
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Petr Kadleček

A Practical Survey of Haptic APIs

Department of Software and Computer Science Education

Thesis supervisor: Mgr. Petr Kmoch

Study program: Computer Science, Programming

2010

I would like to thank my supervisor, Mgr. Petr Kmoch, for his support and
advice throughout the survey, development of accompanying applications
and the thesis. He provided me with valuable information, insight into hap-
tics and guided me through the work.

I declare that I have written my bachelor thesis independently and solely by
using cited sources. I agree with lending of the thesis and its publishing.

In Prague, July 28, 2010 Petr Kadleček

2

Contents

1 Introduction 6
1.1 The goals of the thesis . 6
1.2 Structure of the thesis . 7

2 Haptic device 8
2.1 Human-Computer Interaction 8
2.2 Degrees of freedom and variability of current haptic devices . 9
2.3 Practical applications of haptic devices 10
2.4 Novint Falcon . 11

3 Haptic APIs 13
3.1 Abstraction layers of haptic APIs 13

3.1.1 Driver layer . 13
3.1.2 Low-level API . 14
3.1.3 Scene graph API . 15

3.2 CHAI 3D set of libraries . 16
3.2.1 Devices . 17
3.2.2 Scene graph . 18
3.2.3 Haptic tool . 19
3.2.4 Haptic effects . 21
3.2.5 Other classes . 21
3.2.6 ODE module . 23
3.2.7 GEL module . 24
3.2.8 BASS module . 25

3.3 Novint HDAL SDK . 25
3.4 JTouchToolkit API . 26
3.5 libnifalcon library . 27
3.6 HAPI rendering engine . 28

3

3.7 H3DAPI scene graph API 29
3.7.1 X3D . 30
3.7.2 Python interface . 30
3.7.3 Scene graph and C++ 30

3.8 OpenHaptics toolkit . 31
3.9 Summary . 32

4 Libnifalcon implementation in CHAI 3D API 34
4.1 Device support structure in CHAI 3D 34
4.2 Implementation . 34
4.3 Benchmark . 35
4.4 Result . 36

5 Haptic API suite 38
5.1 Content of the suite . 38
5.2 CHAI 3D - highlevel application 40

5.2.1 GLUT library . 41
5.2.2 Threads . 41
5.2.3 cScene and cConfig classes 41
5.2.4 cHaptic class . 42
5.2.5 cHud class . 42
5.2.6 cCameraSet class . 43

5.3 Metuunt project - CHAI 3D - lowlevel application 43
5.4 CHAI 3D - minimal application 44
5.5 CHAI 3D - haptic benchmark 44
5.6 HDAL - minimal application 45
5.7 JTouchToolkit - minimal application 45
5.8 libnifalcon - minimal applications 46
5.9 HAPI - minimal application 46
5.10 H3DAPI - highlevel application 46

6 Conclusion 47
6.1 Summary . 47
6.2 Possible future extensions 47

A Contents of the accompanying CD 49

Bibliography 50

4

Název práce: Rešerše haptických API
Autor: Petr Kadleček
Katedra (ústav): Kabinet software a výuky informatiky
Vedoućı bakalářské práce: Mgr. Petr Kmoch
e-mail vedoućıho: petr.kmoch@mff.cuni.cz

Abstrakt: Haptická zař́ızeńı maj́ı velký potenciál v oblastech jako je lékařstv́ı,
inženýrstv́ı, či pomoc zrakově postiženým lidem. Masivńı rozš́ı̌reńı a pod-
pora umožnila vznik mnoha nástroj̊u a knihoven pro programováńı aplikaćı
s podporou haptiky. Tato práce představuje a analyzuje sadu rozhrańı pro
haptické programováńı, které převážně podporuj́ı zař́ızeńı Novint Falcon.
Součást́ı práce je také sada testovaćıch programů ukazuj́ıćı základńı použit́ı
těchto rozhrańı. Práce se dále zaměřuje na knihovnu CHAI 3D, pro niž byla
vytvořena rozsáhleǰśı testovaćı aplikace a implementována podpora multi-
platformńıho ovladače libnifalcon.

