
25

Volume Path Guiding Based on Zero-Variance Random Walk Theory
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Fig. 1. Path tracing of an optically dense medium (30 minutes), showing both a complete “beauty” render (S+V), and a render with only volumetric transport
(V). Building on an approximate adjoint solution of the incident and in-scattered radiance, our zero variance-based path construction forms near-optimal
decisions for guided collision distance sampling, directional sampling, Russian roulette, and path splitting. As such, our sampling methodology leads to
significantly faster convergence compared to an unguided path tracer with standard transmittance-based collision and phase function sampling.

The efficiency of Monte Carlo methods, commonly used to render partici-
pating media, is directly linked to the manner in which random sampling
decisions are made during path construction. Notably, path construction is
influenced by scattering direction and distance sampling, Russian roulette,
and splitting strategies. We present a consistent suite of volumetric path
construction techniques where all these sampling decisions are guided by
a cached estimate of the adjoint transport solution. The proposed strategy is
based on the theory of zero-variance path sampling schemes, accounting
for the spatial and directional variation in volumetric transport. Our key
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technical contribution, enabling the use of this approach in the context of
volume light transport, is a novel guiding strategy for sampling the parti-
cle collision distance proportionally to the product of transmittance and the
adjoint transport solution (e.g., in-scattered radiance). Furthermore, scat-
tering directions are likewise sampled according to the product of the phase
function and the incident radiance estimate. Combined with guided Rus-
sian roulette and splitting strategies tailored to volumes, we demonstrate
about an order-of-magnitude error reduction compared to standard uni-
directional methods. Consequently, our approach can render scenes oth-
erwise intractable for such methods, while still retaining their simplicity
(compared to, e.g., bidirectional methods).
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1 INTRODUCTION

Recent industrial adoption of physically-based rendering method-
ologies has sparked renewed interest in Monte Carlo (MC)
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methods for light transport simulation. This wider adoption has
also exposed many limitations inherent to MC methods, including
their slow convergence in scenes with participating media (Fong
et al. 2017). This can be attributed to a historical focus in com-
puter graphics on optimizing MC methods for surface transport,
and the added complexities of volumetric transport (Christensen
and Jarosz 2016; Pharr et al. 2016).

Volumetric phenomena contribute significantly to realistic
images. As such, recent work has focused on bridging the gap
between surface- and volume-transport simulation (Jarosz 2013),
including efficient importance sampling methods for unbiased
(Georgiev et al. 2013; Kulla and Fajardo 2012; Kutz et al. 2017;
Novák et al. 2014; Simon et al. 2017; Szirmay-Kalos et al. 2017)
and biased (Křivánek et al. 2014; Novák et al. 2012a) rendering.
The theoretical overlap between light and particle transport has
also promoted knowledge transfer between the graphics and
neutron transport communities (Dwivedi 1982; Galtier et al. 2013;
Hoogenboom 2008; McCormick and Kuscer 1973; Spanier and
Gelbard 1969). Ultimately, however, these methods focus on either
optimally sampling a subset of the transport equation terms,
or they rely on restrictive assumptions about the underlying
medium, such as homogeneity or scattering isotropy—that is,
if they support volumetric media at all. Either way, important
lighting features are left untreated during stochastic sampling,
leading to estimators with high variance.

We leverage the key insight that, in order to improve conver-
gence, MC volumetric light transport must optimally account for
every stochastic decision: all spatial, directional, and path-length
sampling decisions should be treated in a consistent manner. Our
main contribution is a unified methodology for close-to-optimal
importance sampling of volumetric transport paths. Zero-variance
path sampling theory (Hoogenboom 2008; Křivánek and d’Eon
2014; Meng et al. 2016) serves as the theoretical framework here,
providing ground rules for building a globally optimal, joint
path-space sampling distribution using but a set of locally optimal

sampling decisions used during incremental path construction
(Section 3.2). This process is referred to as transport path guiding.

Our contributions lie in the volume-specific aspects of path
guiding, to complement the existing works with focus on surfaces
(especially the ones compatible with the zero-variance sampling
theory (Herholz et al. 2016; Vorba et al. 2014; Vorba and Křivánek
2016)). Specifically, we propose unbiased methods to efficiently
and accurately conduct all the volumetric sampling decisions:

—Our key technical contribution is a novel technique for

the collision distance and scatter/no-scatter decisions

performed in proportion to the full product of both

transmittance and in-scattered radiance. This proposed
formulation avoids constructing the sampling distribution
upfront and instead operates incrementally along the parti-
cle flight path, yielding an efficient solution, especially for
optically thick media.

—We sample scattering directions according to the prod-

uct of the phase function and incident radiance, each
of which is represented using von Mises-Fisher (vMF) mix-
tures. Crucially, these allow for efficient evaluation, product,
and convolution operations. Previous path guiding work on

surfaces is adapted for this purpose (Herholz et al. 2016;
Vorba et al. 2014).

—Finally, our path termination/splittingdecisions locally

adjust the density of traced paths according to their

estimated contributions, i.e., based on the expected
throughput-weighted radiance. Again, we extend previous
work focused on surface transport (Vorba and Křivánek 2016)
to volumes.

Since a practical implementation requires knowledge of the
adjoint transport solution (e.g., the steady-state spatio-directional
radiance distribution), we cache approximate adjoints during a
particle tracing pre-pass. Using parametric vMF mixture models
for our cached representation enables closed-form evaluation of
all required adjoint quantities. We then follow the framework of
zero-variance path sampling to unify our sampling procedures,
transferring and extending recent concepts on path guiding for
surfaces (Dahm and Keller 2017; Herholz et al. 2016; Müller et al.
2017; Vorba et al. 2014; Vorba and Křivánek 2016) to full volumetric
transport.

Compared to the state-of -the-art, the proposed guided sampling
techniques (Section 6) have two critical advantages. First, they
sample proportionally to the full integrand of the volume trans-
port equation, across respective local sub-domains (Section 3). Sec-
ond, all local sampling decisions are consistently guided by the
same underlying adjoint solution (Section 5). Consequently, our
method can efficiently simulate a number of volumetric phenom-
ena deemed difficult or costly for current rendering techniques,
comprising both low-order (e.g., light shafts, volumetric caustics)
and high-order (e.g., dense high-albedo media) transport effects
(Section 7). In addition to our practical results, we include numer-
ical analysis of our sampling techniques (in isolation and joint
combinations), validating their variance-reduction ability across
diverse scene configurations.

2 RELATED WORK

We focus on efficient sampling for Monte Carlo solutions to trans-
port problems. Interested readers can refer to broader surveys of
volumetric media rendering in research (Novák et al. 2018) and
production (Fong et al. 2017).

Local importance sampling. The efficiency of Monte Carlo meth-
ods depends largely on their ability to generate light transport
paths with a distribution resembling the underlying transport
equation as closely as possible. Since this is a difficult proposi-
tion, in practice, the sampled paths are instead drawn from one
or more of the transport equation’s factors (Section 3.1). Special-
ized schemes have thus been designed to importance-sample them:
Rayleigh (Frisvad 2011) and Henyey-Greenstein (Witt 1977) phase
functions can be sampled analytically and adaptive sampling can
be conducted according to coarse visibility oracles (Belcour et al.
2014; Engelhardt and Dachsbacher 2010). In optically thin me-
dia dominated by low-order transport effects, convergence can be
significantly improved by importance-sampling single scattering
from point (Kulla and Fajardo 2012) or environmental sources (von
Radziewsky et al. 2017).
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Extensions to bidirectional path connection schemes are use-
ful for generalizing these gains to scenes with refractive interfaces
(Koerner et al. 2016) or two- and three-bounce transport (Georgiev
et al. 2013). While the latter work shares the same objective as our
method—that of joint importance sampling of transport paths—it
is limited to importance sampling of the geometry terms and the
phase function over (up to) three random events, ignoring trans-
mittance. Our method, on the other hand, can build full paths by
importance sampling all terms of the transport equation.

A significant effort has also been devoted to sampling propor-
tionally to the transmittance and density of the medium. Here, tab-
ulated transmittance sampling (Amanatides and Woo 1987) intro-
duces bias, whereas its unbiased counterpart—delta tracking (Raab
et al. 2006; Woodcock et al. 1965)—becomes inefficient for media
with significant optical density variation. One approach to alle-
viate this issue is to bound regions with similar density (Szirmay-
Kalos et al. 2011; Yue et al. 2010). Independently, a weighted

tracking scheme instead of an analog one has likewise proven
effective (Galtier et al. 2013; Morgan and Kotlyar 2015). These tech-
niques reduce the number of required density look-ups, and can be
combined with control variates to further reduce variance (Novák
et al. 2014). Several new unbiased tracking methods have then
been developed based on these formulations (Kutz et al. 2017;
Szirmay-Kalos et al. 2017).

Regardless, all the methods above only address individual com-
ponents of the global transport sampling problem (Section 3.1).
This results in unpredictable residual variance in general scenes,
i.e., where transport characteristics are not known beforehand.
Our main goal is, therefore, a unified volumetric path sampling
approach that supersedes these more specific techniques.

Transport path guiding. Many efficient bidirectional rendering
algorithms leverage the reciprocity of light transport (Christensen
2003; Křivánek et al. 2014; Lafortune and Willems 1995; Veach
1997). Similarly, dual (adjoint) transport solutions generated in a
pre-pass can be used to guide a unidirectional solver (Hey and
Purgathofer 2002; Jensen 1995; Lafortune and Willems 1995). In
the latter context, both continuous (Herholz et al. 2016; Vorba et al.
2014) and discrete (Dahm and Keller 2017; Müller et al. 2017) rep-
resentations of the adjoint transport solution have recently been
explored. Building atop a unidirectional solution is desirable since
a vast majority of rendering in practice relies on such approaches.

