the number of iterations done for the

same dimension. The plots in this section report the time
for point classification only and do not include the time for
computing the PCA approximation of the data points within
clusters.

Scalability with the PCA dimension. Breakdown of the
average computation times for one iteration of the classifi-
cation using our SortClusters LPCA (SC-LPCA) and orig-
inal LPCA as a function of the dimension of affine sub-
spaces is shown in Figures 2. The average number of dis-
tances computed for both algorithms is shown in Figure 3.
We can see that our SC-LPCA scales well with the dimen-
sion of affine subspaces. We achieve more than 20× speed
up for the Horse scene while the speed-up for the more com-
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Figure 2: Breakdown of the average computation time per
one iteration of our SC-LPCA and original LPCA. Note that
the curves for our SC-LPCA contain both the overhead and
the time required for the classification itself. The overhead
of the SC-LPCA consist of the computation of distance and
permutation matrices D and M, respectively, and is very
small even for a high number of PCA basis vectors.
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plex models (Dragon, Buddha, Disney) is about 6. The rea-
son for higher speed-up for the Horse scene is presumably
the higher degree of light transport coherence in this rela-
tively simple scene. Note that the output of our SC-LPCA
is exactly the same as provided by the original LPCA algo-
rithm.
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Figure 3: Average number of distances evaluated by the
compared algorithms per one iteration of the classification.

Scalability with the number of clusters. Breakdown of
the classification times in dependence on the total number
of clusters is shown in Figure 4. We use the Dragon scene
for this comparison. The computation time of our SC-LPCA
stays roughly constant with the number of clusters, mean-
ing that our SC-LPCA is well suited for applications where
clustering to a high number of clusters is required. The com-
putation time of the classical LPCA, on the other hand, in-
creases linearly with the number of clusters. Interestingly,
the average time for an SC-LPCA iteration for subspace di-
mension of 24 decreases with the number of clusters, in spite
of the fact that the SC-LPCA overhead (computation of the
distance matrix D) increases quadratically.
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Figure 4: Scalability with the number of clusters for the
Dragon scene. The plots show the average time spent on one
iteration of the classification for subspaces’ dimensions of 0,
4, 12, and 24.

Scalability with the Phong’s lobe exponent. Unlike the
original LPCA, the performance of our SC-LPCA does de-
pend on the data set itself. Figure 5 illustrates the scalability
of SC-LPCA with different Phong’s lobe exponent. We can
see only a small decrease in performance for a high Phong’s
lobe exponent, meaning that our algorithms is applicable for
a wide range of materials.
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Figure 5: Scalability with the Phong’s lobe exponent for
the Dragon scene. The top image shows the average time
spent on one iteration of the classification. The bottom im-
ages show visual examples of the scene with dragon made
of glossy material represented using Phong’s BRDF with the
lobe exponent of Ns = 20 and Ns = 100 in Figures 5a and 5c,
respectively. Images in Figures 5b and 5d shows the corre-
sponding 16× difference images between renderings of the
scenes using original and LPCA-compressed light transfer
matrices.

Latency and accuracy of initialization algorithms. Our
previous results only focused on speeding-up LPCA without
improving its accuracy. Here we investigate different strate-
gies for initial centroid seeding and their impact on accuracy
and performance. The results for the Dragon scene are sum-
marized in Figure 6. We perform 50 iterations of the origi-
nal SortMeans algorithm [Phi02] after clusters’ initialization
and plot averages from 5 different runs. The naïve algorithm
that select centroids purely at random [SHHS03] is prone
to getting stuck in a local minimum. The k-means++ algo-
rithm [AV07] provides a much lower approximation error
at the cost of high initialization latency. While maintaining
the approximation quality, our SortMeans++ algorithm de-
creases the start-up latency of the original k-means++ 6× to
a value that is even less than the latency for purely random
initialization (because SortMeans++ initialization produces
a valid point-cluster classification).

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 6: Latency and accuracy of initialization algorithms.
Note that our algorithm SortMeans++ maintains the quality
of approximation provided by the original k-means++ while
substantially decreasing the start-up latency of the point-
cluster assignment.

