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Topic 

OSKAR ELEK AND JAROSLAV KRIVANEK: PRINCIPLED KERNEL PREDICTION FOR SPATIALLY VARYING BSSRDFS 

Prediction of spatially varying BSSRDF 

kernels from optical parameters 

Scattering albedo 
texture (here 2.5D) 

Local approaches Parameter 
aggregation 

Ours Path tracing 
reference 
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Topic 

OSKAR ELEK AND JAROSLAV KRIVANEK: PRINCIPLED KERNEL PREDICTION FOR SPATIALLY VARYING BSSRDFS 

Not tackling SV-BSSRDF acquisition / compression / editing 

[Peers et al. @ SIGGRAPH 2006] [Song et al. @ SIGGRAPH 2009] 
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BSSRDF and SV-BSSRDF 
Uses and challenges 
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BSSRDF: Background 
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𝑆 𝒙𝑖 , 𝒙𝑒  = “scattering kernel” 

Statistical estimate of point-to-point volumetric light transport 
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BSSRDF: Background 
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[Donner et al. @ SIGGRAPH 2005] [Frisvad et al. @ ACM ToG 2014] [Jensen et al. @ SIGGRAPH 2001] 

Great for (quasi-)homogeneous materials with well localized light transport… 
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BSSRDF: Background 

OSKAR ELEK AND JAROSLAV KRIVANEK: PRINCIPLED KERNEL PREDICTION FOR SPATIALLY VARYING BSSRDFS 

[Elek, Sumin et al. @ SIGGRAPH Asia 2017] 

…but not so great when the transport scale exceeds the feature scale 
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SV-BSSRDF: Kernel Shape 
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Albedo Albedo 

Point response (“kernel”) Point response (“kernel”) 
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SV-BSSRDF: Kernel Shape 
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Albedo Albedo 

Point response (“kernel”) Point response (“kernel”) 
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SV-BSSRDF: Kernel Shape 
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Two key ideas: 
1. Data-driven parameter aggregation 
2. Decomposition of transport into local and global 

𝑓𝐺 
𝑓𝐿 𝑓𝐿 

Albedo 

Point response (“kernel”) 
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Methodology 
Step-by-step walkthrough 
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Method Outline 
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Preprocessing: 

i. Derive a basis (homogeneous) BSSRDF 

ii. For each (𝒙𝑖 , 𝒙𝑒) estimate the transport 

path distribution connecting them 

iii. Fit a generic parametric model to the 

distribution (e.g. Gaussian mixture) 

 

Runtime: 

1) Use standard MC to select 𝒙𝑒 

2) For given (𝒙𝑖 , 𝒙𝑒) aggregate the material 

properties using the kernel from iii. 

3) Separate the transport kernel into the 

local and global components 

4) Use point-evaluated properties to 

compute the local components 

5) Use the aggregate properties from 3) to 

compute the global component 
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Method Outline 
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𝑆 ≅ 𝐴𝑖 ∙ 𝑒
−𝑟∙𝐵𝑖

𝑖

 

BSSRDF kernel: 

Also see [Christensen and Burley @ SIGGRAPH Talks 2015] 

normalized radial distance 

different albedos 

0 MFP 10 MFP 

Preprocessing: 

i. Derive a basis (homogeneous) BSSRDF 

ii. For each (𝒙𝑖 , 𝒙𝑒) estimate the transport 

path distribution connecting them 

iii. Fit a generic parametric model to the 

distribution (e.g. Gaussian mixture) 

 

Runtime: 

1) Use standard MC to select 𝒙𝑒 

2) For given (𝒙𝑖 , 𝒙𝑒) aggregate the material 

properties using the kernel from iii. 

3) Separate the transport kernel into the 

local and global components 

4) Use point-evaluated properties to 

compute the local components 

5) Use the aggregate properties from 3) to 

compute the global component 
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Method Outline 
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Distribution of unweighted sub-surface paths 

Line: [d’Eon and Irving 
@ SIGGRAPH 2011] 

Ellipse: [Sone et al. 
@ EG Shorts 2017] 

Preprocessing: 

i. Derive a basis (homogeneous) BSSRDF 

ii. For each (𝒙𝑖 , 𝒙𝑒) estimate the transport 

path distribution connecting them 

iii. Fit a generic parametric model to the 

distribution (e.g. Gaussian mixture) 

 

Runtime: 

1) Use standard MC to select 𝒙𝑒 

2) For given (𝒙𝑖 , 𝒙𝑒) aggregate the material 

properties using the kernel from iii. 

