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1 Introduction

Our task is to compute direct illumination due to an environment map (EM) at a point x on a surface.
The environment map acts as a source of radiance L(ω) from directions on the unit sphere. We assume
that the light is arriving from infinity, so the radiance has no position dependency. Formally, our task
is equivalent to evaluating the illumination integral in the following form:

Lo(x, ωo) =

∫
S
L(ωi) V (x, ωi) fr(x, ωi, ωo) cos θi dωi, (1)

where we integrate over the unit sphere S. Unlike in the more general task of sampling indirect illu-
mination, the incoming radiance L(ωi) is known (it is given by the environment map). The visibility
function V (x, ωi) equals 1 if an infinite ray from x in direction ωi is not blocked by scene geometry,
and 0 otherwise.

We are focusing only on one surface point x observed from one outgoing direction ωo so let us fix
these two variables and drop them along with the subscript i from ωi to get the illumination integral
in a form that reads little better:

Lo =

∫
S
L(ω) V (ω) fr(ω) cos θ dω. (2)

We will use the usual Monte Carlo quadrature to evaluate this integral:

L̂o =
1

N

N∑
j=1

f(Ωj)

p(Ωj)
(3)

Here f(ω) = L(ω)V (ω)fr(ω) cos θ is the integrand and Ωj is a random direction drawn from a
distribution with probability density (PDF) p. How to choose the PDF and how to sample from it will
be discussed in the remainder of this write-up.

Since both the BRDF and the EM can have very sharp peaks, our integrand, given by the product
of the two, can vary pretty wildly. When estimating integrals of “wild” functions using MC quadra-
ture, it is essential to apply importance sampling with a carefully chosen probability density function
(PDF), in order to keep the variance low. Our goal is to choose a PDF proportional to the integrand
L(ω)V (ω)fr(ω) cos θ. It is not trivial to take the (à priory unknown) visibility function into account
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when constructing the PDF, so let us ignore it. There are methods for sampling from the product
L(ω)fr(ω) cos θ, but these are quite involved and go well beyond the scope of this write-up. Our
simpler strategy will be to use the following two sampling PDFs:

1. PDF roughly proportional to fr(ω) cos θ (i.e. the usual BRDF importance sampling)

2. PDF exactly proportional to L(ω) (i.e. sampling from the environment map)

The BRDF importance sampling is useful for very sharp BRDFs (high Phong exponent), because
in this case the shape of the integrand is dominated by the BRDE lobe. The EM sampling, on the other
hand, is useful when the BRDF is rather diffuse and the environment map spiky. But none of the above
strategies works well for all surface roughness values (e.g. exponent in the Phong BRDF model) and
all environment maps (uniform to spiky). So we will take advantage of Multiple Importance Sampling
to combine the two sampling methods in such a way that the advantages of the two strategies are
preserved.

2 Evaluating the illumination integral using BRDF-proportional im-
portance sampling

The first ingredient we need is a procedure for sampling from a given BRDF. As an example, I describe
how to sample from the modified Phong BRDF, given by the following equation:

fr(ωi, ωo) =


ρd
π

+ ρs
n+ 2

2π
cosn θs if ωi.z > 0 and ωo.z > 0 (i.e. above tanglent plane)

0 otherwise (on and below the tangent plane)

(4)

where ρd is the diffuse reflectivity (a.k.a. albedo) between 0 and 1, ρs is the specular reflectivity
between 0 and 1, n is the specular exponent (a.k.a. shininess) and θs is the angle between ωo and the
perfect mirror reflection of ωi. In a RGB renderer, the values of ρd and ρs will be RGB triples (in a
spectral renderer, they will be longer vectors). n+2

2π is a normalizing factor introduced so that the total
energy reflected by the specular component is independent of the exponent n (which is not the case in
the classical Phong shading model, which does not have any such normalization).

The sampling of the BRDF proceeds in two stages: first, we choose the BRDF component to
sample from (i.e. are we sampling from the diffuse or the specular lobe?) and then then we generate
the direction from the chosen component.

