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In this document, we derive the model parameter update formulae
θ and present details regarding the implementation of our caching
scheme.

1 Derivation of Update Formulae

We provide a derivation of the update formulae θ for the model pa-
rameters in our stepwise expectation-maximization algorithm that
supports weighted particles. The same formulae apply to both the
off-line and on-line versions of stepwise EM.

1.1 MAP and Conjugate Priors

To alleviate over-fitting that is associated with maximum likelihood
estimation, we pursue a maximum a posteriori (MAP) solution. In
other words, observing a set of samples S, we seek the mode of
the posterior distribution p(θ|S) over mixture model parameters θ,
given by the Bayes’ theorem: p(θ|S) ∝ p(S|θ)p(θ) (i.e. posterior
∝ likelihood × prior). To enable this Bayesian treatment, we have
to express our prior beliefs about the source of our observed sam-
ples via the prior distribution p(θ). A good choice are conjugate
priors that take the same functional form as the resulting poste-
rior distribution and therefore lead to a greatly simplified Bayesian
analysis [Bishop 2006].

A particular choice of the conjugate prior p(θ) which expresses our
prior beliefs about the covariance matrix Σj and the mixing coeffi-
cients πj is:

Dir(π1, . . . , πK |ν1, . . . , νK)

K∏
j=1

Wish(Σj |aj , bjI). (1)

This is a product of a conjugate Dirichlet prior on mixing coeffi-
cients Dir(π1, . . . , πK |ν1, . . . , νK) with hyper-parameters νj > 0
and isotropic conjugate Wishart priors Wish(Σj |aj , bjI) on the
covariance matrix of every mixture component j. Here I is the
identity matrix, K is the number of components in the mixture,
aj > d− 1, bj > 0 are hyper-parameters, and d = 2 is the dimen-
sion. Bishop [2006] provides details on the use of Dirichlet and
Wishart distributions as conjugate priors.

We base our MAP solution on the prior distribution in the form of
Equation (1), that is recommended by Gauvain and Lee [1994] in
the context of batch EM. Unlike Gauvain and Lee, we do not take
any prior assumptions about the Gaussian means µj , because there
is no reason to a priori prefer one lobe direction over another. In our
final solution, we use the same hyper-parameters a, b and ν for all
components so that ∀j ∈ {1, . . . ,K}; aj = a, bj = b and νj = ν.
Nevertheless, for the sake of generality, we provide the derivation
with possibly different hyper-parameters for each mixture compo-
nent.
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1.2 Derivation Overview

We provide a derivation of the update formulae for the covariance
matrix Σj of each Gaussian j in the mixture and for their respective
mixing coefficients πj (Equations (9) and (10) in the paper). The
formula for updating the mean µj of each Gaussian j (Equation (9)
in the paper) is straightforward – we just normalize the weighted
sum of observed samples sq .

The derivation of the update formulae for both Σj and πj follow
the same steps. We start from the formulae given by Gauvain and
Lee [1994] that describe a MAP update of Gaussian mixture model
(GMM) parameters in the batch EM algorithm (see Sec. 3.2 in the
paper). Their formulae do not account for weights of observed
samples. We generalize these results to stepwise EM while taking
sample weights into account. Our generalization proceeds in three
steps:

a) We express the parameters of each mixture component j in
terms of the batch EM sufficient statistics ujN−1.

b) We use the fact that stepwise EM is a generalization of batch
EM and replace the use of the batch EM statistics ujN−1 with
the stepwise EM statistics uji .

c) Finally, we interpret the weight wq associated with every ob-
served sample sq as its multiplicity.

1.3 Covariance Matrices

Step a. The Gauvain’s update formula for the matrix Σ
′
j of j-th

Gaussian in the mixture reads:

Σ
′
j =

bjI +
∑N−1
q=0 γqj(sq − µj)(sq − µj)T

(aj − 2) +
∑N−1
q=0 γqj

, (2)

where I is the identity matrix, aj and bj are hyper-parameters of
the Wishart’s distribution priors and γqj is the responsibility of a
component j for an observed sample sq (see Equation (2) in the
paper).

By using simple algebra, we get:

(sq−µj)(sq−µj)T = sqs
T
q − sq(µj)

T −µjsTq +µj(µj)
T . (3)

Substituting (3) into (2) and multiplying both the nominator and the
denominator by 1

N
, the formula for Σ

′
j becomes:

Σ
′
j = Σ

′
j

1
N
1
N

(4)

=

bjI

N
+ 1

N

∑N−1
q=0 γqjsqs

T
q −A + B

(aj−2)

N
+
∑N−1
q=0

γqj
N

, (5)

where

A =
1

N

N−1∑
q=0

γqjsqµ
T
j +

1

N

N−1∑
q=0

γqjµjs
T
q



and

B =
1

N

N−1∑
q=0

γqjµjµ
T
j .