3) Separate the transport kernel into the 

local and global components 

4) Use point-evaluated properties to 

compute the local components 

5) Use the aggregate properties from 3) to 

compute the global component 
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Method Outline 
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𝐾 = 𝑘𝐺 

Aggregation kernel: 

𝛼𝑡 =  𝐾(𝒙) 

‘Transport’ albedo: 

Preprocessing: 

i. Derive a basis (homogeneous) BSSRDF 

ii. For each (𝒙𝑖 , 𝒙𝑒) estimate the transport 

path distribution connecting them 

iii. Fit a generic parametric model to the 

distribution (e.g. Gaussian mixture) 

 

Runtime: 

1) Use standard MC to select 𝒙𝑒 

2) For given (𝒙𝑖 , 𝒙𝑒) aggregate the material 

properties using the kernel from iii. 

3) Separate the transport kernel into the 

local and global components 

4) Use point-evaluated properties to 

compute the local components 

5) Use the aggregate properties from 3) to 

compute the global component 
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Method Outline 

OSKAR ELEK AND JAROSLAV KRIVANEK: PRINCIPLED KERNEL PREDICTION FOR SPATIALLY VARYING BSSRDFS 

𝑓𝐺 
𝑓𝐿 𝑓𝐿 

𝑆𝑉 = 𝑓𝐿(𝒙𝑖) ∙ 𝑓𝐺(𝒙𝑖 , 𝒙𝑒) ∙ 𝑓𝐿(𝒙𝑒) 

=
𝛼𝑖
𝛼𝑡
∙ 𝑆(𝛼𝑡) ∙

𝛼𝑒
𝛼𝑡

 

𝑆𝑉 = 𝑆(𝛼𝑖) ∙ 𝑆(𝛼𝑒) 

Factorization: 

[Song et al. @ SIGGRAPH 2009] 

𝑆𝑉 = 𝑆(𝛼𝑡) 
[Sone et al. @ EG Shorts 2017] 

Aggregation: 

Preprocessing: 

i. Derive a basis (homogeneous) BSSRDF 

ii. For each (𝒙𝑖 , 𝒙𝑒) estimate the transport 

path distribution connecting them 

iii. Fit a generic parametric model to the 

distribution (e.g. Gaussian mixture) 

 

Runtime: 

1) Use standard MC to select 𝒙𝑒 

2) For given (𝒙𝑖 , 𝒙𝑒) aggregate the material 

properties using the kernel from iii. 

3) Separate the transport kernel into the 

local and global components 

4) Use point-evaluated properties to 

compute the local components 

5) Use the aggregate properties from 2) to 

compute the global component 
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Evaluation 
Overall quality and detail preservation 
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Evaluation: Simple Structures 
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Evaluation: Complex Structures 
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Evaluation: Color Features 
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Evaluation: Feature Preservation 
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Discussion 
What follows? 
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Future Work 
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• Principled aggregation kernel 
• Currently only a manual fit 
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Future Work 

OSKAR ELEK AND JAROSLAV KRIVANEK: PRINCIPLED KERNEL PREDICTION FOR SPATIALLY VARYING BSSRDFS 

• Principled aggregation kernel 

• Spatial variation of all material parameters 
• Currently only scattering albedo 
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[Hasan et al. @ SIGGRAPH 2010] 



𝑓𝐺 
𝑓𝐿 𝑓𝐿 

𝑆𝑉 = 𝑓𝐿(𝒙𝑖) ∙ 𝑓𝐺(𝒙𝑖 , 𝒙𝑒) ∙ 𝑓𝐿(𝒙𝑒) 

Future Work 

OSKAR ELEK AND JAROSLAV KRIVANEK: PRINCIPLED KERNEL PREDICTION FOR SPATIALLY VARYING BSSRDFS 

• Principled aggregation kernel 

• Spatial variation of all material parameters 

• Importance sampling 
• Currently only uniform sampling of incident illumination 
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Future Work 

OSKAR ELEK AND JAROSLAV KRIVANEK: PRINCIPLED KERNEL PREDICTION FOR SPATIALLY VARYING BSSRDFS 

• Principled aggregation kernel 

• Spatial variation of all material parameters 

• Importance sampling 

• General 3D geometry and parameter distributions 
• Current solution limited to 2.5D objects 

[Frisvad et al. @ ACM ToG 2014] 
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