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Bidirectional path tracing is one of the most versatile light transport simulation 

algorithms available today. It can robustly handle a wide range of illumination 

and scene configurations, but is notoriously inefficient for specular-diffuse-

specular light interactions, which occur e.g. when a caustic is seen through a 

reflection/refraction. 
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On the other hand, photon mapping (PM) is well known for its efficient 

handling of caustics. Recently, Hachisuka and Jensen [2009] showed a 

progressive variant of PM that converges to the correct result with a fixed 

memory footprint. Their stochastic progressive photon mapping (PPM) 

algorithm captures the reflected caustics in our scene quite well. However, it 

has hard time handling the strong distant indirect illumination coming from the 

part of the scene behind the camera. 
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By using multiple importance sampling to combine estimators from 

bidirectional path tracing and photon mapping, the algorithm I will talk about 

today automatically finds a good mixture of techniques for each individual light 

transport path, and produces a clean image in the same amount of time. 
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• The path integral formulation of light transport formalizes the idea that the 

response of the detector - camera in our case - is due to all the light particles 

– travelling over all possible paths – that hit the detector. 

• The detector response is written as an integral over all light transport paths 

of all lengths in the scene. 

• The integrand of this integral is the so called “measurement contribution 

function”. 

 

• The path integral formulation gives the pixel value as simple integral, which 

allows to argue about efficiency of different algorithms in terms of the 

probability density of sampling some types of paths, and even more 

importantly, it allows to combine different path sampling techniques through 

Multiple Importance Sampling. 
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• Thanks to the formal simplicity of the path integral formulation, applying 

Monte Carlo integration is really a more-or-less mechanical process. 

• For each pixel, we need to repeatedly evaluate the estimator shown at the 

top right of the slide and average the estimates. 

• This involves the following three steps: 

• First, we need to draw (or sample, or generate – all are synonyms) a 

random light transport path x in the scene (connecting a light source to 

the camera). 

• Then we need to evaluate the probability density of this path, and the 

contribution function. 

• Finally, we simply evaluate the formula at the top of the slide. 

• Evaluating the path contribution function is simple – we have an analytic 

formula for this that takes a path and returns a number – the path 

contribution. 
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• The main idea of bidirectional path tracing is to use all of the sampling 

techniques above and combine them using multiple importance sampling. 
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• In this rendering of the pool, BPT is unable to reproduce the caustics seen at 

the pool bottom. 
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• As usual, the culprit is inappropriate path sampling. The problem is that none 

of the path sampling techniques used in bidirectional path tracing is efficient at 

sampling the SDS effects, so their combination cannot sample those effects 

either. 

• To see this, consider the example on the slide. We have a pool (diffuse – D) 

filled with water (specular – S), a pinhole camera, and a small light source. 

• No path connections are possible because of the two specular vertices. 

Unidirectional sampling from the light source is not possible either because of 

the pinhole camera. 

• So we are left with one single (unidirectional) path sampling technique that 

starts from the camera, and hope to randomly strike the light source. The 

smaller the source the lower the probability of hitting it and the higher the 

estimator variance. 

• In the limit, for point sources and pinhole camera, the SDS effects cannot be 

sampled by local path sampling at all. 
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• Photon mapping – a computer graphics name for a light transport technique 

based on non-parametric density estimation – is well known for its efficient 

handling of caustics and reflected caustics. 

• The algorithm proceeds in two stages.  

• In the first stage, a large number of particle histories (light paths) are traced 

starting from the light source. Every time the particle scatters, we store it in a 

data structure called the “photon map”. 

• In the second stage, we generate the image by tracing sub-paths starting 

from the camera and whenever we hit a non-specular object, we estimate the 

radiance by a “photon map lookup” and terminate the walk. 

• The photon map lookup estimates the radiance using a non-parametric 

density estimation technique; k-NN density estimation is most common. This 

involves finding the k nearest neighboring particles in the photon map and 

estimating the radiance as a weighted density of these particles. 

 

19 



• This approach has absolutely no problem handling SDS paths because – 

unlike bidirectional path tracing – it does not rely on connecting sub-path with 

an edge. 

• Instead, the connection is made using the density estimate, which can be 

readily performed at the bottom of the pool. 
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However, even though both methods have been published more than 15 

years ago, neither a rigorous analysis of their relative performance nor an 

efficient combination had been shown until very recently. The reason for this 

is that BPT and PM have originally been defined in different theoretical 

frameworks – BPT as a standard Monte Carlo estimator to the path integral, 

and PM as an outgoing radiance estimator based on photon density 

estimation. 