We are motivated by the fact that the above methods exclusively
treat surface light transport, whereas path guiding in volumet-
ric media has remained largely unexplored. Nevertheless, our ap-
proach is strongly influenced by these works. Notable exceptions
of volumetric guiding in graphics is the sequential MC method of
(Pegoraro et al. 2008) or the significance cache-based method by
(Bashford-Rogers et al. 2012), who perform directional sampling
according to a histogram or cosine lobe representation of the ap-
proximated adjoint transport solution. Although being a step for-
ward, these methods are limited to near-isotropic phase functions,
while not considering the effect of transmittance or path length
on the ideal sampling distribution. In contrast, our method per-
forms sampling according to the full volume rendering equation

(Section 3.1), without imposed restrictions on the form or prop-
erties of the medium.

Specialized methods. Volumetric analogues of caching methods
based on photon density estimation (Bitterli and Jarosz 2017; Jarosz
et al. 2011; Jensen and Christensen 1998; Novák et al. 2012b) or vir-
tual light sources (Engelhardt et al. 2012; Novák et al. 2012a) often
face similar sampling decisions as the purely path-based methods,
and have consequently led to a suite of dedicated sampling tech-
niques. These methods can be combined to improve the conver-
gence of individual estimators (Křivánek et al. 2014). Explicit cache
placement can also be guided by importance sampling according
to illumination gradients (Jarosz et al. 2008; Ren et al. 2008).

Yet again, similarly to the local methods, these typically con-
sider only the terms of the transport equation that can be read-
ily sampled within the respective caching scheme. In contrast, we
designed our caching to support all the necessary sampling deci-
sions dictated by the theoretical foundations of volumetric trans-
port (Section 3.2).

Zero-variance path sampling theory. Ultimately, we seek to ob-
tain an optimal MC estimator in radiative transport. Such an esti-
mator would sample according to all factors of the transport equa-
tion, since any ignored one results in variance increases. While
that is the established idea of importance sampling, we can make
an even stronger claim on the basis of the zero-variance random
walk theory (Hoogenboom 2008; Kalos and Whitlock 2008): that
a perfect global MC sampling can be achieved if every local deci-
sion is made optimally, that is, in exact proportion to the respective
integrand of the transport equation.

This proposition is, however, only hypothetical—infinite com-
putation and memory is needed to perform this sampling, since the
adjoint solution itself is nested in the transport equation. Excep-
tions comprise idealized scenarios with simplified closed-form ad-
joints, such as homogeneous infinite half-space transport (Dwivedi
1982; McCormick and Kuscer 1973). Recent works in computer
graphics have nevertheless leveraged these results to improve the
convergence for sub-surface scattering simulation (Křivánek et al.
2014; Meng et al. 2016).

The conclusion that can be drawn from these works is that even
an approximate adjoint solution can serve an MC approach that
follows the zero-variance principles (Vorba and Křivánek 2016).
We build on this key observation and propose a unified sam-
pling scheme with state-of-the-art convergence rates (Sections 4–
6). Crucially, any residual variance of our method results only from
imperfections in our approximate adjoint solution (as examined in
Section 7).

3 BACKGROUND

We first briefly revisit the integral form of the volume render-
ing equation (VRE), which underlies the volumetric light trans-
port problems. The MC estimator for the VRE is then described
in Section 3.2, focusing on defining the target probability density
functions (PDFs) for optimal (zero-variance) sampling.

3.1 Volume Rendering Equation

We rely on the standard parametrization for participating media
(Pharr et al. 2016) via spherical phase function f , absorption coef-
ficient σa, scattering coefficient σs, and extinction coefficient (op-
tical density) σt = σa + σs. All these quantities can be spatially
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varying. To simplify the exposition, we will, however, not consider
emissive media (see Simon et al. (2017) for a dedicated treatment
of these).

The method pre-
sented in this article pro-
vides a numerical solu-
tion to the integral form
of the VRE, express-
ing the (scalar, mono-
chromatic) radiance L arriving at point x from direction ω:

L(x,ω) = T (x, xs )Lo (xs ,ω)

︸�����������������︷︷�����������������︸
Ls (x,ω)

+

∫ s

0
T (x, xd )σs (xd )Li (xd ,ω) dd

︸�������������������������������������︷︷�������������������������������������︸
Lm (x,ω)

,

(1)

where xs = x − sω and xd = x − dω. In the presence of partici-
pating media the evaluation is typically split into two parts: the
attenuated surface contribution Ls arriving from the closest sur-
face intersection at xs , and the volume contribution Lm, scattered
along and into ω within the medium. The outgoing surface radi-
ance Lo is the sum of the emitted radiance Le and the reflected ra-
diance Lr (Kajiya 1986). The transmittance function T defines the
loss of energy due to photon-medium collisions (i.e., volumetric
absorption and out-scattering, expressed by the optical thickness
τ) along an optical path between two points:

T (x1, x2) = e−τ(x1,x2 ) , τ(x1, x2) =

∫ ‖ x1−x2 ‖

0
σt (xd ) dd .

(2)

Finally, the medium radiance contribution Lm gathers the incom-
ing radiance Li across a sphere S :

Li (xd ,ω) =

∫
S

f (xd ,ω,ω
′)L(xd ,ω

′) dω′, (3)

which is weighted by σs in Equation (1) and attenuated by the
transmittance along the optical path to x.

The VRE (Equation (1)) has a structure similar to the standard
rendering equation (Kajiya 1986); in fact, it reduces to it if σa =

σs = 0. It, however, bears additional significant complexity due to
the integration within the medium. In a stochastic MC solver such
as path tracing, this leads to additional linear, spherical, and dis-
crete sampling decisions covered in the following section.

3.2 Zero-variance Path Sampling Theory

We solve the VRE using MC estimation with optimized importance
sampling according to the theory of zero-variance path sampling.

Monte-Carlo estimator. Solving the VRE (Equation (1)) using MC
estimation leads to a procedure where a set of N visual importance
particles are traced until being stochastically terminated. Along its
trajectory, each particle collects radiance at emitting positions, or
by doing next event estimation (Pharr et al. 2016), yielding one
or several light transport paths. Since Equation (1) assumes non-
emissive media, emission can only occur on a light source surface.
To simplify the exposition a step further, we focus on the so called

“last-event” estimator (Hoogenboom 2008): the particle only col-
lects radiance at an emitting position and is then immediately ter-
minated.

The contribution of each particle’s path ri is given by the cumu-
lative particle weight a and the emitted radiance Le at the end of
the path:

I = E
[ 1

N

N∑
i

a(ri ) · Le (xi,M ,ωi,M−1)
]
. (4)

Along its path, each of the N particles undergoes M − 1 scattering
events (on surface or in volume; see Figure 2). At each event and its
coupled propagation step, the particle performs a state change, i.e.,
its position and orientation change from (xj ,ωj ) to (xj+1,ωj+1).
The positions x0 and xM define the start and the end of the path.
The full particle weight is then the product of the weights for each
individual state change j:

a(r ) =
M−1∏
j=1

aj (r ). (5)

The individual state change weight is given by the throughput
of the path segment divided by the PDF of performing the corre-
sponding state change. If for the sake of brevity we only consider
volumetric interactions, the weight of a segment is defined as:

aj (r ) =
1

qj−1

T (xj−1, xj )σs (xj ) f (xj ,ωj−1,ωj )

p (xj ,ωj |xj−1,ωj−1)
, (6)

with q being the probability of surviving the termination at the
respective event and p being the PDF for generating the next path
segment, both defined below.

Zero-variance path sampling strategy. The zero-variance path
sampling theory (Hoogenboom 2008) provides a set of particle
state change rules, which can be used for guided sampling of in-
crementally constructed paths. Applying these rules provably re-
sults in all particles having the exact same contribution (cf. Equa-
tion (4)), resulting in an estimator with zero variance. A remark-
able property of such schemes is that by following the prescribed
set of local sampling decisions, a globally optimal sampling strat-
egy emerges. This is enabled by the fact that each of these local
decisions relies on (is “guided” by) information about the global
transport solution.

In contrast to surface-based transport—where the generation of
a next particle state only relies on directional sampling—the pres-
ence of participating media introduces a set of additional sampling
decisions (illustrated in Figure 2). At this point, we define the PDFs
for these four decisions derived from Equation (1) according to the
zero-variance theory:

(1) Given a particle state (xj ,ωj ), the first step of the state
change is to determine the new particle position xj+1. This
involves two sub-steps:
(a) First, a discrete decision determines whether the path

explores the contribution Ls from the nearest surface, or
the volumetric contribution Lm from the medium (see
Equation (1)). The optimal probability for sampling Lm
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Fig. 2. Top: An example path containing volume (blue) and surface (yellow) vertices. Note that, in the path tracing algorithm, the path carries visual
importance, and thus is generated in the opposite direction of the flow of light. Bottom: The four considered zero-variance sampling decisions, mirroring
the Equations (7)–(10). Optimal decisions are whether to scatter within or outside the medium, how far to travel until the next scattering event, how to
choose the scattering direction, and when to terminate the path.

between xj and the next surface is

Pm (xj ,ωj ) =
Lm (xj ,ωj )

Ls (xj ,ωj ) + Lm (xj ,ωj )
. (7)

(b) Next, assuming that the volume contribution was se-
lected in Step 1(a), the collision distancedj+1 to the next
scattering position at xj+1 has to be sampled. The opti-
mal PDF for sampling dj+1 starting at (xj ,ωj ) is

pd (dj+1 | xj ,ωj ) =
T (xj , xj+1)σs (xj+1)Li (xj+1,ωj )

Lm (xj ,ωj )
. (8)

(2) At the new scattering position xj+1, the random walk needs
to explore the integral of in-scattered radiance Li, i.e., scat-
tered into the direction ωj . Therefore, a new direction ωj+1

needs to be sampled, with the optimal PDF

pω (ωj+1 | xj+1,ωj ) =
f (xj+1,ωj ,ωj+1)L(xj+1,ωj+1)

Li (xj+1,ωj )
. (9)

(3) Obtaining Li itself involves an evaluation of the incoming
radiance L (Equation (3)). Steps 1–2 are thus repeated until
we reach a position xj , which emits energy in the direction
ωj−1 and the decision is made to terminate the random walk
and return its weighted emission a(r ) · Le. The optimal ter-
mination probability at xj is

PRR (xj ,ωj−1) =
Le (xj ,ωj−1)

Le (xj ,ωj−1) + Lr (xj ,ωj−1)
=

Le (xj ,ωj−1)

Lo (xj ,ωj−1)
,

(10)

with the resulting survival probability of

qj = 1 − PRR (xj ,ωj−1). (11)

In the case there is no emission at xj , the zero-variance prob-
ability of continuing the walk is one.

