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(a) Classical sampling (36s) (b) 25% Dwivedi (33s) (c) 50% Dwivedi (29s) (d) 75% Dwivedi (25s) (e) 100% Dwivedi (21s)

Figure 1: Our Dwivedi-modified sampling is driven by adjoint importance solutions for semi-infinite, homogeneous medium with a flat
boundary. Thus, its application to general curved geometry can lead to occasional high sample weights, or fireflies (see (e) around the nose)
because the estimated importance of each path was not accurately predicted. We mitigate this problem by using MIS at each transition to
combine classical sampling and the Dwivedi sampling. Note more fireflies near the nose and curved areas and their reduction as MIS mixes
the classical and Dwivedi methods. Also note how the render time changes. While the use of the classical sampling is essential to avoid the
fireflies for the curved regions, for flat regions like the cheek the pure Dwivedi walk is ideal and mixing in the classical sampling actually adds
some noise. To get the best performance, the mixing weights could be driven by local curvature. (All images were rendered using 25 samples
per pixel, uniform white illumination, a single-scattering albedo of 0.943 for all wavelengths, and index-matched smooth boundaries.)

Additional Details

The figures in this supplemental document and their captions pro-
vide further details on our method. In addition to the results shown
here, the method can also be easily applied for transmission through
layers if the thickness and medium orientation are provided at each
entry point. In fact, our numerical experiments have shown that the
variance reduction achieved in the optically thick transmissive case
is orders of magnitude greater relative to reflection from translucent
media shown here.

Dwivedi’s work [1982] was the first to propose a combination of
exponential transition distance stretching and direction sampling
based on the discrete eigenmode for the importance solution inside
a homogeneous half-space. This was a significant improvement
upon earlier heuristic applications of direction-dependent exponen-
tial transforms [Clark 1966] as a variance reduction technique for
deep penetration problems, where the ‘guiding’ parameters were
either proposed by empirical studies [Ponti 1971] or with multi-
stage adaptive methods [Spanier 1971]. In addition, the importance
function is driven from the rigorous diffusion portion of the exact
solution for the homogeneous half-space problem, which becomes
close to exact far from sources and boundaries, especially for low
absorption levels [McCormick and Kuscer 1973]. In such cases,
the Dwivedi method is a very good approximation of the idealized
zero-variance scheme.

We choose the Dwivedi sampling scheme for our subsurface scat-
tering application because it offers a good compromise between
sampling complexity and variance reduction. Our ongoing in-
vestigation shows that significant further variance reduction can
be achieved by approximating the zero-variance scheme [Hoogen-
boom 2008] more accurately. This, however, comes at the expense
of more complex sampling routines.
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(a) classical (any α) (b) Dwivedi α = 0.99 (c) Dwivedi α = 0.9 (d) Dwivedi α = 0.7 (e) Dwivedi α =
0.3

Figure 6: In each subfigure we show 2000 randomly sampled paths created using either classical volumetric sampling (a) or the Dwivedi
sampling scheme (b-e). The figures have differing scales—the red arrow is one mean-free-path long and indicates the illumination position
and direction. All paths continue inside the semi-infinite medium with isotropic scattering until an escape is sampled. Each path is rasterized
with the same opacity, regardless of sample weight. Irrespective of absorption level (the value of α), the classical scheme samples the wide
distribution of paths shown in (a), even though many of these paths are heavily absorbed and contribute negligible energy to the final result.
Russian roulette helps avoid this wasteful sampling, but increases variance of each sample as a consequence. The Dwivedi sampling scheme
we use adapts to the absorption levels of the medium and creates shorter, important paths more often, while simultaneously decreasing the
variance of each sample.

Figure 2: Our unbiased subsurface scattering solution uses a
zero-variance-based scheme to sample the subsurface subpaths—
the portions of light transport paths that correspond to subsurface
scattering (dashed red line). A semi-infinite half-space importance
solution (illustrated as a gradient), that is used to guide the paths
back to the boundary, is aligned to the surface normal at the point
of entry. Multiple importance sampling is used to combine the new
scheme with classical sampling, to robustly handle curved regions
while still reducing variance and increasing performance overall.

classical sampling our (same time)

Figure 3: Despite the fact that the importance function driving
the sampling assumes uniform hemispherical illumination (that is,
all directions upon escaping from the medium have the same im-
portance), the modified path sampling lowers variance even when
the illumination is nonuniform. The images rendered with classical
sampling use 100 samples/pixel while in our results we trace about
50% more samples/pixel in the same time. While the speedup is
a profitable side-effect, most of the variance reduction is due to
the sampling pdfs closely approximating the zero-variance sam-
pling scheme. As in Fig. 1, the subsurface medium has a single-
scattering albedo of 0.943 for all wavelengths and index-matched
smooth boundaries. The individual rows show results for different
environment maps. The first two rows show the same images as in
the abstract.
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Figure 7: Comparison of the distributions of path lengths (in terms of path segment count) generated by classical sampling (without Russian
roulette) and our application of Dwivedi sampling for the problem of reflection of normally-incident illumination from an isotropically-
scattering semi-infinite medium. The zero-variance-based Dwivedi sampling scheme generates much shorter paths on average whilst simul-
taneously decreasing variance (as opposed to Russian roulette). The method automatically adapts to the single-scattering albedo α of the
medium.


