Function Approximation &
Spherical Harmonics



Function approximation

* G(x) ... function to approximate

* B,(X), B5(X), ... B,(X) ... basis functions

* G(X) Is a linear combination of bases

G() =3B ()

e Storing a finite number of coefficients c; gives an
approximation of G(x)



Basis functions




Function approximation

 Linear combination

— sum of scaled basis functions

C, X A — A
C, X A — /\
C, X A —




Function approximation

 Linear combination

— sum of scaled basis functions

ianlciBi(x): M




Finding the coefficients

* How to find coefficients c,?

— Minimize an error measure

e What error measure?

— L, error

E,, = [I600- X cB,(0]

Original function

Approximated
function




Finding the coefficients

* Minimizing E, leads to

<F\H>=jF(x)H(x)dx



Finding Coefficients

e Matrix

does not depend on G(x)

— Computed just once for a given basis



Finding the coefficients

* Given a basis {Bi(x)}
1. Compute matrix B

2. Compute its inverse B!

* Given a function G(Xx) to approximate
1. Compute dot products

(G|B,) (G]B,) - (G]B,)]

2. ... (nextslide)




Finding the coefficients

2. Compute coefficients as




Orthonormal basis

* Orthonormal basis means

e |f basis Is orthonormal then

<Bl‘51> <Bl‘82> <Bl‘.Bn>

CACYICAES

(8,(8) (B,[B,) -



Orthonormal basis

* |If the basis is orthonormal, computation of
approximation coefficients simplifies to

e We want orthonormal basis functions



Orthonormal basis

* Projection: How “similar” is the given basis
function to the function we’re approximating

Original function Basis functions Coefficients




Another reason for orthonormal
basis functions

* Intergral of product = dot product of
coefficients

() = || B.(x)

Jfoag00ax = |f

g(x) =|g; Bi(x)




Application to Gl

* |llumination integral

=)

dw,



Spherical Harmonics



Spherical harmonics

* Spherical function approximation

* Domain | = unit sphere S
— directions in 3D
* Approximated function: G(6,9)
* Basis functions: Y,(6,9)=Y, .(6,9)

—indexing: 1=1(1+1) + m
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Spherical harmonics

Jﬁ K/ Cos(;—;rz go)B " (_C-os 49) m > ()

v, (0,p)= V2K " sin(—me)P " (cos0), m<0

K'P’(cos 9) : m=0

K ... normalization constant
P ... Associated Legendre polynomial

— Orthonormal polynomial basis on (0,1)

* Ingeneral: Y, (8,0) =K.Y¥(p).P,,(cos0)
— Y m(0,9) is separable in 6 and ¢



Function approximation with SH

° n...approximation order

* There are n? harmonics for order n



Function approximation with SH




Function approximation with SH

* Spherical harmonics are orthonormal

* Function projection

2T

i =(G|Yin) = [G(@)Y, n(@)do = [ [G(6,9)Y, , (6, ¢)sin &l

— Usually evaluated by numerical integration

* Low number of coefficients

-> low-frequency signal



Product integral with SH

* Simplified indexing
Y= Yim
—1=1(+1)+m

* Two functions
represented by SH

F o)=Y Y (@) |6 = X a¥ (@

jF(w)G(w)dwzi f.g,
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