Kĺıčová slova: haptické zař́ızeńı, haptická API, CHAI 3D, libnifalcon, Novint
Falcon

Title: A Practical Survey of Haptic APIs
Author: Petr Kadleček
Department: Department of software and computer science education
Supervisor: Mgr. Petr Kmoch
Supervisor’s e-mail address: petr.kmoch@mff.cuni.cz

Abstract: Haptic devices have a great potential in medical fields, engineering
and help for visually impaired people. Massive distribution and support
have made it possible to create many tools and libraries for programming
applications with support of haptics. This thesis presents and analyzes APIs
for haptic programming which mostly support a Novint Falcon device. A part
of the thesis is a set of testing applications illustrating a basic use of these
APIs. The survey then focuses on a CHAI 3D API. Larger demonstrating
application is created and a libnifalcon cross-platform driver is implemented
to the CHAI 3D.

Keywords: haptic device, haptic API, CHAI 3D, libnifalcon, Novint Falcon

5

Chapter 1

Introduction

Display and audio engineering have developed rapidly over the last few
decades and brought realistic reproduction to our vision and hearing senses.
Haptic technology makes it possible to use the sense of touch with com-
puters. Progress of this technology enables humans to create an immersive
virtual reality.

Commercial haptic device available for consumers was released in the
year 2007 and there are dozens of accessible application programming inter-
faces, development kits and libraries at different abstraction layers.

There are APIs more suitable for fast prototyping in the early stages
of a software development and APIs suitable for efficient control of haptic
device for applications requiring accurate real-time responses. Choosing a
suitable haptic API becomes an integral part of a project supporting haptic
technology.

1.1 The goals of the thesis

The main goals of the Practical Survey of Haptic APIs are:

• present current haptic APIs for controlling haptic devices with a focus
on open source, cross platform APIs supporting the Novint Falcon
device

• analyze these APIs and create basic testing applications to give a thor-
ough review for developers starting with haptic programming

6

• examine CHAI 3D library in a more detail and create a larger project
using CHAI 3D

• consider an implementation of libnifalcon cross-platform driver into
CHAI 3D and test its performance

1.2 Structure of the thesis

The thesis contains 6 chapters:

• Chapter 1 gives a general introduction and presents goals of the thesis

• Chapter 2 introduces a haptic technology, haptic devices and practical
use of haptics.

• Chapter 3 examines haptic API abstraction layers and gives a review of
haptic APIs with a short conclusion and recommendations. The overall
summary of licensing, development state and other specification is at
the end of the chapter.

• Chapter 4 describes an implementation of libnifalcon driver into CHAI
3D API and presents result of performance testing benchmark.

• Chapter 5 provides an overview of Haptic API suite - a package of
testing applications along with precompiled and modified APIs

• Chapter 6 concludes the work and describes possible future upgrades
and extensions to the survey

An italic font in the text specifies a fragment of source code such as a
class name, method or a function. A verbatim font is used to emphasize and
preserve format of the source code such as:

hello_world :- write(’Hello World!’).

7

Chapter 2

Haptic device

2.1 Human-Computer Interaction

Most users communicate with computers using a mouse and a keyboard. This
kind of interaction is 30 years old and does not benefit from many senses
humans possess. Working with only the mouse and the keyboard demands
a great cognitive load which limits the use of computers. Human-Computer
interaction (HCI) is a field of study concerned with principles of how humans
communicate with computers and computers communicate with humans in
any possible way.

On one hand, the mouse and the keyboard are cumbersome with respect
to overall control mechanisms. On the other hand, a man can’t hold an
object or even his hand in the air for the whole day. When users work
with the mouse properly they should have their hands relaxed. Beside this,
development of new HCI devices that could compete with the old ones is
very limited by existing long-established interface. Therefore, new devices
are often applied in special-purpose facilities or in accessories for a specific
use (e.g. mobile phones with touch screen, interactive head-up displays in
vehicles and airplanes, Microsoft Kinect, ...).

A haptic device allows humans to send information to the computer by
moving a part of the body (often with a hand using a small sphere shaped
object called grip, a pen shaped object or gloves) and receive information
from the computer by a force feedback generated by the device.

Although the sense of touch is not as acute as hearing, its accuracy
is somewhere in between sight and hearing. Humans need approximately
500 Hz to 1000 Hz frequency of a haptic feedback to achieve smooth force

8

perception, according to [4].
While force feedback gives a sense of force or generally a kinesthetic feel,

tactile sensing is used when one wants to feel pressure, heat or fine textures
(and any other sensation felt by the skin). Technology prototypes using both
kinesthetic and tactile feedback have been released.