 

The first step toward combining these two methods is to put them in the same 

mathematical framework. We choose Veach’s path integral formulation of light 

transport, as it has a number of good properties and also because BPT is 

already naturally defined in this framework. 

 

We need two key ingredients: (1) express PM as a sampling technique that 

constructs light transport paths that connect the light sources to the camera, 

and (2) derive the probability densities for paths sampled with this technique. 

This will give us a basis for reasoning about the relative efficiency of BPT and 

PM. And more importantly, it will lay the ground for combining their 

corresponding estimators via multiple importance sampling. 
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Let us start by reviewing how bidirectional path tracing (BPT) and photon 

mapping (PM) sample light transport paths that connect the light sources to 

the camera: 

 

[CLICK] The techniques BPT employs can be roughly categorized to 

unidirectional sampling (US) and vertex connection (VC). [CLICK] US 

constructs a path by starting either from a light source or the camera and 

tracing a random walk in the scene until termination. [CLICK] On the other 

hand, VC traces one subpath from a light source and another one from the 

camera, and then completes a full path by connects their endpoints. 

 

[CLICK] In contrast, PM first traces a number of light subpaths and stores 

their vertices, a.k.a. photons. It then traces subpaths from the camera and 

computes the outgoing radiance at the hit points using density estimation by 

looking up nearby photons. 
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Let us start by taking a simple length-3 path and see how it can be 

constructed bidirectionally. 
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We first trace one subpath from the camera and another one from a light 

source.  
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Now let’s see how we complete a full path in BPT and PM.  
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Bidirectional path tracing connects the subpath endpoints deterministically. 

 

[CLICK] We call this technique vertex connection. The PDF of the resulting full path 
is well known, and is simply the product of the PDFs of two subpaths, which have 
been sampled independently. 

 

[CLICK] Photon mapping, on the other hand, will extend the light subpath by 
sampling one more vertex from x1, and will concatenate the two subpaths only if the 
“photon” hit-point x2

∗   lies within a distance 𝑟 from x2. 

 

[CLICK] We label this technique vertex merging, as it can be intuitively thought to 
weld the endpoints of the two subpaths if they lie close to each other. 

 

[CLICK] What remains is to derive the PDF of the resulting full path. To do this, we 
can interpret the last step as establishing a regular vertex connection between x1 
and x2, but conditioning its acceptance on the random event that a vertex x2

∗  sampled 
from x1 lands within a distance 𝑟 to x2. This probabilistic acceptance is nothing more 
than a Russian roulette decision. The full path PDF is then again the product of the 
subpath PDFs, but in addition multiplied by the probability of sampling the point x2

∗  
within a distance 𝑟 of x2. This acceptance probability is equal to the integral of the 
PDF of x2

∗  over the 𝑟-neighborhood of x1. 

 

[CLICK] Under the reasonable assumptions that the surface around x1 is locally flat, 
i.e. that this neighborhood is a disk, and that the density of x2

∗  is constant inside this 
disc, the integral can be well approximated by the PDF of the actual point x2

∗  we have 
sampled, multiplied by the disc area 𝜋𝑟2. 
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Now that we have formulated the vertex merging path sampling technique, we 

can put it side by side with the already available techniques in BPT. There are 

two ways to sample a length-4 path unidirectionally, and four ways to sample 

it via vertex connection. Vertex merging adds five new ways to sample the 

path, corresponding to merging at the five individual path vertices. In practice, 

we can avoid merging at the light source and the camera, as directly 

evaluating emission and sensitivity is usually cheap. 

 

But with so many ways to sample the same light transport path, a question 

naturally arises in the mind of the curious: which technique is the most 

efficient for what types of paths? 
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To answer this question, let us first take a look at specular-diffuse-specular (SDS) 
paths. Here, bidirectional path tracing can only rely on unidirectional sampling: it 
traces a path from the camera hoping to randomly hit the light source. With vertex 
merging, we can trace one light and one camera subpath, and merge their endpoints 
on the diffuse surface. 

 

[CLICK] It can be shown that if the light source and the merging disk have the same 
area 𝐴, then unidirectional sampling and vertex merging sample paths with roughly 
the same probability density. This means that we should expect the two techniques 
to perform similarly in terms of rendering quality.  

