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Charles University in Prague

1 Introduction

One purpose of this supplemental document1 is to introduce the
zero-variance transport rules [Křivánek and d’Eon 2014; Hoogen-
boom 2008](Sec. (3)) and to show that following these rules results
in an important principle (Eq. (5) in the paper) that governs the par-
ticle weights in the ZV simulation (Sec. 4). Note that our ADRRS
is based on this principle: we design the termination/splitting rate q
so that we keep this principle even if we do not use the ZV emitting
and scattering probabilities.

The other purpose is the derivation of the Eq. (12) from the paper
which allows us to explain the importance sampling properties of
our ADRRS and to study its relation to the ZV scheme (Sec. 5).

In the following section, we review formal definitions of the basic
light transport concepts such as rendering and visual importance
transport equations and their related measurements.

2 Light Transport Background

2.1 Rendering Equation and Light Tracing

Light transport in a scene without participating media is described
by the rendering equation [Kajiya 1986; Dutré et al. 2006]:

Lo(y, ωo) = Le
o(y, ωo) +

∫
Ω

Li(y, ωi)fs(y, ωi→ωo)|cos θi| dωi︸ ︷︷ ︸
Lr

o(y,ωo)

.

Here Lo(y, ωo) and Le
o(y, ωo) are, respectively, the total and the

self-emitted outgoing radiance from a surface point y in a direc-
tion ωo, fs denotes the bidirectional scattering distribution function
(BSDF), θi is the angle between the surface normal at y and an in-
cident direction ωi, and Ω is the unit sphere. We use the arrow nota-
tion in fs to mark the direction of light flow. The incident radiance
Li(y, ωi) at the point y visible from a point x in the direction ωi is
equal to the outgoing radiance Lo(x,−ωi). Lr

o denotes the part of
the outgoing radiance that is only due to surface reflection at y.

The light tracing algorithm [Dutré and Willems 1994] estimates the
measurement equation (i.e. pixel value) I

I =

∫
M

∫
Ω

Li(y, ω)W e
o (y, ω) |cos θ| dω dy, (1)

using the following MC estimator [Veach 1997, 4.A]:

〈I〉 =
1

N

∑
k

νi(yk, ωk)W e
o (yk, ωk). (2)
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Here, W e
o (y, ω) is the self-emitted visual importance. Evaluating

this estimator involves following random paths ofN particles emit-
ted from the light sources. The above sum is updated when a parti-
cle k with its weight νi(yk, ωk), coming from a direction ωk, col-
lides at a location yk. Note that the above estimator corresponds to
light tracing without explicit connections to the camera (next event
estimation).

2.2 Visual Importance Transport Equation and Path
Tracing

The visual importance transport is governed by the following trans-
port equation

Wo(y, ωo) = W e
o (y, ωo)+

∫
Ω

Wi(y, ωi)fs(y, ωo→ωi)|cos θi| dωi︸ ︷︷ ︸
W r

o(y,ωo)

,

(3)
which is adjoint to the rendering equation [Christensen 2003].
Here, Wi is incident visual importance. Recall, that we use a con-
vention, depicted in Fig. 2 in the paper, that ωo always points in the
direction of the transported quantity and that the arrow in fs depicts
the direction of light transport.

Path tracing is perhaps the most popular light transport simulation
method used in computer graphics, which can be though of as fol-
lowing particles of visual importance starting from the camera. By
using the MC estimator given by Eq. (1) in the paper, the algorithm
estimates the pixel value I given by the visual importance measure-
ment equation [Veach 1997]

I =

∫
M

∫
Ω

Wi(y, ω)Le
o(y, ω) |cos θ| dω dy, (4)

whereM is the scene surface.

3 Zero-Variance Random Walk Rules

To make the radiance measurement equation (Eq. (2)) a zero-
variance estimator, we must obey the following rules:

• Emit light particles according to the pdf proportional to the
product of incident importance distribution at the light sources
and cosine-weighted outgoing self-emitted radiance:

pe
zv(x, ωo) =

Wi(x, ωo)Le
o(x, ωo) | cos θo|
I

, (5)

where the division by I makes the pdf integrate to 1 (see
Eq. (4), the visual importance measurement equation).