The batch sufficient statistics for N samples (Equation (3) in the
paper) reads

ujN−1 =
1

N

N−1∑
q=0

γqju(sq), (6)

where the statistic u(sq) = (1, sq, sqs
T
q ) is based on an observed

sample sq . By inspection of Equation (5), it is apparent that we
have expressed Equation (2) in terms of the batch EM sufficient
statistics ujN−1.

Step b. The sufficient statistics in the stepwise EM formulation
(see Equation (4) in the paper) reads

uji = (1− ηi)uji−1 + ηi γqju(sq). (7)

The sufficient statistics are expressed as a weighted sum with
weights ηi = i−α, where α is the stepsize parameter.

For α = 1, the batch EM sufficient statistics, Equation (6), for N
samples and the stepwise EM sufficient statistics, Equation (7), for
the N -th sample (i.e. i = N − 1) would be equivalent:

ujN−1 ≡
[α=1] uji . (8)

We use this fact to obtain the MAP update formula of the covariance
matrix from Equation (5). If we write the sufficient statistics uji as
a triplet uji = ((uγ)ji , (s)ji , (ss

T )
j

i ) where the first component is
the weighted average of all responsibilities γqj , similarly (s)ji is a
vector, and (ssT )

j

i is a matrix, the stepwise update formula reads:

Σ
′
j =

bjI

N
+ (ssT )

j

i −A + (uγ)jiB
aj−2

N
+ (uγ)ji

(9)

where

A = (s)jiµ
T
j + µj(s

T )
j

i , B = µjµ
T
j . (10)

Note that if α < 1, the equivalence in Equation (8) does not hold.
Nonetheless, we take the liberty to generalize the result in Equa-
tions (9) and (10) to values of α other than 1. In our implementation
we use α = 0.7.

Step c. Finally, we interpret the weight wq associated with every
observed sample sq as its multiplicity. The stepwise EM sufficient
statistics in our weights-aware algorithm are given by Equation (7)
in the paper:

uji = (1− ηi)uji−1 + ηiwqγqju(sq). (11)

To obtain a correct result that takes the weights into account,
we normalize these weighted statistics by the total sample weight
(Equation (8) in the paper):

wi = (1− ηi)wi−1 + ηiwi. (12)

The update formula for Σj , that respects the observed sample
weights and provides the MAP solution, becomes:

Σj =

bj
n

I +
(ssT )

j
i−A+(uγ)

j
iB

wi

aj−2

n
+

(uγ)
j
i

wi

, (13)

where A and B are given in Equation (10) and n is the total number
of currently processed samples. (Details on n are given in the last
paragraph of Sec. 4.2 in the paper.) Note, that we let the effect of
priors diminish with the number of observed samples rather than
with the total observed weight wi. This helps avoid over-fitting in
the early stages of training, when there may only be a few observed
samples with potentially enormous weights.

1.4 Mixing Coefficients

To derive the weights-aware update formula for the mixing coeffi-
cients πj , we follow the same procedure as in the above derivation
of the covariance matrices Σj . We start with the update formula
given by Gauvain and Lee,

πj =
(νj − 1) +

∑N−1
q=0 γqj∑K

j=1(νj − 1) +
∑K
j=1

∑N−1
q=0 γqj

,

and after multiplying both the nominator and the denominator by
1
N

(step a), using the equivalence (8) (step b), and normalizing for
sample weights (step c) we finally arrive at:

πj =

(uγ)
j
i

wi
+

νj−1

n

1 +
∑K
j (νj−1)

n

. (14)

2 Spacing of Cached Distributions

We now present details on our distribution caching, described in
Sec. 4.3 of the paper. Specifically, we detail the computation of the
validity radius that determines spacing of cached directional distri-
butions. The validity radius r, assigned to each distribution, is a
scalar that gives the maximum spatial distance from the distribu-
tion where it can be reused. We compute the validity radius as a
weighted harmonic mean of validity radii rj of the individual mix-
ture lobes (i.e. individual GMM components):

r =
1∑K
j

πj
rj

. (15)

Here πj are the mixing coefficients that sum to one over allK com-
ponents.

When computing the validity radius, we assume that each single
lobe of a distribution corresponds to a single highlight and that the
lobes are isotropic. These assumptions are made only when com-
puting the validity radius while the training and sampling from the
distributions still uses the full anisotropic model.

2.1 Estimating and Limiting Distribution Change

To determine the validity radius rj of a single lobe lj , we first pre-
dict how the lobe lj of a distribution at the position x would change
if we observed the corresponding highlight from a slightly different
position x′ (see Fig. 1). Because of this change, using a distribution
constructed at x at the different point x′ decreases the importance
sampling quality and thus increases variance of the result.

