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More from Jaroslav & Johannes...
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IVqumetric photon mapping

1. Photon tracing

- Simulate scattering of photons

2. Rendering

- Reuse photons to estimate multiple scattering
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I Photon Tracing in Participating Media
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I Photon Tracing in Participating Media
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¥ Basic Photon Tracer

vo1ld VPT(X; W, $)
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¥ Basic Photon Tracer

tmax = nearestSurfaceHit(x, ) é@

tmax
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¥ Basic Photon Tracer

X += tmax *x w // propagate photon
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¥ Basic Photon Tracer

storeSurfacePhoton(x, w, &)
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¥ Basic Photon Tracer

(Wi, pdfi) = sampleBRDF(x, w)
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¥ Basic Photon Tracer

return vPT(x, wi, ® * BRDF(x,w,wi) / pdfi)
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¥ Basic Photon Tracer

return vPT(x, wi, ® * BRDF(x,w,wi) / pdfi)
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} Basic Volumetric Photon Tracer

void vPT(x, w, &)
tmax = nearestSurfaceHit(x, w) é@
t = freeFlightDistance(x, w)
if (t < tmax) // media scattering
X +=t x w // propagate photon
storeVolumePhoton(x, w, &) max
return vPT(x, samplePF(), & *x os / Ot)

else // surface scattering
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} Basic Volumetric Photon Tracer

void vPT(x, w, &)
tmax = nearestSurfaceHit(x, w) é@
t = freeFlightDistance(x, w) t
if (t < tmax) // media scattering
X +=t x w // propagate photon
storeVolumePhoton(x, w, &) max
return vPT(x, samplePF(), & *x os / Ot)

else // surface scattering
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I Two-pass Algorithm

2. Rendering

- Reuse photons to estimate multiple scattering
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I Radiance estimation

[Jensen & Christensen 98]
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I Radiance estimation

[Jensen & Christensen 98]
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I Radiance estimation

[Jensen & Christensen 98]
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Density/radiance estimation on surface
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I Radiance estimation

[Jensen & Christensen 98]
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Density estimation as you ray march
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I Radiance estimation
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I Radiance estimation

[Jensen & Christensen 98]
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Density estimation as you ray march
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I Radiance estimation

[Jensen & Christensen 98]
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Density estimation as you ray march

V/ C L Monte Carlo Methods for Physically Based Volume Rendering 17



I Radiance estimation

[Jensen & Christensen 98]

Density estimation as you ray march
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I A Volume Caustic

00,000 photons. 1 minute

Henrik Wann Jensen
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Subsurface Scattering

500,000 photons. 1 minute

Henrik Wann Jensen Henrik Wann Jensen
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I Radiance estimation

[Jensen & Christensen 98]
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I Radiance estimation

[Jensen & Christensen 98]
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® found

@ found multiple times never found
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I DraWba Cks [Jensen & Christensen 98]

Large Step-size
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Large Step-size
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I DraWba Cks [Jensen & Christensen 98]

Large Step-size

Very Small Step-size
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I Radiance estimation Jarosz et al. 081
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I Radiance estimation Jarosz et al. 081
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How to find the photons?

V/ C L Monte Carlo Methods for Physically Based Volume Rendering 24



Y Fixed radius Jaross ot o 08
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I Fixed Radius COmpa riSOn [Jarosz et al. 08]

Beam Estimate
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I Fixed Radius COmpa riSOn [Jarosz et al. 08]
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Fixed Radius Comparison Jarosz et al. O8]

Traditional Estimate Traditional Estimate Beam Estimate




IVqumetric Photon Mapping  .c.ctai08

Fixed Radius Nearest Neighbor

(Detining the kernel
support by finding
k nearest photons)




I Va FYing Radius [Jarosz et al. 08]
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I Va FYing Radius [Jarosz et al. 08]
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How to implement this efficiently?
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Primal vs
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Primal vs

k-nearest neighbor
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Primal vs Dual

k-nearest neighbor  allow kernel radius to vary:
adaptive kernel methoa
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Primal vs Dual

k-nearest neighbor  allow kernel radius to vary:
adaptive kernel methoa
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I Beam Radiancg/Esgmate [Jarosz et al. 08]
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I Beam Radiancg/Esgmate [Jarosz et al. 08]
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I Beam Radiance Estimate
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I Beam Radiance Estimate Jarosz et al. 08
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I Cars on Foggy Street

eam Estimate




I Cars on Foggy Street

(1:53)
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I So Far...
Volumetric Photon Mapping (VPM)

[Jensen & Christensen 98]
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Query <§
Point
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I So Far...
Volumetric Photon Mapping (VPM)

[Jensen & Christensen 98]

Query x Data <§
Point X Point
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I So Far...
Volumetric Photon Mapping (VPM)

[Jensen & Christensen 98]