2.1 Choosing the BRDF component to sample from

We will use the values of ρd and ρs (converted to scalars) to choose the component. This makes sense:
we want to sample most of the rays from the component that reflects most of the energy. Here’s how
we do it:

1. Generate a random number ξ0 from R(0, ρd + ρs) (i.e. uniformly distributed between 0 and
ρd + ρs).

2. If ξ0 < ρd then sample from the diffuse component. Otherwise, sample form the specular
component.
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2.2 Sampling from the diffuse component

Our goal is to sample from fr(ωi, ωo) cos θi (i.e. from the cosine-weighted BRDF). The diffuse com-
ponent of the BRDF is constant so we want our PDF to be proportional to cos θi. To make the PDF
integrate to unity over the hemisphere, we introduce a normalizing factor 1/π, so the sampling PDF
is:

pd(ω) =
cos θ

π
. (5)

To sample from this PDF, we generate two random numbers ξ1, ξ2 from R(0, 1) and transform them
into a direction in spherical coordinates using the following formulas:

φ = 2πξ1 (6)

cos θ =
√
ξ2 (7)

For practical calculations we need the Cartesian coordinates:

x = cosφ sin θ (8)

y = sinφ sin θ (9)

z = cos θ. (10)

Note that the generated direction is defined with respect to the local coordinate frame, the z-axis of
which is aligned with the surface normal at x. The direction has to be transformed into the world
(global) coordinate frame before being used in a ray tracer.

2.3 Sampling from the specular component

In the specular case, there is no easy way to sample from fr(ωi, ωo) cos θi so we will only sample
from fr(ωi, ωo). The specular term is given by a cosine lobe centered around ωs (the mirrored ωi
direction), but unlike in the diffuse case, the lobe is raised to n. The corresponding PDF is:

ps(ω) =
n+ 1

2π
cosn θ. (11)

Similar to the diffuse case, we sample from this PDF by generating two random numbers ξ1, ξ2 from
R(0, 1) and transforming them into the direction. This time the transformation formulas read:

φ = 2πξ1 (12)

cos θ = ξ
1

n+1

2 (13)

Note that this direction is defined with respect to a coordinate frame where the z-axis is aligned
with the mirror reflection direction ωs and has to be transformed to an appropriate frame for further
calculations. The direction generated from the specular component may end up below the tangent
plane of the surface. Such a sample is valid - only the BRDF value for it is zero.

2.4 Completing the BRDF sampling procedure

In practical implementations, the BRDF sampling procedure usually returns the sampled direction, the
PDF for that direction, and the BRDF value for that direction. One possibility would be to evaluate
and return the total BRDF value no matter which BRDF component we sampled from. This is a very,
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very bad idea, though. Here is why: Suppose that we sample the diffuse component (pretty uniform
over the hemisphere) but the direction happenes to “hit” the narrow specular lobe. So the total BRDF
value for this sample is very high, but it is not compensated in the Monte Carlo estimator by dividing
by a large PDF value (remember the sample came from the rather uniform diffuse PDF). As a result,
we have generated a sample with disproportionately large contribution to the estimator (3), which
directly translates into high variance of the estimator (and a lot of noise in our image). Clearly, that’s
not what we want. But we can be smarter:

1. If we used the diffuse lobe sampling to sample the BRDF, return ρd
π as the BRDF value and

ρd
ρd+ρs

pd(ω) as the PDF.

2. If we used the specular lobe sampling to sample the BRDF, return ρs n+2
2π cosn θs as the BRDF

value and ρs
ρd+ρs

ps(ω) as the PDF.

This means that the discrete decision we made at the beginning wasn’t only about which BRDF
component to sample from, but we actually randomly chose the BRDF component which will be
evaluated. Since the diffuse component has only ρd

ρd+ρs
chance of being selected, the corresponding

PDF is “boosted” by this value. Similar argument holds for the specular component. The discussion
in this subsection generalizes to other BRDF models than Phong.

2.5 Implementation of the estimator based on BRDF sampling
Lo := 0;
for ( j = 1; j <= N; j++ )
{

[wj, p(wj), fr(wj)] := sampleBRDF();
if ( fr(wj) == 0 ) continue; // sample has zero contribution
L(wj) := lookUpEM(wj);
V(wj) := castRay(wj);
if ( V(wj) == 0 ) continue; // direction is blocked => reject
Lo += L(wj) * fr(wj) * cos(thetaj) / p(wj);

}
Lo := Lo / N;

3 Evaluating the illumination integral using EM-proportional impor-
tance sampling

This time the sampling PDF is given by the luminance of the environment map. The question is how to
sample from a PDF given by an image (that actually represents a function defined on the unit sphere).