 

[CLICK] We render these two images progressively, sampling one full path per pixel 
per iteration. For the left image we trace paths from the camera until they hit the light. 
For image on the right, we trace subpaths from both ends, and merge their endpoints 
if they lie within a distance 𝑟 = 𝐴/𝜋 from each other. Both images look equally 
noisy, even after sampling 10,000 paths per pixel. This confirms that vertex merging, 
and thus photon mapping, is not an intrinsically more robust sampling technique for 
SDS paths than unidirectional sampling. 

 

[CLICK] However, the strength of vertex merging is computational efficiency – we 
can very efficiently reuse the light subpaths traced for all pixels at the cost of a single 
range search query. This allows us to quickly construct orders of magnitude more 
light transport estimators from the same sampling data, with a minimal computational 
overhead, resulting in a substantial quality improvement. 

 

[CLICK] For all these three images we have traced roughly the same number of rays, 
and the only difference between the one in the center and the one on the right is that 
the for right image we have enabled path reuse, by storing, and looking up, the light 
subpath vertices in a photon map at every rendering iteration. 
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Now let’s look at another extreme example – diffuse illumination. Note that 

vertex connection (VC) constructs the edge between x1 and x2 

deterministically, while unidirectional sampling (US) and vertex merging (VM) 

both rely on random sampling. 

 

Once again, it can be shown that if the light source and the merging disk have 

the same area, then US and VM sample this path with roughly the same 

probability density. 

 

[CLICK] For the specific case shown on this slide, this density is about 

100,000 lower than that of VC. This demonstrates that VM is not an 

intrinsically more robust sampling technique than VC either. This is not 

surprising – if we recall the expression for the VM path PDF, we see that it 

can only be lower than that of the corresponding VC technique, as their only 

difference is the probability factor in the VM PDF, which is necessarily in the 

range [0; 1]. Still, by reusing paths across pixels, vertex merging, and thus 

photon mapping, gains a lot of efficiency over unidirectional sampling. 

 

All these useful insights emerge from the reformulation of photon mapping as 

a path sampling technique. 
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Even more usefully, we now have the necessary ingredients for combining photon 
mapping and bidirectional path tracing into one unified algorithm. The vertex merging 
path PDFs tell us how to weight all sampling techniques in multiple importance 
sampling, and the insights from the previous two slides command to strive for path 
reuse. 

 

The combined algorithm, which we call vertex connection and merging (VCM), 
operates in two stages. 

 

1. In the first stage, we 

a) [CLICK] trace the light subpaths for all pixels, 

b) [CLICK] connect them to the camera, and 

c) [CLICK] store them in a range search acceleration data structure (e.g. a 
kd-tree or a hashed grid). 

 

2. [CLICK] In the second stage, we trace a camera subpath for every pixel. 

a) [CLICK] Each sampled vertex on this path is connected to a light source 
(a.k.a. next event estimation), connected to the vertices of the light 
subpath corresponding to that pixel, and 

b) [CLICK] merged with the vertices of all light subpaths. 

c) [CLICK] We then sample the next vertex and do the same. 

 

In a progressive rendering setup, we perform these steps at each rendering iteration, 
progressively reducing the vertex merging radius . For details on this, please refer to 
the cited papers below for details. 
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Let us now see how this combined algorithm stacks up against bidirectional 

path tracing and stochastic progressive photon mapping on a number of 

scenes with complex illumination. 
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Here, we visualize the relative contributions of VM and VC techniques to the 

VCM image from the previous slide. This directly corresponds to the weights 

that VCM assigned to these techniques. 
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An important property of the algorithm is that it retains the higher order of 

convergence of BPT, meaning that it approaches the correct solution faster 

than PPM as we spend more computational effort (i.e. sample more paths). 

The asymptotic analysis can be found in the VCM paper. 
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Even though VCM is a step forward in Monte Carlo rendering and has proven 

very useful in practice, it doesn’t come without limitations. Specifically, it 

cannot handle more efficiently those types of light transport paths that are 

difficult for both BPT and PM to sample. 

[CLICK] A prominent example are caustics falling on a glossy surface. 

[CLICK] On this kitchen scene, even though VCM brings practical 

improvements over BPT, there is still a lot to be desired from the caustics on 

the glossy surface. 
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A number of companies have announced VCM integration in the upcoming 

releases of their commercial renderers. 

 

For example, VCM is coming in Pixar’s Photorealistic RenderMan v19, … 
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• We have recently extended VCM to participating media and this work just 

got accepted to SIGGRAPH. 

• And again, understanding all the existing photon point and photon beams 

estimators in the path integral framework proved to be essential. 
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