This effect will be small if we ensure that a significant mass of each
pair of an original lobe lj and its predicted image l′j overlap. We
measure this overlap by Kullback-Leiber (KL) divergence [Bishop
2006], a tool for measuring difference between distributions. By
imposing a limit on the KL divergence between lj and l′j we com-
pute the maximum acceptable angle

αmax = arccos(ωµ · ω′µ) (16)



between the lobe mean directions ωµ and ω′µ. Details about the
computation of ω′µ from KL divergence are given below. Using
trigonometry between the original distribution position x, the new
position x′ and the alleged highlight position y (see Fig. 1), the
validity radius rj is then computed as

rj = davg tan(αmax), (17)

where davg is the distance between x and the position y of the al-
leged highlight. We estimate davg from all particles that were used
to train all the lobes in the distribution. Specifically, we take the
average of the distance that the particles traveled from their last
bounce. We have decided to use the single common estimate davg
for all lobes in a given mixture because it is, according to our ex-
perience, a more robust solution than having independent estimates
for every lobe.

2.2 KL Divergence Limit

As we said, we determine ω′µ by imposing a limit on the KL di-
vergence between the lobes lj and l′j . This is computed in the
unit square domain (see Fig. 1 right) where all the directions on
the hemisphereH+ are projected through the area preserving map-
ping S of Shirley and Chiu [1997]. To keep the notation unclut-
tered, we omit writing the component index j if there is no dan-
ger of confusion. In the unit square domain, a lobe l corresponds
to a Gaussian N (s|µ,Σ) and its shifted image l′ to a Gaussian
N (s|µ′,Σ), where µ = S(ωµ) and µ′ = S(ω′µ). Note that these
two normal distributions differ only in their means.

The KL divergence formula KL(µ′,Σ′ ||µ,Σ) for two bivariate
normal distributions [Duchi 2014] reads

1

2

(
tr(Σ−1Σ′) + (µ− µ′)TΣ−1(µ− µ′)− 2− ln

|Σ′|
|Σ−1|

)
,

where | · | is the determinant and tr(·) the trace of a matrix. Since in
our case Σ and Σ′ are identical, this reduces to one half of a square
of Mahalanobis distance ∆ between the two means:

KL(µ′,Σ′ ||µ,Σ) =
1

2
∆2 =

1

2
(µ− µ′)TΣ−1(µ− µ′).

Figure 1: The assumed geometry used for the computation of the
validity radius associated with the lobe of a distribution placed at
the position x. On the left, the lobe lj with its mean direction ωµ
is shifted to a position x′ and is compared to its predicted image
l′j with its mean direction ω′µ. On the right, the same situation is
depicted in the unit square domain. The normal anisotropic distri-
bution with the mean µ can be shifted at most about the distance dµ
in any direction v. The ellipse depicts the real distribution shape
while the circle centered in µ suggests its conservative isotropic
approximation. The distance dµ is determined by the imposed KL
divergence limit between the two normal distributions.

Recall that we assume both normal distributions to be isotropic.
This allows us to replace the covariance matrix inverse Σ−1 by its
eigenvalue λ and thus to write ∆2 = λd2µ, where dµ is the distance
between the two vectors µ and µ′. It follows that

dµ =

√
∆2

λ
. (18)

We impose a maximum threshold ∆2
thr = 5, which then yields a

maximum allowed value of dµ, denoted dµ,thr, for a given lobe.

Because our normal distributions are actually anisotropic, we set λ
to be the higher from the two eigenvalues of Σ−1. This choice is
conservative because it causes the resulting lobe validity radius rj
to be smaller than if we chose the other eigenvalue.

Finally, the direction ω′µ, that appears in Equation (16), is computed
as

ω′µ = S−1(µ′), (19)

where µ′ = dµv and S−1 is the inverse mapping of Shirley and
Chiu. The direction v in the unit square domain can be chosen
arbitrarily because we assume isotropic normal distributions (see
Fig. 1). So the computed validity radius does not depend on the
selected direction v.

2.3 Summary

To summarize, the steps in calculating the validity radius rj for a
single lobe lj are:

a) Compute the maximum distance dµ,thr, in which the lobe lj
can be shifted without exceeding the user specified threshold
∆2

thr:

dµ,thr =

√
∆2

thr

λ
. (20)

The parameter λ is the larger of the two eigenvalues of Σ−1
j ,

that is the inverse of the lobe covariance matrix Σj .

b) Select an arbitrary direction v in the unit square domain and
compute the 3D direction ω′µ using the inverse mapping of
Shirley and Chiu:

ω′µ = S−1(dµ,thrv). (21)

c) Calculate the validity radius rj using Equations (16) and (17):

rj = davg tan
(
arccos

(
ωµ · ω′µ

))
. (22)
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