In addition to producing a better clustering, a good initial
seeding also improves the performance of our SC-LPCA in
subsequent iterations. The total computation time spent by
SC-LPCA over all iterations using our SortMeans++ for the
initial seeding was 1700s with resulting error φ = 0.174. On
the other hand, when we initialize the centroids randomly,
the total computation time is 1780s and the error increases
to φ = 0.224.

Overall statistics. Table 1 lists the statistics about the pre-
computation of the PRT matrices and the overall computa-
tion time required for their compression. Note that the most
computationally demanding part is the classification of high
dimensional data points to affine subspaces, which is the
focus of our work. Evaluating PCA approximations within
clusters is only a minor part of the total compression time
for our data sets.

vertices PRT Classification [s] PCA φ

scene [#] [s] LPCA SC-LPCA speedup [s] [-]
Horse 67.6k 22.5 13 700 674 20.3 146 0.029

Dragon 57.5k 25.5 10 900 1700 6.38 155 0.174
Buddha 85.2k 31.6 16 700 3 020 5.55 170 0.316
Disney 106.3k 46.5 20 900 4 080 5.12 170 0.394

Table 1: Summary results and timings for the example
scenes. The columns list the total number of vertices in the
scene, transfer matrix computation time (PRT) and the total
classification time using original LPCA and our SC-LPCA
algorithm. The rightmost two columns shows the time spent
on the PCA approximation evaluation and the value of the
objective function φ. Transfer matrices were computed on a
Geforce GTX 580 GPU, while the Classification and PCA
computation we performed on 4 CPU cores.

6.2. BTF compression

To investigate the efficiency of our algorithm on more com-
plex data sets, we ran our algorithm on three measured BTFs
(shown in Figure 7) from the BTF data provided by Univer-
sity of Bonn, http://btf.cs.uni-bonn.de. For each material the
total 81×81 images were taken from different directions of
the camera and light source. The images have a resolution of
256×256 pixels.

We run the LPCA in the apparent BRDF arrange-
ment [FH09] (i.e. one data point corresponds to an image
of the apparent BRDF). For this arrangement the LPCA pro-
vides an approximation of higher quality than for standard
arrangement, while maintaining the same compression ra-
tio [MMK03]. The total number of clusters and the maxi-
mum dimension of the affine subspaces was set to 32 and 8,
respectively, in accordance with Müller [MMK03].

Breakdown of the classification times using the SC-LPCA
and original LPCA for all tested materials is shown in Fig-
ure 8. For the proposte BTF the speed-up of the SC-LPCA
is about 1.6. For the wallpaper and wool materials, which
exhibit different reflectance characteristics in all sampled di-
mensions, the speed up of the SC-LPCA is about 1.2.

Figure 7: BTF materials used in our for testing our algo-
rithm, proposte, wallpaper, and wool BTFs.
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Figure 8: Breakdown of the computation for different BTF.
Computation time for the original LPCA algorithm is in-
dependent of the BTF material. On the other hand our al-
gorithm performs better for simple materials with a regular
spatial/angular structure.
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7. Conclusion

We present an accelerated and more accurate local PCA
(LPCA) algorithm for compact approximation of large ma-
trices. The improved performance is due to the significant
reduction of point-cluster distance calculations in the clas-
sification stage of the algorithm. The accuracy is achieved
through improved seeding of the initial cluster centroids.
Our measurements on computer graphics data sets show a
speed-up of 5 to 20 for radiance transfer matrices, though
the speed-up is lower for complex and high-dimensional
BTF data sets. Devising new algorithms for accurate and
efficient compression of these more complex data set is an
exciting avenue for future work. In the shorter term, our
fast LPCA could be combined with a GPU implementa-
tion of Huang and Ramamoorthi’s algorithm [HR10] to ob-
tain a near-interactive pre-computation and compression of
PRT data sets. We want to investigate the efficiency of the
proposed approach on other computer graphics data sets,
such as local light transport [HPB06], and to achieve further
speed-up by performing the clustering in wavelet domain.
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