Putting everything together, the resulting PDF for a state change
(Equation (6)) is composed of the conditional PDFs for each of
these sampling decisions:

p (xj+1,ωj+1 | xj ,ωj ) = Pm (xj ,ωj )

· pd (dj+1 | xj ,ωj )

· pω (ωj+1 | xj+1,ωj ).

(12)

In the following sections, we present our core contribution: tech-
niques for efficiently performing the guided sampling decisions

outlined in Steps 1 through 3, on the basis of the zero-variance
framework. Sections 4–6 describe the algorithmic design, followed
by practical considerations and evaluation in Section 7.

4 METHODOLOGY

We build on the core principle that a globally optimal sampling
of the transport path space can be achieved by making the ideal
sampling decision for every individual integrand of the governing
transport equation (Section 3.1). Section 3.2 thus provides a con-
sistent set of optimal Monte Carlo path sampling strategies unified
under the zero-variance theoretical framework.

To that end, our method needs to rely on estimating the adjoint
transport solution that guides the stochastic path construction pro-
cess, since all the partial PDFs (Equations 7–10) require the knowl-
edge of the global energy distribution. As described in Section 5,
we store this estimate in a hybrid cache, using a kD-tree to repre-
sent the spatial component of the adjoint solution, and vMF model
mixtures to represent its directional component.

Building on the adjoint solution estimate we describe the indi-
vidual sampling procedures in Sections 6.1–6.3, reflecting the the-
oretical subdivision into partial PDFs from Steps 1–3 in Section 3.2.
Incrementally applying these sampling decisions leads to a guided
construction of a near-optimal transport path, subject to the repre-
sentation accuracy of the cached adjoint solution (Section 5). Note
that we only address the sampling of the volumetric light trans-
port, since sampling on surfaces has been addressed previously
(see Section 2). On the other hand, the distinct advantage of our
approach is its zero-variance-theoretical foundation, which makes
it readily compatible with other surface guiding approaches built
on this theoretical framework (see Section 8).

5 ADJOINT SOLUTION ESTIMATE

As stated, zero-variance sampling requires prior knowledge of the
light transport solution. Given this cyclic dependency, our method
resorts to approximations, specifically of the incident radiance L
and in-scattered radiance Li (Equations (1) and (3)). These quanti-
ties are stored in a hybrid spatial and directional cache structure
(see Figure 3), similar to recent methods in surface path guiding
(Bus and Boubekeur 2017; Müller et al. 2017; Vorba et al. 2014).
We initialize our prior estimates in a short pre-processing phase,
where photons are traced from the light sources and then clustered
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Fig. 3. Left: Visualization of the (kD) tree for the spatial cache component.
Right: A schematic and false-color depiction of the directional caches for
the incident and in-scattered radiance represented via vMF mixtures (or-

ange). The sample volume has a slightly forward-peaked phase function.

using a spatial subdivision (kD) tree. Photons in each leaf node are
used to build the directional representation of the incoming radi-
ance for the volume contained within that node.

We represent directional distributions using a parametric mix-
ture model based on the vMF distribution widely used in direc-
tional statistics. This has important advantages:

—similarly to the main quantities of the volumetric trans-
port, the distributions are naturally defined on the sphere
and therefore no additional mapping is required, cf. Herholz
et al. (2016), Müller et al. (2017), and Vorba et al. (2014);

—the in-scattered radiance estimate is calculated through an
efficient closed-form convolution;

—the product distribution between the incident radiance and
the phase function for any directional configuration is also ob-
tained in a closed-form.

To fit the vMF distributions, we use a weighted maximum a pos-

teriori expectation maximization (MAP-EM) algorithm, which is
similar to the method presented by (Vorba et al. 2014). Since we
use vMFs, as opposed to their Gaussians, our maximum-likelihood
parameter estimation and the associated priors are different (as de-
scribed in Appendix A.1). For more details on MAP-EM for vMF
mixtures, please refer to (Bangert et al. 2010).

Incoming radiance estimate. To represent the incoming radiance
distributions at different locations x inside a medium, we use vMF
mixtures V described by the spatially-varying parameter set Θ(x).
Such a mixture represents a spherical distribution via a set of K
weighted vMF lobes v :

V (ω |Θ) =
K∑

i=1

πi · v (ω | μi ,κi ). (13)

The parameter set Θ contains the weights {π1, . . . ,πK }, the mean
directions {μ1, . . . ,μK }, and precisions {κ1, . . . ,κK } for each com-
ponent (“lobe”). Each vMF lobe is a normalized spherical distribu-
tion, rotationally symmetric around its mean, with its spread be-
ing inversely proportional to κ. Appendix A provides additional
details.

Fig. 4. Our adjoint solution estimates for the volumetric radiance quan-
tities L and Li for two positions below the surface of the Buddha statue.
The center column shows the ground-truth spherical function of L and Li

evaluated using path tracing with 100k samples per pixel. The right col-
umn shows our estimates L̃ and L̃i fitted from 1k photons. Note that since
Li is an integrated quantity, its estimate is much more reliable than that
of L.

The incident radiance estimate L̃ is related to the normalized
vMF mixture through scaling by the scalar irradiance (i.e., fluence):

L̃(x,ω) = Φ(x) · V L (ω |ΘL (x)). (14)

Fluence is given by Φ(x) =
∫

S L(x,ω′) dω′. It is determined us-
ing a standard photon map estimate, during the fitting process of
the vMF mixture for the incoming radiance, and stored along the
mixture parameter set in the spatial structure.

In-scattered radiance estimate. Functionally, the in-scattered ra-
diance Li is given by spherically convolving the incident radi-
ance (represented by a vMF mixture) with the phase function
(Equation (3)):

L̃i (x,ω) = Φ(x) ·
∫

S
f (x,ω,ω′) V L (ω′|ΘL (x)) dω′. (15)

Since phase functions are typically rotationally invariant, they can
be represented with one or more vMF lobes. The convolution of
two vMF lobes results in another vMF lobe, which can be calculated
analytically (Appendix A.2), providing a highly efficient means to
obtain the integrated in-scattered radiance estimate:

L̃i (x,ω) = Φ(x) · V Li (ω|ΘLi ),

V Li (ω) = (V f ∗V L ) (ω).
(16)

This spatio-angular caching structure thus provides the estimates
L̃ and L̃i in constant time, minimizing the overhead of our sampling
procedures. Examples of our estimates compared to the ground-
truth measurements are given in Figure 4.

6 SAMPLING PROCEDURES

We now proceed with details of the procedures for realizing the
zero-variance-based sampling decisions described in Section 3.2.
We begin with our core contribution: the volume-specific sampling
decision that concerns finding a scattering location along a parti-
cle’s propagating direction, given its current position.
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6.1 Guided Product Distance Sampling

To find the next scattering location, the tracing algorithm first
needs to decide if the path should explore the medium contribu-
tion Lm or the surface contribution Ls (Figure 2, 1(a)). In the for-
mer case, the distance to the next medium interaction (“collision
distance”) has to be sampled (Figure 2, 1(b)).

These two decisions can be merged into a single distance sam-

pling decision, where either the interval between the current par-
ticle position x and the next surface interaction at xs , or the full
distance to xs is sampled. The zero-variance PDF for this joint dis-
tance sampling is the combination of Equations (7) and (8):

pd (d | x,ω) =
T (x, xd ) · σs (xd ) · Li (xd ,ω)

L(x,ω)
. (17)

This merger changes the denominator of the zero-variance PDF
for the collision distance from Lm to Ls + Lm = L. Since exist-
ing tracking methods (Section 2) do not have prior knowledge of
the incident and in-scattered radiance, they sample proportionally
to the local (“medium”) terms only: pd (d |x,ω) ∝ σs (xd )T (x, xd ).
Our aim, in contrast, is to sample the full product PDF in Equa-
tion (17). We first explain a naïve static solution to this problem,
and follow by presenting a significantly more efficient incremental

proposal.

6.1.1 Naïve Solution. A straightforward way to use our volu-
metric radiance estimates to sample according to the zero-variance
PDF is to explicitly build a tabulated discrete PDF and its cor-
responding cumulative density function (CDF) (Fong et al. 2017;
Kulla and Fajardo 2012) by a uniform sampling of Equation (17).
The downside of this method is that it requires stepping along the
entire length of the ray to evaluate all the bins of the discrete PDF,
and calculate its normalization factor—before making any sam-
pling decision (Figure 5, top).

To illustrate the inefficiency of this approach, consider an opti-
cally dense medium such as the one in Figure 1. Most of the light
transport in such objects takes place near the surface (Křivánek
et al. 2014), at depths much smaller compared to the size of the
object. The overhead of the naïve approach is then proportional to
the ratio of the transport and object scales. Another example are
large sparse media (for example in Figure 11), where the impor-
tant illumination features (light shafts, caustics, etc.) might be too
spaced-out to be sufficiently captured by a uniform tracking.

Our key technical contribution is a novel guided distance sam-
pling method that overcomes this limitation by performing only
the necessary number of steps to reach the sampled collision dis-
tance.

