
On-line Learning of Parametric Mixture Models

for Light Transport Simulation: Brief

Documentation

July 10, 2014

Contents

1 Introduction 1

2 Licence 2

3 Platform 2

4 Settings 2

5 Compilation 6

6 Implementation 6

7 Visualization 8

8 Scenes 11

1 Introduction

This document contains a brief documentation of the LibImportance library
that is an implementation of the importance sampling method described in
the paper [Vorba et al., 2014]. The method learns about the rendered scene
in a preprocessing pass and uses the obtained information about important
directions during rendering to guide the path-sampling process. The information
about radiance/importance distribution is stored on scene surfaces in form of
directional distributions trained during the training phase. The distributions are
represented by the Gaussian mixture model. The LibImportance library can be
attached to any physically-based renderer. This demo package takes advantage
of Mitsuba renderer in its version 0.5.0.

1



Although the LibImportance library provides distributions of both radiance
and importance (a quantity emitted by the camera), that can be used to guide
path-sampling in bidirectional light transport methods, this demo contains only
an implementation of guided path tracing and guided progressive photon map-
ping. The respective integrators are named as guided path, guided ppm and
guided sppm and are directly derived from the original implementations of path,
ppm and sppm integrators.

Note that even though the implementation of the guided path integrator is
capable of handling participating media, the code was never tested on any scene
containing media.

An integral part of the LibImportance library is also a visualization tool of
trained distributions in the scene.

2 Licence

Copyright (c) 2014 by Jiri Vorba, Ondrej Karlik, Martin Sik.
LibImportance library is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License Version 3 as published
by the Free Software Foundation.

LibImportance library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses/.

3 Platform

The LibImportance library and also this demo package were developed and
tested only under Windows 7 x64. We compiled the code using MSVC 2010.

4 Settings

Figure 1 shows the parameters that are common for all guided integrators (the
green frame). There are cache related parameters that have direct impact on
spacing of cached distributions in the scene. For most scenes they can be left
on its default values. These parameters are framed in red.

The parameters that usually need to be changed are highlighted in yellow.
These are particle related parameters that influence the efficiency of the guiding
method and they have also impact on cache spacing since it is bounded by
multiplies of a particle search radius. The rest of the parameters can usually be
left on their default values.

The parameters and their meaning are as follows:

2



Figure 1: The settings of guided path tracer in Mitsuba GUI. The guiding-
related settings are framed in green. The cache related settings that can be left
on its default values for most of the scenes is framed in red. The only parameters
that should be set carefully per scene are highlighted in yellow.

3



• Cache: min. radius

Limits the allowed validity radius of a cached distribution. The smaller
the value the denser the distribution cache could become.

• Cache: max. radius

Limits the allowed validity radius of a cached distribution. The higher the
value the less dense the distribution cache could become.

• Cache: max. env. radius

Limits the maximum allowed validity radius of a cached distribution for
sampling the starting position of a photon emitted from the environment.

• KL divergence thr.

The sensitivity of the distribution validity radius to changes in the equi-
librium radiance/importance. The higher the value the more sensitive
caching scheme (i.e. the cache could become denser in caustics and near
the surfaces that are sources of reflections). Please, refer to the paper for
details.

• Photon min. clamping

Restricts the size of the validity radius of a distribution. The value is a
multiply of a particle-search radius. The smaller the value the smaller the
validity radius could become.

• Photon max. clamping

Restricts the size of the validity radius of a distribution. The value is a
multiply of a particle-search radius. The higher the value the bigger the
validity radius could become.

• Cache: Use neighbour clamping

If true then the validity radius of a distribution is clamped by values of
its neighbouring distributions.

• Use caching

Switches the caching of distributions on/off. If caching is switched off
then a distribution is always trained anew when requested at a scattering
position. This is only meant for debugging.

• KNN particles count

Number of nearest neighbour particles from a distribution position that
are searched for when the distribution is created or progressively trained
later on.

• Global size mult.

This parameter influences the size of maximum validity radius of a dis-
tribution in the cache and maximum particle search radius. It is given in
multiplies of the scene bounding box diagonal.

4



• Jensen: histogram res.

This parameter has an effect only when Guiding method is set to
Jensen. It is the resolution of one side of a histogram grid (it is mapped
on hemisphere).

