
Hi, my name is Thomas Ludwig, I’m with Glare Technologies, developers of Indigo Renderer

We’re a small company of 3 fulltime employees, plus some friends and contractors helping out.

I’ve been with Glare for 10 years now, though the history of Indigo stretches back further than

that as a hobby project of Nicholas Chapman.

1

I’ll start with a brief history of Indigo Renderer and our market context, and then go over some

motivating examples for some of the design decisions.

Difficult indirect lighting, especially caustics, is not a focus of most rendering systems so I’ll go

into detail about that, followed by user and developer perspectives for using bidirectional

algorithms.

2

Basis is of course Veach’s thesis, and Maxwell early pioneers in physically-based MC

Non-CG specialists e.g. architects, CAD designers, people with primary job in design, want good

results easily

SketchUp and Revit users for archviz, C4D for productviz, Blender CAD

3

Indigo Renderer places great emphasis on image quality, and simplicity.

4

Biggest enabling assumption of viz: scenes can fit in memory

Relaxing this constraint allows powerful bidirectional methods

Pronounced advantage over unidir for rendering caustics

Fast early convergence big practical benefit of MLT, useful for previews

5

For unidir to sample localised reflections, needs path guiding methods

When there is realistically modelled glass in front of emitter, you need bidir methods

6

Scenes as complex as this are not the norm, but same high accuracy engine rendering any

archviz or productviz scene

7

Many realistic scenes almost entirely illuminated by indirect light

Narrow IES lights particularly tricky for unidir

8

Green light path starts from the camera, hits the floor or wall, fails to make a direct lighting

connection and strikes light through series of low probability scatters, producing firefly

Orange light paths start from emitter, reflect inside fixture, then strike floor or wall and connect

to camera → perfect importance sampling

9

Some users willing to trade rendering speed / hw costs for simple setup, high quality final results

Nevertheless, all A/B comparisons in these slides rendered in 5 mins or less on desktop CPU

Bidir at best much more efficient, at worst not much worse (MIS), thus safest default without

changing rendering modes

10

Saint Gobain needed predictive accuracy, measured spectral data for various commercially

offered glass types

Indigo material library allows anyone to use extremely realistic glass

11

Unphysical hacks commonly used for viz, e.g. section planes, invisible to cam objects

Section planes can’t simply clip off geometry, still need to emit from lights and reflect etc. More

special cases for bidir

Shadow catcher planes are another special case, used for compositing

12

Similarly, more special cases for invisible to cam objects when using bidir

Refraction density different for light paths, interpolated normals need Veach’s “smoothing

factor”

Fast N^2 implementation complex to implement and debug

13

14

Vanilla bidir has overhead from many shadow rays, but there are ways to make it more efficient.

Combinatorial bidir, two-way path tracing by Simon Brown are examples

15

Can’t ignore available GPU resources, factor ~10 brute force per GPU, GeForce RTX announced

yesterday with dedicated RT silicon

Wavefront unidir PT already complex, bidir roughly doubles it (subpath tracing, MIS combining)

Would like to see more research on GPU out of core rendering, need practical method since

complexity strictly additive

16

17