Query x Data Blur <§
Point x Point (3D)
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I So Far...
Volumetric Photon Mapping (VPM)

[Jensen & Christensen 98]

Query x Data Blur <§
Point x Point (3D)

The Beam Radiance Estimate (BRE)

[Jarosz et al. 08]

V/ C L Monte Carlo Methods for Physically Based Volume Rendering

36



I So Far...
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The Beam Radiance Estimate (BRE)
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I So Far...
Volumetric Photon Mapping (VPM)

[Jensen & Christensen 98]

Query x Data Blur <§
Point x Point (3D)

The Beam Radiance Estimate (BRE)

[Jarosz et al. 08]

Query x Data <§
Beam Xx Point
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I So Far...
Volumetric Photon Mapping (VPM)

[Jensen & Christensen 98]

Query x Data Blur <§
Point x Point (3D)

The Beam Radiance Estimate (BRE)

[Jarosz et al. 08]

Query x Data Blur <§
Beam x Point (2D)
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¥ Other possibilities

Query x _Data Blur_

Point x Point (3D)

Beam x Point (2D)
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¥ Other possibilities

Query x Data Blur
Point x Point (3D)
Beam x Point (2D)
Beam x Point (3D)
Point x Beam (3D)
Point x Beam (2D)
Beam x Beam (3D)
Beam x Beam (2D)
Beam x Beam (2D)
Beam x Beam (1D)
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IVqumetric photon mapping Jaross et al 111

Photon Points
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IVqumetric photon mapping Jaross et al 111

Photon Points
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IVqumetric photon mapping Jaross et al 111
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Photon Beams
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IVqumetric photon mapping Joross et al 1]
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Photon Beams x Point Query
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IVqumetric photon mapping Jaross et al 111
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Photon Beams x Beam Query
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Underwater Sun Beams

Photon Points Photon Beams

100K Photon Points _J 25K Photon Beams
~ 204 seconds/frame ~ 200 seconds/frame
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Photon Points Photon Beams

100K Photon Points _J 25K Photon Beams
~ 204 seconds/frame ~ 200 seconds/frame
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I Convergence of Progressive Photon mapping

Variance
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Variance

Kernel size Kernel size
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I Convergence of Progressive Photon mapping

[Hachisuka and Jensen 09]
[Knaus and Zwicker 11]

[Jarosz et al. 11b]

Variance
Bias

Kernel size Kernel size
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I Progressive Photon Beams Jarosz etal. 11b]

Pass 1
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Progressive Photon Beams Jarosz etal. 11b)

Pass 256 Average of Passes 1..256



Progressive Photon Beams Jarosz etal. 11b)

Pass 512 Average of Passes 1..512



I Progressive Photon Beams Jarosz etal. 11b]

100K beams per pass
51.2M beams total



I Progressive Photon Beams Jarosz etal. 11b]

100K beams per pass
51.2M beams total
+ progressive surface photon mapping



CARS

1280x720, Depth-of-Field
Pass 1

Homogeneous
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CARS

1280x720, Depth-of-Field
Average of Passes 1..2




CARS

1280x720, Depth-of-Field
! Average of Passes 1..4




CARS

1280x720, Depth-of-Field
Average of Passes 1..8




CARS

1280x720, Depth-of-Field
Pass 16 Average of Passes 1..16
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1280x720, Depth-of-Field
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CARS

1280x720, Depth-of-Field
Pass 256 Average of Passes 1..256




CARS

1280x720, Depth-of-Field
Average of Passes 1..512




CARS

1280x720, Depth-of-Field
Pass 1024 Average of Passes 1..1024




CARS

1280x720, Depth-ot-Field

Homogeneous

14.55M Photon Beams
2.5 minutes

Heterogeneous

15.04M Photon Beams
16.8 minutes
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14.55M Photon Beams
2.5 minutes

Heterogeneous

15.04M Photon Beams
16.8 minutes
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} Photon Points



8 Photon Points
G P8

O Photon Points
O [Jensen & Christensen 98]



8 Photon Points

3D Blur

&, 8

O Photon Points
O [Jensen & Christensen 98]
(collision estimator)
[Spanier & Gelbard 69]



I Photon Beams

j@

Photon Beams
[Jarosz et al. 11]



I Photon Beams

fow

Photon Beams
[Jarosz et al. 11]



(Long) Photon Beams

fow

"Long” Beams
[Jarosz et al. 11]

(expected value est.)
[Spanier & Gelbard 69]



¥ (Short) Photon Beams

fow

“Short” Beams
[Jarosz et al. 11]



¥ (Short) Photon Beams

fow

“Short” Beams
[Jarosz et al. 11]

(track-length est.)
[Spanier & Gelbard 69]
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I Beyond Photon Beams?

