Pre-computed Radiance Transfer

Jaroslav Křivánek, KSVI, MFF UK
Jaroslav.Krivanek@mff.cuni.cz
Acknowledgement

- Mostly based on Ravi Ramamoorthi’s slides available from http://inst.eecs.berkeley.edu/~cs283/fa10
Goal

- Real-time rendering with complex lighting, shadows, and possibly GI
- Infeasible – too much computation for too small a time budget

Approaches
- Lift some requirements, do specific-purpose tricks
 - Environment mapping, irradiance environment maps
 - SH-based lighting
- Split the effort
 - Offline pre-computation + real-time image synthesis
 - “Pre-computed radiance transfer”
Environment mapping

Miller and Hoffman, 1984
Later, Greene 86, Cabral et al, Debevec 97, …
Environment Maps

Cubical Environment Map

Cylindrical Panoramas

180 degree fisheye
Photo by R. Packo
Assumptions

- Distant illumination
- No shadowing, interreflection

- Mirror surfaces easy
 (just a texture look-up)

- What if the surface is rougher...

- Or completely diffuse?
Reflection Maps

- **Phong model** for rough surfaces
 - Illumination function of reflection direction R
- **Lambertian diffuse** surface
 - Illumination function of surface normal N

- Reflection Maps [Miller and Hoffman, 1984]
 - Irradiance (indexed by N) and Phong (indexed by R)
Reflection Maps

- Can’t do dynamic lighting
 - Slow blurring in pre-process
SH-based Irradiance Env. Maps

Incident Radiance (Illumination Environment Map)

Irradiance Environment Map
Lambertian surface acts like low-pass filter

\[E_{lm} = A_l L_{lm} \]

Ramamoorthi and Hanrahan 01
Basri and Jacobs 01

\[A_l = 2\pi \frac{(-1)^{\frac{l}{2}-1}}{(l+2)(l-1)} \left[\frac{l!}{2^{l} \left(\frac{l}{2} \right)!} \right] \quad l \text{ even} \]
9 Parameter Approximation

RMS error = 25 %
9 Parameter Approximation

Exact image

RMS Error = 8%

Order 1
4 terms

\(Y_{lm}(\theta, \varphi) \)

-2 -1 0 1 2
9 Parameter Approximation

RMS Error = 1%
For any illumination, average error < 3% [Basri Jacobs 01]
Real-Time Rendering

- Simple procedural rendering method (no textures)
 - Requires only matrix-vector multiply and dot-product
 - In software or NVIDIA vertex programming hardware

- Widely used in Games (AMPED for Microsoft Xbox), Movies (Pixar, Framestore CFC, ...)

```
surface float1 irradmat (matrix4 M, float3 v) {
    float4 n = {v, 1} ;
    return dot(n , M*n) ;
}
```
SH-based Irradiance Env. Maps

Images courtesy Ravi Ramamoorthi & Pat Hanrahan
SH-based Arbitrary BRDF Shading 1

- [Kautz et al. 2003]
- Arbitrary, dynamic env. map
- Arbitrary BRDF
- No shadows

- SH representation
 - Environment map (one set of coefficients)
 - Scene BRDFs (one coefficient vector for each discretized view direction)
- **BRDF Representation**

 - BRDF coefficient vector for a given ω_o, looked up from a texture (use e.g. paraboloid mapping to map ω_o to a texture coordinate)

 - BRDF coefficients pre-computed for all scene BRDFs (SH projection)
SH-based Arbitrary BRDF Shading 3

- Rendering: for each vertex / pixel, do

\[
L_o (\omega_o) = \int_\Omega L_i (\omega_i) \cdot BRDF (\omega_i, \omega_o) \cdot \cos \theta_i \cdot d\omega_i
\]

= coeff. dot product

\[
L_o (\omega_o) = \Lambda_{\text{interp}} (p) \cdot F (p, \omega_o)
\]
SH-based Arbitrary BRDF Shading

- BRDF is in local frame
- Environment map in global frame
- Need coordinate frame alignment -> **SH rotation**

- SH closed under rotation
 - rotation matrix
 - Fastest known procedure is the \(zxzxz\)-decomposition
 [Kautz et al. 2003]
SH-based Arbitrary BRDF Shading

Figure 3: Brushed metal head in various lighting environments.

(a) varying exponent (b) varying anisotropy

Figure 4: Spatially-Varying BRDFs.
Environment Map Summary

- Very popular for interactive rendering
- Extensions handle complex materials
- Shadows with precomputed transfer

- But cannot directly combine with shadow maps
- Limited to distant lighting assumption
Pre-computed Radiance Transfer
Pre-computed Radiance Transfer

- Goal
 - Real-time rendering with complex lighting, shadows, and GI
 - Infeasible – too much computation for too small a time budget

- Approach
 - Precompute (offline) some information (images) of interest
 - Must assume something about scene is constant to do so
 - Thereafter real-time rendering. Often hardware accelerated
Assumptions

- Precomputation
- Static geometry
- Static viewpoint
 (some techniques)

- Real-Time Rendering (relighting)
 - Exploit linearity of light transport
Simple Example – Daytime Relighting

- Analyze precomputed images of scene

- Synthesize relit images from precomputed data

Jensen 2000
Simple Example – Daytime Relighting

- Analyze precomputed images of scene

- Synthesize relit images from precomputed data
Relighting as a Matrix-Vector Multiply

\[
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
\vdots \\
P_N
\end{bmatrix}
=
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_M
\end{bmatrix}
\]
Relighting as a Matrix-Vector Multiply

\[
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
\vdots \\
P_N
\end{bmatrix}
= \begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_M
\end{bmatrix}
\]

Output Image (Pixel Vector)

Input Lighting (Cubemap Vector)

Precomputed Transport Matrix
Matrix Columns (Images)

$$
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
$$
Precompute: Ray-Trace Image Cols

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\]
Precompute 2: Rasterize Matrix Rows

\[
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
\]
Problem Definition

Matrix is Enormous

- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable

- On the order of 10^{10} operations *per frame*

How to relight quickly?
Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation

- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals
SH-based PRT

- Better light integration and transport
 - dynamic, env. lights
 - self-shadowing
 - interreflections

- For diffuse and glossy surfaces

- At real-time rates

- Sloan et al. 02
SH-based PRT: Idea
Relation to a Matrix-Vector Multiply

\[
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
\vdots \\
P_N
\end{bmatrix}
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1M} \\
T_{21} & T_{22} & \cdots & T_{2M} \\
T_{31} & T_{32} & \cdots & T_{3M} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NM}
\end{bmatrix}
=
\begin{bmatrix}
L_1 \\
L_2 \\
\vdots \\
L_M
\end{bmatrix}
\]
Idea of SH-based PRT

- The L vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel/vertex still treated separately
 - One RGB value per pixel/vertex:
 - diffuse shading / arbitrary BRDF shading w/ fixed view direction
 - SH coefficients of transferred radiance (25 RGB values per pixel/vertex)
 - Arbitrary BRDF shading w/ variable view direction
- Good technique (becoming common in games) but useful only for broad low-frequency lighting
Diffuse Transfer Results

No Shadows/Inter Shadows Shadows+Inter
SH-based PRT with Arbitrary BRDFs

- Combine with Kautz et al. 03
- Transfer matrix turns SH env. map into SH transferred radiance
- Kautz et al. 03 is applied to transferred radiance
Arbitrary BRDF Results

- Anisotropic BRDFs
- Other BRDFs
- Spatially Varying