2.2 Degrees of freedom and variability of cur-

rent haptic devices

Haptic devices can be generally divided by the dimension of an orientation
ability called degrees of freedom (DOF). That is basically translation (3-
DOF) and translation combined with rotation (6-DOF). A typical example
is a movable grip for 3-DOF devices (e.g. Novint Falcon) and a pen on a
pivot with the ability to rotate and translate both in all three dimensions
(Sensable Phantom Omni). There are also 6/3-DOF devices that combine
6-DOF positioning and 3-DOF force feedback. 7-DOF devices have a scissors
snap-on, a thumb-pad or any other extra grip.

A list of haptic hardware 1:

2-DOF devices
Quanser planar pantograph

3-DOF devices
ForceDimension omega.3, ForceDimension Delta.3, Novint Falcon, Quanser
Mirage model Haptic Wand

5-DOF devices
Immersion Laparoscopic Surgical Workstation, Quanser twin-pantograph
”Haptic Wand”

6/3-DOF devices
Sensable Phantom Omni, ForceDimension Omega.6

6-DOF devices
ForceDimension Delta.6, Sensable Phantom Premium, Sensable Phan-
tom 3.0, Haption Virtuose

1based on http://www.bracina.com/haptichardware.html

9

7-DOF devices
Sensable Phantom with scissors snap-on and effector, Force Dimension
Omega.7

A selection of common comparable properties which can be found in
technical specifications of haptic devices:

Workspace
Specifies a maximal reach of a touch tool (often measured in inches)
and maximal rotation abilities if appropriate.

Position resolution
Resolution of a touch tool position measured in dots per inch (DPI).

Maximal force
Maximal force can be specified in newton unit or as a force capability
in kilograms or pounds.

Stiffness
Stiffness of a haptic device measured in newtons per metre.

2.3 Practical applications of haptic devices

One of the most valuable applications of haptic devices is in medicine. Ex-
tremely accurate position resolution and force feedback is necessary for sur-
gical operations or simulations while using teleoperation of medical tools
(e.g. laparoscopy). A haptic device can be also used as a virtual examina-
tion tool for medical data of a patient such as computed tomography (CT)
scans.

Haptic devices are also valued as assistive technology for visually im-
paired or blind people. Haptic technology enables them to use the sense of
touch to retrieve information such as depth or the contour of an object from
a computer. A precise tactile feedback will propose a dynamic surface for
the Braille system.

There are numerous applications of haptic devices in engineering. A few
inspirational examples can be found in a selection of demos from the lat-
est Eurohaptics 2 conference as of writing the thesis: Haptesha: A Collab-
orative Multi-User Haptic Workspace, TexturePad: Realistic Rendering of

2http://www.eurohaptics2010.org/hod.shtml

10

Haptic Textures, Haptic gas pedal capable of recording proprioceptive feed-
back parameters, New design of a touchpad device with tactile feedback,
Electro-tactile Display with Real-time Feedback.

Other applications can be found in military, painting, CAD systems and
gaming.

2.4 Novint Falcon

The survey will primarily focus on the Novint Falcon device, as it was the
only haptic device available throughout the creation of this thesis.

Novint Falcon is a first low-cost commercial haptic device primarily in-
tended as a game controller. It is a 3-DOF device with a removable grip
which can be replaced with a special purpose grip such as a pistol grip for
games. The workspace of Novint Falcon is 4 inches in all three dimensions,
position resolution starts at 400 DPI and it can produce force sensation of
approx. 8 newtons.

The device has 3 encoders that read position of arms, 4 buttons (some-
times called switches) and LED identification of current device state as
shown in Figure 2.1.

Figure 2.1: Novint Falcon haptic device

Novint Falcon is now officially supported on Microsoft Windows XP SP2
and Vista operating systems only. There have been some issues regarding

11

installation of Novint Falcon drivers on Microsoft Windows 7 64 Bit found
on community website 3.

A Falcon Test utility provides a diagnostic information about all mo-
tors, encoders, buttons, front LED diagnostic and calibration of arms called
homing by extending all three arms as far out as it is possible. A software
development kit called HDAL (Haptic Device Abstraction Layer) is available
to download at Novint website 4.

3http://www.falconarmy.com
4http://home.novint.com/products/sdk.php

12

Chapter 3

Haptic APIs

3.1 Abstraction layers of haptic APIs

There are various methods of implementing haptic device control into an
application ranging from the lowest driver layer to the highest scene graph
layer. The most important decision a software architect has to take into
account is a choice of the particular abstraction layer at which the rest of
the application communicates with haptics.