• Guiding method

Possible values are jensen, hey, pharr, gaussian. The last one is the
method thoroughly described in our paper [Vorba et al., 2014]. For brief
description of the other methods, please, refer also to the paper. Note that
Jensen’s, Hey’s and Pharr’s method were not designed to allow progres-
sive training. While we implemented Jensen’s method to simply merge the
particles into the existing histograms and thus made it deceivingly pro-
gressive, the other two methods will crash the application if the Number

of t.passes will be greater than one and the Use ping-pong is set to
true.

Also note that we designed the caching originally only for our Gaussian
mixtures. That means that the parameter KL divergence thr. which
determines the sensitivity of caching scheme to the changes of cached
quantity (radiance/importance) has no effect when the other distribution
models are used. The spacing of distributions is then based solely on the
particle search radius.

• Number of training passes

Number of training passes. One training pass consists of tracing photons
followed by tracing importons and updating of cached distributions of
radiance and importance.

• Number of photons

Number of emitted photons per one training pass.

• Number of importons

Number of emitted importons per one training pass.

• Show visualization

If true then cached distributions and particles from the last training pass
are visualized when the rendering pass is done.

• Use ping-pong

If false then no importons are traced and there is only one (unguided)
photon tracing during the training phase. Thus, in fact, the actual training
of distributions does not start before the rendering phase. Also, there is
no progressive training.

• Use env. sampler

Switches on/off the guided sampling from the environment light source (if
one is present in the scene).

5



• Use guided sampling

If false then no parameter in the green frame (see Figure 1) has an effect.
The integrator falls back to its original unguided implementation.

• BSDF probability

Probability that a direction will be sampled from BSDF and not from a
guiding distribution if one is available at a scattering position. These two
strategies are combined via MIS.

5 Compilation

1. Download the source code
(http://cgg.mff.cuni.cz/~jirka/papers/2014/olpm/olpm2014_source.
zip)

2. Unzip the olpm2014 source.zip archive to an empty folder.

3. Install Python

4. Install Scons (http://www.scons.org/) (make sure it is compatible with
your Python version)

5. Make sure that Scons is in your system Path variable

6. Open the Visual Studio project
"Mitsuba 0.5.0/build/mitsuba-msvc2010.sln"

7. Select Release or Debug configuration on platform x64

8. Press F7

If it does not work for you, please send an email to jirka@cgg.mff.cuni.cz.

6 Implementation

This demo package has two layers. One layer is the LibImportance library that
can be attached to any physically-based rendering system written in C++ and
the other enables the usage of the library in Mitsuba renderer.

The former contains the Expectation-Maximization based learning algo-
rithms, caching, guided sampling API (including environment guiding), and
a visualization tool. The latter involves training phase implementation, one-
sample estimator combining BSDF and guided sampling via MIS, implementa-
tion of LibImportance library environment light adapter and particles adapter.

6



6.1 LibImportance

The LibImportance library source files are all located in the LibImportance
directory. The library is attached to Mitsuba through including the LibImpor-
tance.h file and linking the LibImportance.lib that is compiled together with
Mitsuba (see Section 5).

Here, we list the main LibImportance subdirectories and briefly describe
their content:

• caching

The octree structure to accelerate search for suitable distribution, lazy
caching of guiding distributions (CachedSampler.h)

• em

The off-line and on-line stepwise EM algorithms (stepwise emsse.h)

• gaussian

The Gaussian mixture model (GMM) implementation, the EM update
formulae for GMM (gaussian stepwise emsse.h)

• hey

Hey and Purgathofer’s method implementation.

• jensen

Jensen’s histogram method implementation.

• pharr

Pharr’s method implementation.

• sampler

An interface for sampling from a guiding distribution and its progressive
training.

• shared

Basic components of LibImportance library such as vectors, SSE support,
point kdtree for searching the nearest particles, mappings etc.

• viz

The visualization tool based on the openGl and the wxWidgets libraries.

6.2 Mitsuba Layer

To use the LibImportance library in Mitsuba we implemented the training phase
(guiding.h), one-sample estimator combining BSDF and guided sampling via
MIS (guided brdf.h), Russian roulette according to particle weights, guided par-
ticle tracing (based on Mitsuba implementation) (guided particletracing.h/cpp)
and particle and environment light adapters (libImpUtils.h).