6.1.2 Proposed Incremental Distance Sampling. Instead of con-
structing the complete discrete PDF along the ray upfront, the
tracking procedure implicitly estimates it on the fly while stepping
through the medium. This is done through a repeated stochastic
decision whether the collision event should be located somewhere
within the currently examined bin, or in the remainder of the ray
(Figure 5, bottom). In the latter case the stepping examines the suc-
cessive bin in the same fashion, leading to a procedure that can
be conceptualized as a tail recursion. In the following exposition,
we then unfold this recursive process into an incremental tracking
procedure (Algorithm 1).

Fig. 5. Naïve (top) versus our incremental guided distance sampling (bot-

tom). The naïve solution generates a discrete PDF (and its corresponding
CDF) by first sampling along the entire ray to select a single collision loca-
tion (blue arrow). Our incremental technique (Algorithm 1) steps along the
ray, proposing candidate bins according to the current PDF estimate and
the estimated probability mass along the remainder of the ray without
explicitly sampling it. This approach is especially beneficial for optically
dense media, since, on average, fewer steps are taken due to the rapidly
decreasing transmittance function with regard to increasing d .

Note that such a procedure requires a normalization factor for
each individual step. Conveniently, we can approximate this factor
thanks to the cached quantities L̃ for the incoming radiance and L̃i
for the in-scattered radiance (Section 5).

To derive our incremental sampling method, we first have a look
at the CDF of the combined zero-variance PDF from Equation (17).
Since the sampling proceeds along the direction −ω starting at
x, we will for the remainder of this section operate within the 1D
distance space with the origin at x. The CDF defines the probability
that a random variable D (representing the scattering distance) is
below or equal to the distance d :

P (D ≤ d ) =

∫ d

0 T (0,d ′)σs (d ′)Li (d
′,ω) dd ′

L(0,ω)
. (18)

To rephrase, since the in-scattered radiance contribution of the ray
interval from x to xd is a subset of incoming radiance arriving at
x, the probability is the ratio between these two quantities.

Per-bin sampling. Consider first that the stepping procedure has
already arrived (collision-free) to di (Figure 5, bottom). We now
propose the transition to the next point di+1, with the goal to de-
termine the probability of the collision being between di and di+1,
or alternatively, after di+1. If the former case occurs, the tracking
stops, whereas in the latter case, it restarts again from distance
di+1.

Let us therefore take a look at an individual bin (ray interval)
between di and di+1. We will denote the conditional probability of
generating a collision within this bin as

Pi (D ≤ di+1) ≡ P (D ≤ di+1 | di < D). (19)

Since the bins are typically defined on the scale of the medium or
cache resolution, we can reasonably assume a constant Li and σs
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Fig. 6. Comparison of different distance sampling strategies for a didactic
scene with a heterogeneous medium (3D grid with alternating density).
The ray starts from the camera and goes straight through the medium (red

point). Since the standard transmittance-based sampling (blue) ignores the
illumination component, it overestimates the importance of the first dense
cube of the grid structure. Our incremental guided sampling (green) on the
other hand is close to the simulated ground-truth PDF (orange).

for the current bin, allowing a closed-form integration of the local
transmittance. From Equation (18), we then get

Pi (D ≤ di+1) ≈ 1 −T (di ,di+1)

σt (di )
· σs (di ) · Li (di )

L(di ,ω)
, (20)

the first factor being the transmittance integral from di to di+1.
Now, the probability of reaching the point di collision-free (i.e.,

the condition in Equation (19)) can be updated incrementally while
stepping over the preceding bins:

P (di < D) =
i−1∏
j=0

1 − Pj (D ≤ dj+1). (21)

The final PDF for sampling d between di and di+1 is then:

pd (d | x,ω) = P (di < D) · Pi (D ≤ di+1) · p (d | di ,di+1,σt), (22)

where the last factor is the PDF for generating the collision dis-
tance inside the bin. For details on sampling a distance inside one
bin in a homogeneous medium, we refer the reader to the work of
Kulla and Fajardo (2012).

Replacing the radiance quantities from Equation (20) by our es-
timates enables us to build an incremental tracking algorithm that
samples each bin according to Equation (17). Starting at the first
bin (i = 0), the algorithm sequentially decides with the probabil-
ity of Pi (D ≤ di+1) if a scattering event should be generated in the
current bin. If not, the algorithm updates the probability of not
scattering before di+1 (Equation (21)) and continues to the next
bin. In the case an event is generated in the current bin, a distance
d betweendi anddi+1 is sampled, assuming a constant bin-specific
σt. The pseudo-code of this algorithm is presented in Algorithm 1
and an example of the resulting PDF in Figure 6.

Sampling stability: local versus global estimates. A key feature
of our incremental distance sampling is that it only relies on lo-
cal estimates of the volumetric radiance quantities L̃(di ,ω) and
L̃i (di ,ω). Especially, using the latter quantity as local normaliza-
tion factor instead of a single global one (i.e., L̃(0,ω) evaluated at
the start of the tracking) has multiple advantages:

—Inaccuracies of the local estimates almost solely affect the
local scattering decision at the current bin.

ALGORITHM 1: Algorithm for incremental guided distance sam-
pling.

1: procedure guidedDistanceSampling(x, ω, dMax )
2: // x . . . starting position inside or at the beginning of the medium
3: // ω . . . direction in which the walk continues
4: // dMax . . . distance to the next surface intersection
5: di := 0
6: pdf := 1
7: scatter := False

8: while not scatter and di < dMax do

9: xi := x − di ω

10: [L̃, L̃i] := lookUpEstimates(xi , ω) � Section 5
11: [σt, σs] := getMediumCoefficients(xi )
12: di+1 := getDistanceToNextBin(xi , ω)
13: P := calcBinProbability(L̃, L̃i, σs, σt,

di , di+1) � Equation (20)
14: ξ := getRandomValue( )
15: if ξ ≤ P then � current bin selected
16: pdf ∗= P

17: [d, pdfBin] := sampleDistanceInBin(di , di+1, σt)
18: pdf ∗= pdfBin

19: scatter := True

20: else � continue tracking
21: pdf ∗= (1 − P ) � Equation (21)
22: di := di+1

23: end if

24: end while

25: return [scatter, d, pdf ]
26: end procedure

—As both estimates derive from the same representation
(Section 5), any repeated per-bin misestimation is only man-
ifested in the fluence term that cancels out in Equation (20).
In other words, the quality of the per-bin sampling only de-
pends on the representation accuracy of two estimates’ ratio.

A demonstration of the PDF resulting from our incremental
distance sampling compared to the standard transmittance-based
sampling is given in Figure 6. Since our sampling procedure is di-
rectly derived from the optimal PDF (Equation (17)), it will con-
verge to it when the adjoint estimates are accurate and the step
size decreases so that the assumption of a per-bin constant σt and
Li holds. Given that the naïve method samples the same PDF, these
two procedures will also lead to similar sampling patterns—again,
granted that the radiance estimates are accurate enough.

On the other hand, in the sporadic cases when the local ad-
joint estimates are corrupted (due to insufficient cache data or mis-
fit records), our strategy can suffer from inaccurate estimates for
the incident and in-scattered radiance, influencing the sampling
quality. Although such inaccuracies do not affect the consistency
between the generated samples and the calculated PDF used for
normalization, sampling bias might still be introduced in scenar-
ios where the generated samples distribution would not cover the
entire integrand. Such bias results from “early exits” caused in par-
ticular by underestimation of the incident radiance L̃(di ,ω). Sim-
ilarly to other guiding methods (Dahm and Keller 2017; Müller
et al. 2017; Vorba et al. 2014), we use multiple importance sampling
(MIS) (balance heuristic with β = 0.5) with the traditional sam-
pling method (i.e., transmittance-based sampling) to circumvent
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this problem. In addition, we also heuristically bound the proba-
bility of scattering inside a bin (Equation (20)) to be ≤0.9.

Sampling stability: incoming radiance filter. Figure 4 shows that
we usually can expect the L̃i (di ,ω) estimate to be more accurate
than L̃(di ,ω). To improve the incident radiance estimate during
the tracking, we can reuse the already evaluated estimates from
previous bins to refine our approximation within the current bin
at di . We use a prediction of the incident radiance in combination
with the exponential moving average filter for the refinement:

L̃I (di ,ω) = (1 −A) · L̃I I (di ,ω) +A · L̃(di ,ω)

L̃I I (di ,ω) =
L̃I (di−1,ω)− (1−T (di−1,di )) · α(di−1) · L̃i (di−1,ω)

T (di−1,di )
(23)

The extrapolated prediction L̃I I at di is obtained from the previous
estimate L̃I at di−1, by subtracting the contribution of in-scattered
radiance along the bin from di−1 to di and inverting the attenua-
tion from di−1 to di . The factor α(di−1) = σs (di−1)/σt (di−1) is the
scattering albedo of the medium at di . To avoid an occasional neg-
ative radiance estimate, L̃I I is bounded to be ≥0. The parameter
A = 0.75 defines how much the refined estimate L̃I should rely on
the cached estimate L̃.

6.2 Guided Product Directional Sampling

To explore the in-scattered radiance at a location in the volume, the
third sampling decision in the random walk generation chooses in
which direction the walk should continue. Traditionally, this deci-
sion is only based on the phase function and therefore only covers
a part of the integrand in Equation (3).

Our approach is based on the zero-variance PDF in Equa-
tion (9): it follows the idea of guiding based on the product of
the phase function and the incoming radiance, and as such can be
viewed as a direct extension of directional product guiding from
surfaces (Herholz et al. 2016) to volumes. The main difference: in
contrast to the Gaussian mixtures used by Herholz et al., we ex-
ploit the vMF model that better represents the involved spherical
(rather than hemi-spherical) distributions.

The product mixture V ⊗ is calculated based on the mixture V L

of the incoming radiance and the mixture V f of the phase function:

V f (ω)V L (ω) = (V f ⊗ V L ) (ω) = V ⊗ (ω). (24)

The new scattering direction ω is obtained by importance-
sampling this product mixture following the stable procedure pre-
sented by Jakob (2012). We use the same vMF approximation of
the phase function as when calculating in-scattered radiance (Sec-
tion 5). To account for inaccuracies in the estimates of incom-
ing radiance, we use MIS between our product mixture and the
actual phase function. Formulas for calculating the product mix-
ture, including our derivation of numerically stable approxima-
tion of the integral of the product of the vMF models, are given in
Appendix A.2. Figure 7 shows a comparison of different directional
sampling methods for a dense anisotropic medium.

