Global illumination with many-light methods

Jaroslav Křivánek Charles University, Prague

Instant radiosity

• Alexander Keller, 1997

• The "original" many-light method

Probably the first GPU-based GI algorithm

Instant radiosity

 Approximate indirect illumination by Virtual Point Lights (VPLs)

1. Generate VPLs

2. Render with VPLs

Instant radiosity as **BDPT**

- VPLs = light sub-paths
- VPL contributions = sub-path connections

Instant radiosity

• Works well in diffuse scenes

100s of VPLs sufficient for ok-ish images

• Basis of many **real-time** GI algorithms

Real-time GI with Instant radiosity

- Reflective shadow maps [Dachsbacher and Stamminger 05]
 - Fast VPL generation

- Incremental Instant Radiosity [Laine et al. 07]
 Only a few new VPLs per frame
- Imperfect Shadow Maps [Ritschel et al. o8]
 Faster shadow mapping

Intuition behind VPLs

- There is nothing in global illumination images that a CG artist could not simulate otherwise
- VPLs "automate" the artist approach

Clamping & compensation

Kollig and Keller, 2004

Singularity in light contribution

Biased result with clamping

Unbiased result with compensation

Scalability

Instant radiosity with glossy surfaces

- Large number of VPLs required
 - True even for diffuse scenes
 - Scalability issues

Scalable many-light methods

- **1**. Generate many, many VPLs
- 2. Use only the most relevant VPLs for rendering
- Choosing the right VPLs
 - Per-image basis
 - Matrix Row Column Sampling [Hašan et al. 07]
 - Per-pixel basis
 - Lightcuts [Walter et al 05/06]

More lights may not do the trick...

material change

Dealing with gloss in many-light methods

Approach #1: Virtual Spherical Lights

Hašan, Křivánek & Bala, SIGGRAPH Asia 2009

Instant radiosity

 Approximate indirect illumination by Virtual Point Lights (VPLs)

1. Generate VPLs

2. Render with VPLs

Emission distribution of a VPL

 Cosine-weighted BRDF lobe at the VPL location

Glossy VPL emission: illumination spikes

Common solution: Only diffuse BRDF at light location

Remaining spikes

Remaining spikes

VPL contribution =

Common solution: Clamp VPL contributions

Instant radiosity: The practical version

Clamping and diffuse-only VPLs: Illumination is lost!

22

Comparison

Recall: Emission Distribution of a VPL

What happens as #lights $\rightarrow \infty$?

Spiky lights converge to a continuous function!

Idea: We want a "virtual area light"

Problem: What if surface is not flat?

VPL to VSL

Light Contribution

Light Contribution

Simplifying Assumptions

Taken from p, the light location

Ę

Light Contribution Updated

Virtual Spherical Light

- All inputs taken from \boldsymbol{x} and \boldsymbol{p}
 - Local computation
- Same interface as any other light
 - Can be implemented in a GPU shader
- Visibility factored from the integration
 - Can use shadow maps

$$V\frac{\Phi}{\pi r^2} \int_{\Omega} f_r(\mathbf{x}) \cos \theta_{\mathbf{x}} f_r(\mathbf{p}) \cos \theta_{\mathbf{p}} \, \mathrm{d}\mathbf{l}$$

Implementation

- Matrix row-column sampling
 - Shadow mapping for visibility
 - VSL integral evaluated in a GPU shader

Need more lights than in diffuse scenes

Results: Kitchen

- Most of the scene lit indirectly
- Many materials glossy and anisotropic

Results: Disney concert hall

- Curved walls with no diffuse component
- Standard VPLs
 cannot capture any
 reflection from walls

Results: Anisotropic tableau

- Difficult case
- Standard VPLs
 capture almost no
 indirect illumination

2.2 hours (8 cores)

Limitations: Blurring

- VSLs can blur illumination
- Converges as number of lights increases

1,000,000 lights - converged

5,000 lights - blurred

Conclusions

- Many-light methods do not deal well with glossy scenes
 - Artifacts or energy loss
 - Energy loss -> change of material perception
- Handling glossy effects with many-lights
 Virtual Spherical Lights