• At each scattering event, sample the new direction from the
pdf proportional to the product of the cosine-weighted BSDF
fs and the incident visual importance distribution:

pzv(ωo|x) =
Wi(x, ωo)fs(x, ωi→ωo)| cos θo|

W r
o(x, ωi)

. (6)
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The division by reflected importance W r
o at x makes the pdf

integrate to 1 as can be seen from Eq. (3) by replacing the role
of ωi and ωo (we trace from light sources here while Eq. (3)
is defined with respect to tracing from the camera).

• Use the following survival probability

qzv(y, ωi) = 1− W e
o (y, ωi)

Wo(y, ωi)
=
W r

o(y, ωi)

Wo(y, ωi)
, (7)

that allows the walk to terminate only on the camera sensor.

• Contribute to the estimator only upon termination (i.e. with
the probability 1− qzv).

4 Particle Weight in Zero-Variance Schemes

In this section, we show that the incident weight ν̂(y, ωi) of a par-
ticle that follows a zero-variance random walk and survives the col-
lision at y is equal to (Eq. (5) in the paper)

ν̂(y, ωi) =
I

Ψr
o(y, ωi)

. (8)

Here, I is the computed pixel value and adjoint Ψr
o(y, ωi) reflected

from a point y into the direction ωi depends on the tracing type.
If we trace from light sources it stands for visual importance W
while if we trace from the camera it stands for radiance L. Note
that the adjoint Ψ is sum of source adjoint Ψe and reflected adjoint
Ψr. Without loss of generality we show validity of Eq. (8) on an
example zero-variance scheme applied to light tracing.

4.1 Particle Weight Invariant

Under the light tracing zero-variance scheme above, the incident
weight of a surviving particle at y reads

ν̂(y, ωi) =
I

W r
o(y, ωi)

. (9)

Note that this is only a light tracing instance of the general case
(Eq. (8)). We now show the validity of Eq. (9) by induction.

Proof of Eq. (9). We first show that this induction hypothesis is
valid after emission. For this purpose, we consider that x is an
emission event and precedes the collision at y. The notation corre-
sponds to Fig. 1 except that there is no ωx

i direction as x is now
the emission event. Plugging emission probability (Eq. (5)) into the
initial weight of an emitted particle that is given by

νe
o(x, ωx

o) =
Le

o(x, ωx
o)|cos θx|

pe(x, ωx
o)

, (10)

leads to the following particle weight after emission:

νe
o(x, ωx

o) =
I

Wi(x, ωx
o)
. (11)

Here, pe(x, ωx
o) is the joint pdf of sampling the initial particle posi-

tion x and the direction ωx
o . When the particle survives the collision

at y, the incident weight becomes

ν̂(y, ωi) =
νi(y, ωi)

qzv(y, ωi)
=
νo(x, ωx

o)

qzv(y, ωi)
. (12)

The second equality follows from the fact that νo(x, ωx
o) =

νi(y, ωi) (as shown in Fig. 1). Finally, by using the ZV surviv-
ing probability qzv (Eq. (7)) and the particle weight after emission

(Eq. (11)) in Eq. (12), we get

ν̂(y, ωi) =
I

Wi(x, ωx
o)

Wo(y, ωi)

W r
o(y, ωi)

=
I

W r
o(y, ωi)

. (13)

The equality in question (Eq. (9)) holds because Wo(y, ωi) =
Wi(x, ω

x
o) (see Fig. 1).

≡ Wo(y, ωi)Wi(x, )

≡νo(x, ) νi(y, ωi)

x yωi ωx
i

ωx
o

ωx
o

ωx
o

Figure 1: A light tracing collisions where the collision at x pre-
cedes the collision at y. The figure depicts important identities be-
tween the two events.

To see that the incident weight of the surviving particle (Eq. (9)) is
maintained through a collision at y, we now suppose that x is a gen-
eral collision location that precedes y and that the induction hypoth-
esis holds at x: ν̂(x, ωx

i ) = I/W r
o(x, ωx

i ) (see Fig. 1). When we
sample an outgoing direction ωx

o from x according to ZV scheme,
we get the outgoing particle weight

νo(x, ωx
o) = ν̂(x, ωx

i )
fs(x, ω

x
i →ω

x
o)|cos θx|

pzv(ωx
o)

.