3.1 A small digression: Sampling from a 1D discrete probability

One of the subroutines that we need for sampling from the environment map is drawing a random
variable I from a univariate (1D) discrete probability distribution described by the probability mass
function p(i) = Pr(I = i), where i are integers between 0 and n − 1. As a matter of fact, we don’t
even require that the individual probabilities sum to one, so we can call p(i) a “discrete importance”
function. In the first step, done in preprocess, we construct the corresponding cumulative distribution
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function (CDF):

F (i) =
i∑

k=0

p(k) (14)

To generate a random variable I distributed according to p(i), we generate a random number ξ from
R(0, F (n − 1)). The generated random variable equals to the first index i for which ξ < F (i). (In
practice, this search is implemented by bisection.)

3.2 Loading the EM
The EM usually comes in the form of a high dynamic range (HDR) image, where each pixel of the
image corresponds to a direction on the unit sphere. The mapping used for the light probes from
Paul Debevec’s web site (http://ict.debevec.org/ debevec/Probes/) is described on the same page. For
a given direction dir (with Cartesian coordinates (dir.x, dir.y, dir.z)), the following code snippet
gives the corresponding normalized (u, v) coordinate in the image. This conversion is the basis of the
implementation of the lookUpEM() function.

float d = sqrt(dir.x*dir.x + dir.y*dir.y);
float r = d>0 ? 0.159154943*acos(dir.z)/d : 0.0;
u = 0.5 + dir.x * r;
v = 0.5 + dir.y * r;

3.3 Converting EM into a PDF

For the sake of comfortable sampling, we will use the latitude-longitude mapping for the PDF instead
of original Debevec’s mapping. In this mapping, the horizontal index j (running from 0 to w − 1,
where w is the image width) corresponds to φ in spherical coordinates (running from 0 to 2π over the
width of the image). Similarly, the vertical index i (running from 0 on the top of the image to w − 1
at the bottom) corresponds to θ in spherical coordinates (running from 0 to π).

In the preprocess (after loading the image) we convert the luminance from the input EM into this
representation and normalize it so that it integrates to unity over the full sphere. The normalization
factor is given by the inverse of the integral of the luminance over the sphere, which can be computed
while creating the PDF map. In this way, we have defined a piece-wise constant PDF over the direc-
tions on unit sphere, which is constant over the area of each pixel in our PDF map. Now we need a
procedure to sample from such a PDF.

3.4 Sampling from the PDF map in latitude-longitude mapping

The sampling procedure will proceed in two stages: First, we discretely pick the pixel of the PDF
map to sample from, and then uniformly select a direction from within this pixel. The discrete prob-
ability for choosing one pixel is given by the integral of the PDF over the area of the pixel. This is
simply given by the area of that pixel on the sphere (integral over the pixel boundaries in spherical
coordinates) multiplied by the (constant) PDF value for that pixel. The joint discrete probability for
choosing pixel (i, j) is given by the probability mass function denoted p(i, j).

Choosing the pixel. To sample form the bivariate (2D) probability mass function p(i, j) one option
is to put all tuples (i, j) in a long 1D vector, and sample from the vector as if the probability distri-
bution was univariate (1D). However, this is usually not optimal with respect to the distribution of the
resulting samples (e.g. when applying stratified sampling or low-discrepancy random sequences). It
is better to sample p(i, j) as a true 2D probability. The procedure is as follows:
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1. Pick the row index I from the marginal probability mass function pI(i) =
∑w−1
j=0 p(i, j).

2. Given the row I , pick the column J from the conditional probability pJ(j|I = i) = p(i,j)
pI(i)

In other words, sampling from the 2D probability is reduced to sampling from two 1D probabilities:
one marginal pI(i) and the other conditional pJ(j|I = i). The division by pI(i) in the definition
of the conditional probability is actually never needed since our 1D sampling procedure tolerates
“probabilities” that do not sum to one.

Uniform sampling inside the pixel area. For the practical purposes, it is usually sufficient to return
the direction corresponding the center of the pixel we have selected using the procedure described
above. However, that’s not a clean solution in the mathematical sense, since our PDF is piecewise
constant, and every direction inside the pixel should have an equal chance of being sampled. One
way to approximate this behavior would be to reformulate the procedure for sampling from a 1D
discrete distribution to accept a piecewise constant PDF (instead of a probability mass function). The
corresponding CDF would be piece-wise linear and could be inverted using a simple modification of
the discrete sampling procedure described earlier.