7



We list all the files that were added or modified (in Mitsuba) in order to use
the LibImportance library:

• emitter.h (small modification)

• guided brdf.h

• guided particletracing.h

• guiding.h

• guiding config.h

• libImpUtils.h

• libImpVizUtils.h

• nondiscretphoton.h (small modification of original photon)

• envmap.cpp (added guided emission)

• guided path.cpp

• guided ppm.cpp

• guided sppm.cpp

• guided particletracing.cpp

• nondiscretephoton.cpp (small modification of original photon)

• scene.cpp (small modification)

7 Visualization

It is possible to visualize cached distributions in the scene when the rendering is
finished (see Section 4). It is also possible to visualize the particles stored during
the last tracing step. The first window that appears shows radiance distribu-
tions and photons while the second window shows importrance distributions
and importons. If the environment light source is present in the scene and the
emission guiding is switched on the second window also shows the distributions
that guide the emission of a particle start position. The visualization tool is
shown in Figures 2-4.

The basic controls are as follows:

1. Middle button

Moves the camera in the camera plane.

2. Mouse wheel or Middle button + Ctrl

Moves the camera forwards/backwards.

8



Figure 2: Visualization of cached radiance distributions in the scene. The dis-
tributions are colorful dots on surfaces. Red and yellow is used for distributions
that are considered reliable (i.e. were trained from a sufficient number of parti-
cles) while the light blue is used for distributions that were trained using only
a few particles. The geometry is colored according to the normals. The nearest
photons to the point of interest are visualized by rays in directions of their inci-
dence. The trained distribution is visualized in false color on the left (together
with nearest particles coming from the last training phase).

9



Figure 3: Visualization of photons from the last training phase.

Figure 4: Visualization of distributions for sampling the photon start position
together with importons coming from a selected direction. The grey box is the
scene bounding box.

10



3. Shift

Accelerates the movement in previous cases.

4. Middle button + Alt or Right button

Rotates the camera.

5. Left button

Selects a distribution (only distributions on surfaces with normals towards
the view direction can be selected).

6. f

Resets the camera.

7. *

Switch between visualizing all the nearest neighbour particles and all the
nearest neighbour particles that can be used for fitting based on parti-
cle and surface normals. The difference can be noticed only if Record

view > Interpolate on click is on and a distribution is selected (ide-
ally one near corners).

8 Scenes

Part of this demo package is the Door scene that was presented in our paper
[Vorba et al., 2014]. The scene is a recreation of the well-known scene from
Veach and Guibas’ paper [1997] provided by Lehtinen et al. [2013]. Note,
that we further modified the scene that is now even more difficult to render.
To make the scene more realistic, we have made the area light source much
smaller and used more (40) light bounces. Further, the materials were replaced
by Ashikhmin-Shirley BRDF implementation that we were using in Corona
Renderer so that the results were completely the same in Corona and Mitsuba
- however the overall appearence was preserved.

If you would like to try out other scenes from the paper, please, send an email
to jirka@cgg.mff.cuni.cz. We were not given a permission by the scene authors
to make the scenes freely available without any control over the purpose of their
use.

In addition to the paper, this demo package involves the Swimming pool
scene (see Figures 5 and 6). Note, that even though the scene is very difficult to
render for simple path tracing, bidirectional path tracing or progressive photon
mapping, it is not the visibility that makes this scene difficult. Thus it could be
rendered efficiently by VCM without a need for guiding. However, the guiding
nicely allows rendering of this scene using just a simple path tracer.

11



(a) Path tracing (b) Our guided path tracing

Figure 5: Same-sample (64 per pixel) comparison of the swimming pool scene
rendered by (a) path tracing and (b) our guided path tracing.

(a) Path tracing (b) Our guided path tracing

Figure 6: Equal time (1h) comparison of the swimming pool scene rendered by
(a) path tracing and (b) our guided path tracing.

12



References

[Lehtinen et al., 2013] Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Ait-
tala, Frédo Durand, and Timo Aila. Gradient-domain Metropolis light trans-
port. ACM Trans. Graph., 32(4), 2013.

[Veach and Guibas, 1997] Eric Veach and Leonidas J. Guibas. Metropolis light
transport. In SIGGRAPH ’97, 1997.

[Vorba et al., 2014] Jǐŕı Vorba, Ondřej Karĺık, Martin Šik, Tobias Ritschel, and
Jaroslav Křivánek. On-line learning of parametric mixture models for light
transport simulation. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2014), 33(4), aug 2014.

13