Now we substitute the induction assumption for ν̂(x, ωx
i ) and ZV

scattering probability (Eq. (6)) for pzv(ω
x
o) to arrive at

νo(x, ωx
o) =

I

W r
o(x, ωx

i )

W r
o(x, ωx

i )

Wi(x, ωx
o)
. (14)

Similarly as in the case of emission, when we apply the ZV sur-
viving probability qzv(y, ωi) (Eqs. (7)) and this derived outgoing
particle weight νo(x, ωx

o) (Eq. (14)) to express the weight of a par-
ticle surviving collision at y (Eq. (12)), we get Eq. (9) which is
what had to be proven.

5 Derivation of Eq. (12) in the paper

We show at an example of light tracing that designing our ADRRS
so that

ν̂(y, ωi) =
I

W r
o(y, ωi)

(15)

at each collision y and an incident direction ωi results in the fol-
lowing RR/splitting rate q at the collision y:

q(y, ωi) =
pr

zv(ω
x
o |x)

p(ωx
o |x)

. (16)

Note that the version of this equation stated here is more general
then Eq. (12) in the paper because it is valid also when x in on a
source or a sensor. This equation says that the termination/splitting
rate q at y is equal to the ratio of a function pr

zv defined as

pr
zv(ω|x) =

W r
o(y, ωi)fs(x, ω

x
i →ω)|cos θx|

W r
o(x, ωx

i )

and the actual direction sampling distribution p(ω|x) at x. The only
difference between pr

zv(ω|x) and the zero-variance scattering dis-
tribution pzv(ω|x) (Eq. (6)) is that the function pr

zv does not include
direct importance emitted from y. Thus pzv(ω|x) = pr

zv(ω|x) if y
is not on the camera (or a light source in case of path tracing). Note
that the two consecutive collisions x and y are illustrated in Fig. 1.



We start our derivation of Eq. (16) by recalling the weight update
formula at y after application of ADRRS (Eq. (3) in the paper):

ν̂(y, ωi) =
νi(y, ωi)

q(y, ωi)
.

From this equation and from Eq. (15) we derive the formula for
RR/splitting rate q at y (Eq. (4) in the paper) which, using the iden-
tity between νi and νo (see Fig. 1), can be written as:

q(y, ωi) =
νo(x, ωx

o)W r
o(y, ωi)

I
. (17)

Now we need to express the outgoing particle weight νo at x in
terms of path weight ν̂ after application of ADRRS at x. When the
particle scatters at x into a direction ωx

o its outgoing weight νo is
computed as follows (Eq. (2)):

νo(x, ωx
o) = ν̂(x, ωx

i )
fs(x, ω

x
i →ω

x
o)|cos θx|

p(ωx
o |x)

. (18)

At this point, we write the basic constraint on the particle weight
(Eq. (15)) which our ADRRS ensures through termination/splitting
at every collision in terms of scattering at x: ν̂(x, ωx

i ) = I
W r

o(x,ωx
i )

.
When we insert this constraint and Eq. (18) into Eq. (17), we arrive
at the following splitting rate q:

q(y, ωi) =
W r

o(y, ωi)fs(x, ω
x
i →ω

x
o)|cos θx|

W r
o(x, ωx

i )︸ ︷︷ ︸
przv(ωx

o |x)

1

p(ωx
o |x) (19)

This equality what had to been proven follows from the identity be-
tweenWi andWo (which similarly holds forW r

i andW r
o ) depicted

in Fig. 1.

5.1 Zero-variance sampling and ADRRS

If we use ADRRS on top of the ZV scheme, i.e. p(ω|x) =
pzv(ω|x) (see Eq. (6)) for all ω and we also use the ZV emission
rule (Eq. (5)), then Eq. (19) becomes exactly the ZV surviving prob-
ability (Eq. (7)). Even though this suggests that ADRRS does not
violate the ZV scheme when the ZV scattering and emission rules
are obeyed, there is one subtle breach of the ZV rules. While the
ZV scheme does not allow contribution from particles that reached
a light source (or sensor) but were not terminated, our ADRRS ap-
proach always counts the contribution from such particles. Note
that this introduced variance has a very limited impact in practice
as it only matters on light sources (or sensors).
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