6.3 Guided Russian Roulette and Splitting

Stochastic path termination via Russian roulette (RR) is a fun-
damental part of algorithms based on random walks: it ensures

Fig. 7. Comparison of phase function-based sampling, MIS-based sam-
pling between the incoming radiance and the phase function (akin to
(Vorba et al. 2014)) and our guided product directional sampling using MIS.
For the MIS-based methods, the same conservative probability of 0.5 is
used. The phase function of the medium is anisotropic with a mean cosine
of д = 0.6. The bottom row shows the PDFs of each method (without MIS)
at the (orange) sample location below the surface.

correct termination without having to impose hard limits on path
lengths, and prevents wasteful evaluation of long paths with dis-
proportionately low or even null contributions. Using the cor-
rect guided RR probability (cf. Equation (10)) is especially impor-
tant in the context of zero-variance-theoretical sampling, since an
overly aggressive path termination can dramatically increase vari-
ance (Vorba and Křivánek 2016).

An intuitive way to reason about guided Russian roulette is
through an analogy with rejection sampling: the distance and direc-
tional sampling procedures (Sections 6.1 and 6.2) can be thought
of as processes that jointly yield path proposals. These propos-
als are accepted or rejected using RR such that the accepted
paths’ distribution more closely matches the desired, zero-variance
distribution.

We therefore seek an acceptance (survival) probability to arrive
at this path distribution. For an estimator to have zero variance, it
follows that the contribution of every path to a given pixel should
be equal. This suggests an ideal path survival probability propor-
tional to the path’s expected contribution: low-contribution paths
are more likely to be terminated (rejected), so that surviving paths
all contribute equally (that is, after normalizing by the survival
probability). This notion then naturally extends to path splitting:
if a path’s contribution is higher than the corresponding pixel ex-
pectancy, we split the path to explore the path space more evenly.

The intuition above has been formalized for surface transport by
Vorba and Křivánek (2016) in their adjoint-driven Russian roulette

and splitting approach. As they point out, RR and splitting are re-
lated to the go with the winners method (Grassberger 2002). Instead
of heuristically determining the RR and splitting factor (Szirmay-
Kalos 2005), they use an adjoint estimate of the actual light trans-
port. We build atop their formalism and extend it to volumetric me-
dia, referring to it as guided Russian roulette and splitting (GRR&S)
to be consistent with the remaining strategies presented here. For
simplicity, we discuss the case of paths traced from the camera,
for which the adjoint solution is given by the equilibrium radiance
(incident L and in-scattered Li). A generalization to light paths is
straightforward (Vorba and Křivánek 2016).
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Fig. 8. Volumetric guided RR and splitting. A volume split (marked green)
can generate both new sampled distances (left) and directions (right).

Volumetric guided RR and splitting. GRR&S computes the Rus-
sian roulette and splitting factor q ∈ [0,∞) (Equations (6) and (11))
for a partially-generated path as the ratio between the path’s ex-

pected contribution E[r ], and pixel’s true value I , i.e., q = E[r ]/I .
Whenever q ≤ 1, we apply RR to terminate the path with the prob-
ability of 1 − q. On the other hand, if q > 1, the path’s expected
contribution is higher than the actual pixel value, and we split it
into n = 
q� + 1 sub-paths (the extra sub-path with the probability
q − 
q�).

What sets volumetric transport apart from surface transport is
that generating a new path vertex now involves two steps: distance
and direction sampling. Unlike on surfaces, Russian roulette and
splitting can be applied before either of these two steps, yielding
distance RR&S and directional RR&S processes.

Distance GRR&S. Consider a partially constructed path reaching
a position xj . Suppose we have already sampled the direction ωj

and that the current particle weight is ar . For distance GRR&S, we
compute the expected path contribution as the product of ar and
the appropriate adjoint (here, the incident radiance) (Hoogenboom
2008) as:

E[r ]dist ≈ ar · L̃(xj ,ωj ). (25)

If we RR-terminate the path, we stop right at xj ; splitting, on the
other hand, leads to several independent distance samples dis-
tributed along the ray (xj ,−ωj ), as illustrated in Figure 8(a) and
(b).

Directional GRR&S. Suppose the path has reached the next posi-
tion xj+1 from direction ωj with the weight:

a′r = ar
T (xj , xj+1)σs (xj+1)

pd (d | xj ,ωj )
, (26)

which encapsulates the weight ar for reaching the state (xj , ωj )
with the addition of all factors encompassing the sampling of the
distance d = ‖xj+1 − xj ‖. The appropriate adjoint for this case is
the in-scattered radiance Li, and we have

E[r ]dir ≈ a′r · L̃i (xj+1,ωj ). (27)

Splitting generates several independent scattering directions ωj+1

(and, consequently, multiple new sub-paths—see Figure 8(c) and
(d)).

Figure 9 shows an example of the directional GRR&S compen-
sating for the inaccuracy in the adjoint estimate for L̃ used in our

Fig. 9. Guided RR&S (green) compensating for inaccurate adjoint esti-
mates used in our incremental distance sampling (blue), in the configu-
ration from Figure 6. By using guided RR&S, the resulting samples distri-
bution matches the optimal one (orange) more closely.

Fig. 10. Comparison of the pixel estimates Ĩ (generated by accumulating
the in-scattered radiance from our adjoint) to the ground-truth solution.
Through the use of a weight window (Vorba and Křivánek 2016), even this
rough estimate is sufficient to guide our guided RR&S.

incremental collision sampling. Section 7.3 presents additional re-
sults for both the distance and directional GRR&S.

Practical considerations. To calculate the termination/splitting
factor q, we require an estimate Ĩ of the true pixel value I . As with
Vorba and Křivánek (2016), we pre-compute these estimates from
our cached adjoint (radiance) solution: we trace several camera
rays per pixel and, for each, gather the in-scattered radiance by
marching through the volume. Figure 10 illustrates these solution
estimates. An alternative way to estimate I would be to use a de-
noised version of the rendered image after a small initial batch of
samples, which then could be refined over time after each sampling
iteration.

In practice, we do not enforce the q-based termination and split-
ting rules strictly, in the form discussed above: instead, we use q
to center a weight window (Vorba and Křivánek 2016) to accommo-
date for imprecisions in our cached adjoint estimates.

Finally, note that since GRR&S works as an ex-post compensa-
tion for any deviations from the desired zero-variance scheme, it is
desirable to apply it as often as possible along a path. This happens
in an alternating fashion: the directional GRR&S follows the dis-
tance sampling (Section 6.1), and vice versa, the distance GRR&S
is applied after the directional sampling step (Section 6.2).

GRR&S and zero-variance sampling. An important distinction
between the zero-variance path termination (as presented in Sec-
tion 3.2) and our volumetric GRR&S lies in the fact that we can
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ever only operate with an approximation of the adjoint solution.
Because the distance and directional sampling decisions have no
notion of path history, any sub-optimal sampling decisions (due
to adjoint representation inaccuracy or MIS with traditional un-
guided sampling methods) can accumulate and result in deviations
from the true zero-variance solution. Conducting guided RR and

splitting based on the expected path contribution compensates for any

such deviations, since the expected contributions incorporate both
a notion of path history (in the path weight) as well as its expected
future contribution (in the cached adjoint solution).

As such, RR and splitting are a key balancing mechanism to
any approximate zero-variance solution – for that reason we ap-
ply GRR&S after each sampling decision, rather than just on light
sources as implied in Equation (11). Note that, in the hypothetical
case of ideal distance and directional sampling this would not be
necessary, and in fact splitting itself could be omitted entirely.

7 RESULTS AND EVALUATION

7.1 Implementation

We implemented our guided volume path tracer in the Mitsuba
renderer (Jakob 2010). Although we explain our method in the con-
text of the last-event estimator (Equation (4)), we in fact utilize
next event estimation for direct illumination and single scatter-
ing. Its inclusion is analogous with surface guiding; we therefore
refer the reader to Vorba et al. (2014, 2016). To account for remain-
ing inaccuracies in our radiance estimates, we use MIS between
our guided sampling methods and traditional phase function and
transmittance-based sampling. For both methods, we use the bal-
ance heuristic with a conservative weight of β = 0.5. Unless spec-
ified otherwise, we limit the maximum path length to 40. When-
ever the guided RR is not used, we disable RR altogether; this way
we avoid additional variance caused by standard throughput-based
RR.

Stepping through heterogeneous media uses the digital differen-
tial analyzer (DDA) algorithm on top of the OpenVDB library. All
tests were performed on a PC with two Intel Xeon Gold 5115CPUs
(20 physical / 40 logical cores) and 512GB of RAM. We make use of
SSE instructions for accelerated vMF fitting and evaluation (Vorba
et al. 2014). Since we only rely on one training pass and are not
updating the mixtures on-the-fly, we use a batch MAP-EM algo-
rithm. For all tests, our vMF mixtures use eight components and
50M–100M photons to fit the cache. The minimum and maximum
number of photons per leaf node are set to 50 and 1,000. Table 1
lists the statistics on the pre-processing step.

7.2 Scenes

We evaluate our method in several scenes representing differ-
ent configurations (especially with regard to the effective optical
thickness of the media, to gauge different proportions of low- and
high-order scattering) and challenging transport features. Equal-
time renderings are the primary form of benchmark, comparing
our approach with a standard unidirectional path tracer, which
importance-samples directions according to the phase function
and collision distances based on transmittance. We show that
our guided path tracer produces superior results to this industry-
standard solution.