We can keep going to higher dimensional “photons”!
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I Photon Planes

&

OD Blur
Unbiased

[Bitterli & Jarosz 17]



I Photon Volumes

&

OD Blur
Unbiased

[Bitterli & Jarosz 17]
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I PhOtOh Beams [Bitterli & Jarosz 17]

@ / Collision estimator
\ Track-length or

Expected Value
estimator



I Beam MarChing [Bitterli & Jarosz 17]
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I Beam Marching

[Bitterli & Jarosz 17]
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I PhOtOh Plane [Bitterli & Jarosz 17]
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I Plane MarChing [Bitterli & Jarosz 17]
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I Plane MarChing [Bitterli & Jarosz 17]
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I PhOtOn VOIume [Bitterli & Jarosz 17]
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Volumetric Photon Mapping

/!

[Jensen and Christensen 1998]
[Jarosz et al. 2008]

requires a lot of photons



Volumetric Photon Mapping Photon Beams
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[Jarosz et al. 2011b]

requires a lot of photons great caustics, multi-scattering slow



Volumetric Photon Mapping Photon Beams

/)

[Jensen and Christensen 1998]
[Jarosz et al. 2008]

[Jarosz et al. 2011a]
[Jarosz et al. 2011b]

requires a lot of photons great caustics, multi-scattering slow

Virtual Point Lights

/)

[Keller 1997]
[Walter et al. 2005]
[Raab et al. 2008]
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I Singularities or Energy Loss
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Engelhardt et al. 2010




Singularities or Energy Loss

Engelhardt et al. 2010 Engelhardt et al. 2010
VPLs - no clamping VPLs - clamping Reterence




Volumetric Photon Mapping Photon Beams
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[Jensen and Christensen 1998]
[Jarosz et al. 2008]

[Jarosz et al. 2011a]
[Jarosz et al. 2011b]

requires a lot of photons great caustics, multi-scattering slow

Virtual Point Lights
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suffers from singularities, flickering



Volumetric Photon Mapping Photon Beams

/)

[Jensen and Christensen 1998]
[Jarosz et al. 2008]

[Jarosz et al. 2011a]
[Jarosz et al. 2011b]

requires a lot of photons great caustics, multi-scattering slow

Virtual Point Lights Virtual Ray Lights¢

/! /1

[Keller 1997]
[Walter et al. 2005]
[Raab et al. 2008]

suffers from singularities, flickering



Comparison
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Fruit Juice

homogeneous
anisotropic (HG g = 0.55)
512x512



Comparison

—

Surface illumination Single scattering Multiple scattering
(Photon Mapping) (Photon Beams)



Comparison

Multiple scattering



Multiple Scattering Only

Virtual Ray Lights  Progressive Photon Beams  Virtual Point Lights
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Multiple Scattering Only

Virtual Ray Lights  Progressive Photon Beams  Virtual Point Lights
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Temporal Stability
Virtual Ray Lights Virtual Point Lights
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1 minute/frame 1 minute/frame
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I Radiance caching

lllumination changes slowly

- Compute lighting and cache for reuse
by nearby rays

[Jarosz et al. 2008a]
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http://www.flickr.com/photos/ironrodart/3904773382/

I Radiance caching

lllumination changes slowly

- Compute lighting and cache for reuse
by nearby rays

[Jarosz et al. 2008a]
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I Radiance caching

lllumination changes slowly

- Compute lighting and cache for reuse
by nearby rays

Extension of (ir)radiance caching

- [Ward 88, Ward & Heckbert 92]

- [Krivanek 05a, b]

- [Jarosz et al. 12, Schwarzhaupt et al. 12]

[Jarosz et al. 2008a]
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I Radiance caching

lllumination changes slowly

- Compute lighting and cache for reuse
by nearby rays

Extension of (ir)radiance caching

- [Ward 88, Ward & Heckbert 92]

- [Krivanek 05a, b]

- [Jarosz et al. 12, Schwarzhaupt et al. 12]
[Jarosz et al. 08a, b]

[Jarosz et al. 2008a]
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I Radiance caching

lllumination changes slowly

- Compute lighting and cache for reuse
by nearby rays

Extension of (ir)radiance caching

- [Ward 88, Ward & Heckbert 92]

- [Krivanek 05a, b]

- [Jarosz et al. 12, Schwarzhaupt et al. 12]
[Jarosz et al. 08a, b]

[MarCO et al. 1 8] . . [Jarosz et al. 2008a]
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No gradients

[Jarosz et al. 2008a]



With gradients

[Jarosz et al. 2008a]
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[Jarosz et al. 2008a]
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1st order radiance caching  [Jarosz et al. 2008a]



=

(occlusion-unaware gradient)
1st order radiance caching  [Jarosz et al. 2008a]




L=

A

(occlusion-aware gradient + hessian)
2nd order radiance caching [Marco et al. 2018]
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Radiance caching
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I Advanced methods

More from Jaroslav & Johannes...
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