3.5 Implementation of the estimator based on EM sampling
Lo := 0;
for ( j = 1; j <= N; j++ )
{

[wj, p(wj)] := sampleEM();
fr(wj) := evaluateBRDF(wj, wo);
if( fr(wj) == 0 ) continue; // zero contribution (wrong side of the surface etc.)
L(wj) := lookUpEM(wj);
V(wj) := castRay(wj);
if ( V(wj) == 0 ) continue; // direction blocked => reject
Lo += L(wj) * fr(wj) * cos(thetaj) / p(wj);

}
Lo := Lo / N;

4 Combined estimator using Multiple Importance Sampling

As mentioned at the beginning of the write-up, none of the sampling methods described so far (BRDF
and EM importance sampling) works well over the entire range of BRDFs and environment maps.
Usually, one has low variance when the other has high variance. We want to combine the two sampling
techniques in a way that preserves their strengths. We use Veach and Guilbas’ Multiple Importance
Sampling for that purpose.

4.1 Multiple Importance Sampling

Assume our task is to compute the integral

I =

∫
D
f(x)dx (15)
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over some domainD and we have n different sampling techniques (i.e. PDFs) p1(x), p2(x), . . . , pn(x)
for importance sampling. We define a combined estimator:

F =
n∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
, (16)

where ni is the number of samples drawn from the i-th technique (PDF), and Xi,j is the j-th sample
drawn from the i-th technique and wi(x) are the weighting functions (one per sampling technique)
that we use to combine the samples from individual techniques. Note that the weight is a function
of x, i.e. different strategies can get different weight in different parts of the domain. This estimator
is unbiased if

∑n
i=1wi(x) = 1 whenever f(x) 6= 0, which is a hard requirement on the weighting

functions. Apart from this requirement, we are free to choose any weighting function we like. Of
course, we want to make a good choice, and a good choice means low variance of F . Veach and
Guibas prove that the following choice, called balance heuristic, produces a low-variance estimator:

ŵi(x) =
nipi(x)∑
k nkpk(x)

(17)

This is how the combined estimator looks like with the balance heuristic:

F =
n∑
i=1

ni∑
j=1

f(Xi,j)∑
k nkpk(Xi,j)

, (18)

The name “balance heuristic” stems from the fact that the contribution of each sample to the sum in
the above estimator is independent of the sampling technique it came from.

4.2 Using MIS to combine BRDF and EM importance sampling

We apply MIS to combine the BRDF and EM sampling as follows:

• the integration domain is the unit sphere

• the integration variable x are directions over the sphere

• the integrand is L(ω)V (ω)fr(ω) cos θ

• BRDF importance sampling is the first sampling technique (the corresponding PDF is denoted
p1)

• EM importance sampling is the second sampling technique (the corresponding PDF is denoted
p2)

• the number of samples from both strategies is the same, and is given by a user-defined parameter
N , i.e. n1 = n2 = N

The implementation follows the double sum in the combined estimator (16). In the actual imple-
mentation, the outer sum over the sampling techniques is “unrolled”.

Lo := 0;

// technique 1: BRDF importance sampling
for ( j = 1; j <= N; j++ )
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{
[wj, p1(wj), fr(wj)] := sampleBrdf();
if ( fr(wj) <= 0 ) continue;
L(wj) := lookUpEM(wj);
V(wj) := castRay(wj);
if ( V(wj) == 0 ) continue;
w = misWeight( p1(wj), p2(wj) ); // evaluate the balance (or any other) heuristic
Lo += L(wj) * fr(wj) * cos(thetaj) * w / p1(wj);

}

// technique 2: EM importance sampling
for ( j = 1; j <= N; j++ )
{

[wj, p2(wj)] := sampleEM();
fr(wj) := evaluateBRDF(wj, wo);
p1(wj) := evaluateTotalPDF(wj, wo);
if( fr(wj) == 0 ) continue;
L(wj) := lookUpEM(wj);
V(wj) := castRay(wj);
if ( V(wj) == 0 ) continue;
w = misWeight( p2(wj), p1(wj) ); // evaluate the balance (or any other) heuristic
Lo += L(wj) * fr(wj) * cos(thetaj) * w / p2(wj);

}

The total PDF for BRDF sampling is given by the “blend” of the PDFs for the individual com-
ponents of the BRDF, because we used a probabilistic selection of the BRDF component to sample
from:

p1(ω) =
ρd

ρd + ρs
pd(ω) +

ρs
ρd + ρs

ps(ω). (19)

(See Section 2 on BRDF importance sampling for the explanation of the individual terms.)
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