Table 1. Pre-Processing Times and Memory Consumption

Pre-process times (sec) Cache stats

Scene PT Fit Ĩ Total Dep #Ent Mem

InfiniteScan Head 22 66 <1 45 22 149k 104MB

Natural History 32 25 <1 57 18 67k 48MB

Volume Caustic 84 29 1.2 104 22 75k 52MB

Left: pre-processing times for the main result scenes from Figure 11, broken down
to individual stages—photon tracing (PT), EM-fitting of the directional mixtures

(Fit), pixel expectancy estimate (Ĩ ). Right: adjoint cache statistics—kD-tree depth
(Dep), number of cache entries (#Ent), and memory occupancy (Mem). Notably,
while the cost of the photon-tracing stage is strongly scene-dependent, the re-
maining steps have approximately linear dependence w.r.t. the configured accu-
racy of the cache.

The primary application of our guided sampling is indeed unidi-
rectional path tracing due to its numerous advantages in produc-
tion (Fascione et al. 2017). Our sampling techniques can, however,
be equally well employed in light tracing, photon tracing, bidi-
rectional path tracing, and combinations thereof (Křivánek et al.
2014).

Since our scenes contain both high-intensity areas (e.g., light
shafts or caustics) and low-intensity areas, we use the mean rel-

ative squared error metric (relMSE) (Rousselle et al. 2011) with
a 0.5-percentile outlier removal for regularization. This metric
treats both types of regions equally compared to the standard
mean squared error (MSE), which is far more sensitive to vari-
ance in high-intensity regions. A definition of the metric is given in
Appendix B.

InfiniteScan Head. The head (Figures 1 and 11) consists of an
optically dense medium, so subsurface scattering will occur near
to the surface. For the volume parameters we used the measured
data from Jensen et al. (2001): д = 0, σt = (1.103, 1.66, 1.935) and
α = (0.988, 0.957, 0.925). The size of the head corresponds on av-
erage to 64 mean free path (MFP) lengths. As suggested by Donner
and Jensen (2006), we use a rough dielectric boundary interface.
The refractive nature of this interface prevents the use of next
event estimation to estimate the volumetric transport in this case.
Since the volumetric properties have strong color-dependence,
each RGB channel is rendered separately for 10 minutes and the re-
sults are merged afterward. Both our guided incremental collision
distance sampling and directional sampling improve the efficiency
of the path generation. In addition, GRR&S avoids expensive gen-
eration of long but weakly contributing paths deep inside the dense
medium. In particular, splitting reduces the variance caused by ei-
ther sub-optimal guiding decisions or MIS with standard sampling
techniques.

Natural History. In the museum (Figure 11), light shafts in the
homogeneous medium lead to dramatically varying in-scattering.
The museum is filled with an anisotropically scattering medium
(д = 0.4, σt = 0.05, and α = 0.75), which has the size of 2 MFP
lengths. Our method explores the cached in-scattered radiance
for the distance sampling and therefore will more often predict
a scattering event inside a shaft. Directional guiding will then pre-
dominantly choose a sampling direction pointing toward the light
source. Since the light shafts contribute the most to the volumetric
transport in the scene, the directional guiding will steer the sam-
pling decisions toward these light shafts.
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Fig. 11. Contribution of the individual guided sampling decisions to the final image. Note how the image quality gradually improves by considering the
adjoint-guided distance sampling, directional sampling, RR, and splitting. The images show equal-time comparisons (InfiniteScan Head: 3 × 10min, Natural
History: 45min, Volume Caustic: 60min) and compare to the reference results of a bidirectional path tracer running for 3 × 12hrs for the InfiniteScan Head
scene, 12hrs for the Natural History, and 96hrs for the Volume Caustic.

Volume Caustic. Caustic light paths in a heterogeneous
medium (Figure 11) are a serious challenge for unguided path trac-
ing. Our approach considers the heterogeneity during the distance
sampling, and explores the cached radiance during the guided
product distance and product directional sampling to resolve the
volumetric caustic properly. The isotropically scattering heteroge-
neous medium has an albedo of α = 0.75 and varying optical den-
sity of σt ∈ [0.001, 0.04] resulting in an average size of 1/3 MFP

lengths (i.e., dominated by single scattering). Even after 4 days, the
reflections of the caustics are not fully converged in the reference
image, which was generated using bidirectional path tracing.

7.3 Contribution of Individual Decisions

Guided product distance and directional sampling. As visible in
Figure 11, independently applying the guided collision distance
sampling or the scattering direction sampling can sometimes
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Fig. 12. Our incremental distance sampling explores the volume only up to
the collision location. Significantly more samples can thus be generated in
dense media (compared to the naïve sampling that first generates the full
PDF along the ray), leading to better results (after 10 minutes of rendering).
Here, the naïve sampling needs to perform 18 cache look-ups to produce
a collision event, while our approach only needs 4, on average.

provide only a minor decrease of solution variance (e.g., in the
Natural History scene). Due to the additional overhead, it might
even be counter-productive at times (see distance sampling in the
InfiniteScan Head scene). That is because the effort to sample
a suitable scattering location might be wasted if following the di-
rectional sampling is just following the phase function, and vice
versa. However, combining both sampling decisions always im-
proves the results. This is in line with the observations made by
Dwivedi (1982) in the context of deep penetration transport prob-
lems, that “synergistic” directional and distance sampling is nec-
essary to leverage the full potential of the zero variance-based
sampling schemes (cf. also Křivánek and d’Eon (2014), Meng et al.
(2016)).

Incremental distance sampling. Despite being asymptotically
comparable, the advantage of our distance sampling approach over
the naïve method is that it allows us to avoid the complete traver-
sal along the ray before making a sampling decision. Especially
in dense media, most of the light transport happens close to the
surface, and generally, we expect the next collision to be close to
the current one due to the exponentially decreasing transmittance
function. Building the complete discrete PDF therefore creates an
unnecessary overhead, which depends on the transport character-
istics in each individual scene. While the naïve sampling always
has to access all the caches intersected by the sampled ray, our
incremental method stops on average after a third of the full ray
distance in our tested scenes, or specifically, after 38% in Natu-
ral History, 16% in InfiniteScan Head, 45% in Volume Caus-
tic, and 30% in the Bumpy Sphere scene (see below in Section 7.5).
In the equal-time comparison in Figure 12, our method is there-
fore able to make sampling decisions shortly after entering the
medium, resulting in more evaluated samples and consequently
smoother images.

Guided RR. An informed Russian roulette strategy guided by the
adjoint further improves on top of the other sampling decisions
(Figure 11). Especially in dense or bounded media such as in the
InfiniteScan Head or the Natural History scenes, the gener-
ated paths can experience several scattering events before leaving
the scene or the medium. In these cases, guided RR identifies and
terminates long paths with low potential contribution, leading to
more samples evaluated at an equal time.

In Table 2, we compare the average per-pixel contributing path
length (tracked while generating the reference solution) in each

Table 2. Average Path Length Statistics

Average contributing path length (CPL)
Scene Reference No guiding Dist.+Dir. +RR
InfiniteScan Head 6.2 12.3 10.5 5.3
Natural History 7.8 29.0 27.7 9.8
Volume Caustic 3.7 3.2 3.8 3.7

Statistics About the Contributing Path Lengths for the Main Result Scenes (Figure 11).
With the help of our guided sampling strategies the path lengths become significantly
closer to the target reference values.

Table 3. Russian Roulette and Splitting Statistics

Guided RR Guided splitting SPP

Scene Dir. Dist. Dir. Dist. Orig. Effect.

InfiniteScan Head 0.27 0.06 0.22 0.17 1,312 1,829

Natural History 0.48 0.29 0.29 0.28 1,340 2,104

Volume Caustic 0.05 0.16 0.23 0.25 3,796 5,685

Termination and Splitting Ratios (i.e., the Relative Proportions of Paths Terminated
or Split by Each Respective Strategy) of the Different Guided RR&S Methods Em-
ployed in Our Test Scenes. Splitting generates additional paths, on average leading
to higher amounts of effective samples per pixel.

scene with the actual generated average path length produced by
different configurations of our estimator. In a truly zero-variance

estimator, the relative number of paths of a certain length should

be exactly proportional to the total image contribution due to paths

with the corresponding length. Since the average contributing path
lengths are strongly scene-dependent, manually setting an optimal
RR starting depth would be prohibitively complicated, and in any
case, requiring some prior knowledge of the transport solution. By
using the adjoint solution to estimate the future contribution of a
path, the guided RR automatically leads to a termination strategy
close to the zero-variance optimum.

Table 3, left, lists the relative ratios of paths terminated by the
two guided RR methods. Notably, the ratio between paths termi-
nated by directional RR versus distance RR depends strongly on the
particular scene-dependent transport characteristics. For instance,
the high optical density in InfiniteScan Head causes a strong
in-scattered radiance gradient underneath the surface boundary.
It is therefore more likely for the directional RR to terminate paths
that would progress deeper inside the volume. In Volume Caustic
then, the distance RR tends to terminate those samples inside the
volumetric caustics that are pointing away from the source.

Guided splitting. Complementing the RR, splitting helps in high-
variance regions: here, our sampling strategies might still leave
some residual variance due to sub-optimal sampling decisions
caused by inaccurate local radiance estimates or by the MIS with
traditional sampling methods (e.g., in the Volume Caustic scene).
Table 3, middle, lists the ratios of paths split by the different
methods—in contrast to guided RR, the splitting ratios tend to be
similar. Note that by splitting a path, the effective number of sam-
ples grows for the corresponding pixel (Table 3, right).

7.4 Adjoint Solution Accuracy

As discussed in Section 5, the accuracy of the approximate adjoint
representation directly impacts the guided estimator variance.
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Fig. 13. Evaluating the influence of the directional (top) and spatial (bot-

tom) resolution of the adjoint estimates on the variance of our guided uni-
directional path tracer used in the Natural History scene. The log-log
plots show the convergence behavior as a function of the number of sam-
ples per pixel (up to 2k SPP).

Here, we investigate how different configurations of our cache sys-
tem influence the resulting solution quality using the Natural
History scene as a testing ground.

In Figure 13, top, we analyze the relationship between the num-
ber of mixture components and the variance of our guided esti-
mator. A small number of components (e.g., 4) is not sufficient to
represent the complexity of the transport, while with 32 the EM al-
gorithm tends to overfit. In our experiments, 8 or 16 components
have therefore proven to provide the best tradeoff; we use 8 com-
ponents to generate our results, since the faster evaluation of the
model makes up for the slightly higher variance of the estimator.

In Figure 13, bottom, we then analyze the dependency of our ad-
joint estimate on the spatial cache resolution. To test this, we train
our estimates with a large number (400M) of photons, but limit the
kD-tree depth. While denser adjoints produce lower variance, we
can see that even with a rather inexpensive pre-processing phase
and rough adjoint, our solution clearly surpasses the quality of un-
guided path tracing. In addition, since in our current implementa-
tion, the cache density is mainly a consequence of the photon dis-
tribution, a higher spatial resolution is generated closer to the light
sources. This influences the efficiency of our incremental distance
sampling, causing unnecessarily small stepping near sources. To
avoid this bottleneck, we limit our spatial tree depth between 18
and 22 as a simple but effective heuristic.

A general problem our estimates share with other related guid-
ing approaches (Dahm and Keller 2017; Müller et al. 2017; Vorba
et al. 2014) is that, due to the averaging of the directional infor-
mation over the volume of each cache record (node), high angu-
lar frequencies in L may not be reproduced well. An example is

Fig. 14. The effects of averaging the directional data over the volume of
a cache. Bottom: The averaging blurs high-frequency signals (left) over a
larger angular footprint (center), which is also represented in our direc-
tional vMF caches (right). Top: This spread causes an overestimation of the
incident radiance around sharp regions, which might lead to sub-optimal
distance sampling decisions.

provided in Figure 14, bottom. While this has only minor effects
when it comes to directional guiding, we sometimes observed neg-
ative impact on our incremental distance sampling. In particular,
overestimation of L around the small high-frequency areas leads to
the expectancy of a higher contribution from behind the volume,
and therefore potentially prevents scattering inside the volume.
In such cases our method has to rely on MIS with the standard
transmittance-based sampling to generate collisions at the right
position, leading to sub-optimal convergence as demonstrated in
Figure 14.

One way to overcome this problem in the future could be to ex-
tend the lobes of the vMF mixtures to include a weighted-average
distance to the source of the incident radiance. The mixture fitting
would then incorporate the parallax with respect to the source,
which would then function as an on-the-fly adjustment of the
lobes’s directions when evaluating the mixture.

7.5 Varying Scattering Anisotropy

In order to evaluate our guiding for different angular frequen-
cies of the transport, we simulate the Bumpy Sphere scene
(Figure 15) with varying degrees scattering anisotropy, ranging
from near-isotropic (д = 0.3) to highly anisotropic (д = 0.9) val-
ues. The Bumpy Sphere is filled with a homogeneous medium with
α = [0.95, 0.67, 0.45] and the sphere has a diameter of approxi-
mately 6MFP lengths. To be able to render the scene using a unidi-
rectional path tracer, we replaced the point light source by a small
spherical area light. Its main difficulty is the specular dielectric in-
terface, which disallows the possibility of direct light connections.

This is most apparent in the single-scattering scenario
(Figure 15, top), as in this case, all illumination inside the medium
consists of refractive caustics, leading to very poor performance
of the unguided path tracer. Our sampling (guided by the single-
scattering adjoint) is able to localize the caustics, and then lead the
tracer toward the source. Even though for the higher scattering
anisotropy values the quality of our cached radiance estimates is
somewhat decreased (due to spiky energy distributions), our solu-
tion remains robust in contrast to the unguided tracer.

ACM Transactions on Graphics, Vol. 38, No. 3, Article 25. Publication date: May 2019.



Volume Path Guiding Based on Zero-Variance Random Walk Theory • 25:15

Fig. 15. Bumpy Sphere scene simulated with 2k SPP at different scatter-
ing anisotropies, comparing our guided sampling (below diagonal) against
the unguided one (above diagonal). The unguided tracer struggles to sam-
ple high-contribution paths, which is especially visible when limiting the
transport to a single volumetric bounce (top row).

Fig. 16. Left: Comparing equiangular distance sampling (Kulla and
Fajardo 2012) without (green) and with MIS (purple) against the optimal
(orange) and our (blue) incremental distance sampling, for the configura-
tion in Figure 6. Right: Comparing our guided sampling against equiangu-
lar and standard distance sampling in the Natural History scene.

For the multi-scattered case (Figure 15, bottom), the diffusion
of the caustics makes it easier for the unguided tracer to sample
the transport. Still though, the guided solution yields significantly
smoother results with at least an order-of-magnitude lower error.

7.6 Alternative Distance Sampling Strategies

Since the incremental guided distance sampling (Section 6.1) is the
key novel component of our method, an evaluation against other
illumination-aware sampling strategies is warranted. Out of the
volume-specific sampling approaches reviewed in Section 2, we
compare to the equiangular sampling by Kulla and Fajardo (2012).
Other related methods (Georgiev et al. 2013; Kutz et al. 2017) have
the potential to incorporate the knowledge of the adjoint, but this
has not been proposed to date.

The equiangular strategy (Kulla and Fajardo 2012) places
samples according to the direct incident illumination footprint of a
point light source along the ray, neglecting both the phase function
and the attenuation by the medium. As plotted in Figure 16, left for
the Checkerboard Cube scene (cf. Figure 6), this method has the

desired ability to place samples in the high-contribution region of
the spotlight. The PDF (green) is, however, far from the optimal one
(orange), due to the neglected terms and the fact that it only ac-
counts for direct (single-scattered) illumination. MIS, with the sta-
ndard transmittance-based sampling, is therefore necessary, and
this procedure still leads to a PDF (purple) that is far from optimal.

Figure 16, right, then demonstrates the method in the Natu-
ral History scene. Here, the equiangular sampling achieves good
results in directly illuminated regions (i.e., light shafts), but leads to
excessive variance in areas dominated by multiple scattering. This
is further exacerbated by the light-selection problem—the strategy
has no prior information about the relative contribution of the in-
dividual sources. Our sampling, in contrast, does not use a separate
strategy for sampling direct illumination, but instead relies on the
adjoint to guide paths toward light sources.

8 DISCUSSION AND LIMITATIONS

Utility and applicability. Our work shows the importance of
regarding the individual sampling decisions in volume rendering
as parts of a holistic sampling strategy. We demonstrated that
doing so substantially improves the baseline industry-standard
approach in the context of volume rendering, i.e., unguided path
tracing based on local sampling decisions. In agreement with the
zero-variance sampling theory, we provide apt evidence (Sec-
tion 7) that phenomena inherently difficult for a unidirectional
solver (such as volumetric caustics or light shafts) can be handled
efficiently when aided by globally informed, guided sampling.

Furthermore, any method based on incremental path genera-
tion will benefit from our results. For instance, guided light tracing
would have the ability to distribute photons to visually important
locations. Because all sampling decisions in our framework rely on
the zero-variance theory, the estimator variance is directly linked
with the residual error of our adjoint solution’s representation and
the used MIS weights between our guided methods and traditional
unguided sampling. Therefore, any optimization directed at the
adjoint’s accuracy (fitting quality, spatial distributions, measure-
ment estimates, etc.) in turn improves the accuracy of the estimator
itself.

Adjoint estimate accuracy. Despite proving adequate in all our
experiments, the presented single-pass photon-based training is
arguably not the optimal way to obtain a robust adjoint estimate.
Multi-pass methods, such as the bidirectional online learning of
(Vorba et al. 2014) or Q-learning by Dahm and Keller (2017), could
prove to be a better approach. Alternatively, an adaptation of for-
ward learning (akin to (Müller et al. 2017)) should be considered,
especially since it matches the directionality of our solver.

Spatial cache distribution. In contrast to (Müller et al. 2017), the
spatial subdivision of our kD-tree caching structure depends on the
photon energy distribution from the light sources, rather than their
importance to the estimated quantity (that is, the rendered image).
The caches’ distribution is therefore skewed toward the sources,
causing a performance penalty as unnecessarily small stepping is
used during the guided distance sampling in the sources’ vicin-
ity. A more sophisticated caching scheme refined via illumination
gradients (Jarosz et al. 2008), or other well-chosen heuristics, could
therefore positively impact our method’s performance.
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MIS weights. Given that the knowledge of the perfect adjoint
solution is merely a hypothetical limit case, we must, to an ex-
tent, rely on a combined sampling with the standard “local” meth-
ods. Similarly, as other related approaches (Dahm and Keller 2017;
Müller et al. 2017; Vorba et al. 2014), we employ MIS for this
purpose, using a rather conservative weight of 0.5. Lowering this
weight to favor the guided sampling strategies can lead to better
estimates (as in Herholz et al. (2016)), but can also increase the
occurrence of high-intensity outliers (“fireflies”) in the cases when
an occasional badly-fitted adjoint is encountered. An adaptive way
to obtain the MIS weights, most likely based on an independently
estimated confidence of the adjoint fit, would therefore be of great
benefit to our and other existing guiding methods.

Additional sampling strategies. The efficiency of each sampling
decision could also be individually improved in combination with
existing approaches. One example is the work of Kutz et al. (2017)
whose tracking approach formulates probabilities for scattering,
absorption, and “null” events. Biasing these probabilities according
to the adjoint solution could generate samples following the de-
sired product distribution, further increasing the efficiency of our
current differential stepping. Another interesting direction would
be using the Li approximation as a control variate. This is simi-
lar to Pegoraro et al. (2008), but using our adjoint estimate for Li
would overcome their restrictions on the scattering anisotropy.

Even though our strategies are robust enough for sampling
low-order effects (e.g., in the scenes from Figures 11 and 15),
they still predominantly focus on indirect illumination. Special-
ized learning-based methods tackling the light-selection prob-
lem (Donikian et al. 2006; Vévoda et al. 2018) could therefore be
another useful addition in guided transport solvers, especially to
handle large production scenes with many sources and optically
thin media.

Surface guiding. Finally, as mentioned before, our sampling tech-
niques only cover the volumetric portion of light transport. To ob-
tain a full estimator, the complementary surface-oriented sampling
decisions could be performed on the basis of the existing works of
Vorba et al. (2014, 2016) and Herholz et al. (2016). These works like-
wise rely on the zero-variance-theoretical framework, and store
the adjoint solution in similar structures, which hints at a straight-
forward combination with our work.

Local versus global guiding. We can distinguish between local

and global path generation strategies in path guiding. The recent
global approaches (Guo et al. 2018; Müller et al. 2018; Zheng and
Zwicker 2018), which are based on learning the guiding distribu-
tions in the primary sample space (PSS), consider sampling of the
complete path as a whole. The benefit of the global guiding in PSS
is the lack of need for an explicit spatial or directional representa-
tion of the radiance distribution, and that additional features such
as product sampling with the scattering functions are implicitly
encoded in the random number domain (i.e., the PSS). However,
the dimension of the PSS grows with the length of the path and—
due to the curse of dimensionality—eventually it becomes virtu-
ally impossible to gather sufficient training data for longer path
lengths. The global guiding approach by Simon et al. (2018) iden-
tifies and guides only the—usually small—subset of paths that are

hard to sample with traditional techniques, making the global ap-
proach feasible.

The local path sampling strategies, as defined by Veach (1997),
rely solely on local low-dimensional information (e.g., spatial po-
sition and incident direction at a path vertex) to perform individ-
ual sampling decisions along a path. As such, they do not suffer
from the curse of dimensionality and gracefully handle paths of
arbitrary lengths. On the other hand, they often make suboptimal
sampling decision because of the limited information available to
them.

While our method seemingly belongs among the local guiding
strategies, it is important to realize that the adjoint information
it accesses at the path vertices is the partial solution of the global

transport problem. In fact, the main result of the zero variance ran-
dom walk theory (Hoogenboom 2008) is that globally optimal path
importance sampling can be achieved through a set of carefully se-
lected local sampling decisions. Our method relies on this result.

Relation to Metropolis light transport. While the described adj-
oint-guided RR and splitting strategies represent a path length con-
trol mechanism, there is a complementary view of them: that of
an indirect path density regulation mechanism. As such they share
similarities with Metropolis light transport (MLT) methods, which
explore the path space by mutating important paths.

While both methods strive to generate paths from the same tar-
get distribution—that proportional to their image contribution—
the key difference is in the underlying sampling mechanism, each
coming with their own potential issues. Markov chains generated
by MLT may suffer from correlation and insufficient global explo-
ration (Šik and Křivánek 2018). Splitting, on the other hand, may
underperfom due to its ex post nature: a splitting decision is taken
only once the path weight has become large, and this can occa-
sionally be too late to prevent an outlier sample from appearing in
the image (Vorba and Křivánek 2016). Still though, exploring the
relationship of the two approaches could benefit both classes of
methods.

9 CONCLUSION

We present a volume rendering framework in which every sam-
pling decision is derived from the theory of zero-variance path
sampling, i.e., is based on optimal importance sampling given the
correct adjoint transport solution. Approximating the true adjoint
by assembling a guiding structure using vMF mixtures, efficient
sampling decision algorithms are proposed for guided distance and
directional sampling as well as for path termination and splitting.
Compared to previous approaches that only consider partial infor-
mation during sampling, our decisions based on local estimates of
the adjoint solution consider the full volume rendering equation
and therefore yield significantly better convergence, while only
adding a moderate overhead for maintaining and evaluating the
guiding structure.

APPENDIX

A VON MISES-FISHER DISTRIBUTION

We use parametric mixtures of vMFdistributions to represent di-
rectional volumetric radiance estimates. The vMF distribution v
is a probability distribution on a d − 1 dimensional sphere in Rd
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and describes the distribution of random, unit-length vectors ω.
We use vMF distributions in three dimensions in the numerically
robust form due to Jakob (2012):

v (ω|μ,κ) =
κ

2π(1 − e−2κ )
eκ (μT ω−1) . (28)

The distribution is parametrized by its mean direction μ and pre-
cision, a.k.a. concentration, κ. It is rotationally invariant around μ.

A.1 Parameter Estimation

To fit the mixture distributions for the radiance estimates de-
scribed in Section 5 a weighted batch MAP-EM algorithm (similar
to the one described by Vorba et al. (2014)) is used. Given an
observed dataset (e.g., photons in a cache cell), MAP-EM estimates
the component parameters based on a combination of their
maximum likelihood estimates and priors associated with those
proposed parameters. Since this work uses vMF mixtures instead
of Gaussian mixtures (Vorba et al. 2014), we describe in the follow-
ing the maximum likelihood estimates for the vMF parameters,
including their weighted version, and the used κ parameter prior.

Maximum likelihood. We can estimate the vMF parame-
ters by maximizing the likelihood of an observed data vector
{ω1, . . . ,ωN } as follows. The mean direction is given by normal-

izing the average of the observed directions,μ =
∑
ωi

‖∑ωi ‖ . The pre-

cision κ cannot be estimated in a closed form but Banerjee et al.
(2005) showed that it can be approximated from the average cosine
r̄ of the data around the mean direction:

κ ≈ r̄ (d − r̄2)

1 − r̄ , where r̄ =
‖∑ωi ‖

N
. (29)

Weighted ML estimation. We can estimate the ML parameters of
a vMF model also for a weighted dataset, where each data point ωi

is associated with a weight wi describing its contribution. To do
so, the data points ωi are replaced by their weighted version ω′i ,

ω′i = N
wi∑
j w j

ωi ; (30)

we then use the same ML estimation formulas as for the un-
weighted case. The multiplication by N is a matter of convenience:
It has no bearing on the weighted ML estimation, but allows us to
treat the MAP estimation for the unweighted and weighted cases
in the same way (see Equation (32) below).

Maximum a posteriori. To avoid overfitting, one can approach
parameter estimation as a MAP problem, imposing priors on μ

and κ. Since there is no prior indication that the volumetric light
transport is biased toward a specific direction, no directional prior
is used for the mean directions of the vMF components. We use a
(conjugate) prior only for κ; it is given by

λ(κ |α,β) ∝
(

κ

2π(eκ − e−κ )

)α
eκ (αβ) . (31)

The parameter α is the strength of the prior and can be interpreted
as the number of observations drawn from the prior distribution
with an average cosine of β. To integrate this prior in the parame-
ter estimation ofκ, we replace the calculation of the average cosine

from Equation (29) with

r̄λ =
αβ + ‖∑ωi ‖

α + N
. (32)

An overview of additional priors and (unweighted) MAP-EM for
vMF mixtures is given by Bagchi and Guttman (1988) and Bangert
et al. (2010).

A.2 Convolution and Product

Closed-form solutions for convolving and calculating the product
distribution of two vMF models are respectively used to efficiently
obtain the in-scattered radiance estimate (Section 5) and to sample
the scattering direction according to the product of the incident
radiance and the phase function (Section 6.2).

Single lobes. The convolution v i ∗ v j of two vMF lobes v i and v j

can be approximated with another vMF lobe vk . Chatelain and Le
Bihan (2013) show that the average cosine of vk is well approx-
imated by the product of the average cosines of v i and v j , i.e.,
r̄k = r̄i r̄ j . The precision κk can then be calculated using Equa-
tion (29). If the average cosine of a vMF lobe is unknown, it
can be approximated by r̄ ≈ 1

tanh(κ ) −
1
κ .When estimating the in-

scattered radiance via convolution of the incoming radiance vMF
mixture, we use a vMF representation of the phase function as
convolution kernel (cf. Equation (3)). The mean directions of the
mixture components stay unchanged in the case of a forward-
scattering phase function and get inverted otherwise.

The product of two vMF lobes v i and v j forms another vMF lobe
vk multiplied by a scaling factor sk , i.e., v i v j = sk vk , with

κk = ‖κiμi + κjμj ‖ μk =
κiμi + κjμj

κk
. (33)

The scaling factor sk in fact represents the integral of the prod-
uct. Following Murray and Morgenstern (2010) and combining it
with the numerically stable evaluation of vMF by Jakob (2012)
(Equation (28)), we present a numerically stable formula for sk :

sk =
κiκj (1 − e−2κk )

2πκk (1 − e−2κi ) (1 − e−2κj )
eκi (μT

i μk−1)+κj (μT
j μk−1)

. (34)

Mixtures of vMF lobes. The product of two vMF mixtures V 0

and V 1 with K0 and K1 components results in a mixture V 2 with
K2 = K0 · K1 components. The vMF lobes of this new mixture are
the products of the combinations between the individual com-
ponents of each mixture (v2,k = v0,i · v1, j ). For these lobes, the
weights are derived by the individual component weights and the
product scaling factor:

π2,k =
s2,kπ0,iπ1, j∑

n=1
∑

m=1 s2,lπ0,nπ1,m
. (35)

The scaling factor s2,k stands for the integral of the product of the
i-th and j-th components of the mixtures V 0 and V 1 and s2,l for
the product of the n-th andm-th components.

B RELATIVE MEAN SQUARED ERROR METRIC

In Section 7, the relative mean squared error metric is used to com-
pare the result images (Ia ), produced by our zero variance-based
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framework or alternatives, against ground-truth images (Ib ) gen-
erated by a bidirectional path tracer. The metric calculates the av-
erage relative squared error over all image pixels (indexed by n):

relMSE(Ia , Ib ) =
1

N

∑ (
Ia (n) − Ib (n)

Ib (n) + ε

)2

. (36)

To avoid numerical instabilities wherever Ib (n) is close to zero, a
small bias of ε = 1e−3 is added in the denominator.
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