3.1.1 Driver layer

The lowest layer at which the programmer can communicate with the device
is a driver of the operating system. At this layer the driver receives raw data
through a serial bus (e.g. USB, IEEE 1394) from encoders that has to be
processed with kinematics algorithms to get the data that corresponds to a
three-dimensional vector of the haptic tool position in cartesian coordinates.
Manual initialization, opening and closing communication with the device or
an inverse kinematics algorithm which computes force data in the application
and sends it to the device to compute angles at haptic device joints is also
essential. To preserve a smooth haptic response thread handling has to be
done. For this reason, an extra haptic thread which calculates physics in the
application is necessary.

The driver layer provides the fastest and the most precise response but
demands a great effort to get the device working. Support of any other haptic
device that has no compatible communication protocol means rewriting a
lot of source code.

13

Manufacturers of haptic devices often provide optimized and well doc-
umented drivers in the C or C++ programming language. There are also
open source and cross platform drivers that can provide support in officially
unsupported operating systems such as Linux or Mac OS.

Use of a higher abstraction layer API that uses standardly available
drivers won’t be possible unless the support of an extra driver is added.

A driver layer is often used for very specific real-time applications where
immediate response is vital.

3.1.2 Low-level API

While the driver layer communicates in raw data, a low-level API hides
kinematics algorithm implementation from the programmer and allows de-
velopers to work directly with position, rotation and force vectors in the
application.

Many low-level APIs works as a common interface for different drivers
which is very helpful when supporting a lot of haptic devices. A device
handler is then used for getting information on haptic devices available on
the current machine.

A particular set of functions and capabilities associated with a low-level
API is not strictly defined. There are low-level APIs that provides a lot more
functionality than the haptic device handler.

Haptic rendering

One of the most important algorithmic problem associated with haptics
is computation of interactions between the haptic tool and virtual objects.
Creating a convincing force reaction at the edge of a complex object becomes
a nontrivial task that is dependent on data representation. Such a technique
of haptic interaction processing in the virtual scene is called haptic rendering
(or haptic display). As in graphic rendering, where the image is composed
from a model based on a virtual camera position, the process of haptic
rendering returns a force on the basis of a model with which the haptic
tool interacts. Creating a good haptic rendering algorithm is a struggle to
maintain realistic force feedback without using cumbersome computations
which raise memory and CPU requirements.

A god-object method proposed by Zilles and Salisbury [1] is one of the
most implemented methods of haptic rendering. The god-object itself is a
proxy model of the haptic tool (a virtual haptic interface) within the virtual

14

world that helps with the returning force calculations between servo cycles
of the haptic device. Another well known method is described in Ruspini,
Kolarov and Khatib [2].

Low-level APIs may support one or more haptic rendering methods in
the virtual haptic world defined in the low-level API.

Besides pure haptic rendering, low-level API may provide a variety of
haptic effects such as a spring effect, magnet effect or any other surface
effect.

A low-level API is often a good choice when good haptic performance is
needed while using one’s own graphics rendering method.

3.1.3 Scene graph API

The graphical and haptical data representation of a model may be very
similar or sometimes even identical. Integration of graphics and haptics into
one API is therefore reasonable.

A scene graph haptic API often uses a tree structure of objects in the
virtual world with a specific root node such as a world node. It is possible
to apply graphical and haptical properties to an object and set the specific
property recursively to its children objects.

A high-level API often includes low-level APIs for haptics, graphics,
physics and audio processing. It provides all the features of low-level APIs
and even more by combining them together. Haptic and graphic rendering
is essential in the scene graph API oriented on haptics.

The concept of combining low-level APIs into one often creates many
drawbacks which the high-level scene graph API implementation may or
may not hide from the programmer. Difficulties connected with such a com-
bination of different APIs may result in a thorough problem analysis that
may not even be solved with a feasible effort because the API itself may be
proprietary and authors may not support the API any more.

A scene graph haptic API is the best choice for prototyping an appli-
cation when the speed of development is crucial and performance is not a
priority. Support of a scripting language or standard file format representa-
tion of a scene helps even more with rapid development.

15

3.2 CHAI 3D set of libraries

CHAI 3D [3] is a scene graph API written in the C++ programming lan-
guage with aim to create a modular, open source and cross platform haptic
API with a wide support of different haptic devices. CHAI 3D is licensed
under GNU General Public License (GPL) version 2 1 but offers even a Pro-
fessional Edition License. The main reason to create CHAI 3D was that all
available APIs developed by manufacturers of haptic devices were propri-
etary and supported only the one specific device or a group of devices from
the manufacturer.

The scene graph capabilities of CHAI 3D mainly focus on haptics com-
bined with graphics. It does not include any extra visual or sound effects
but it does propose lightweight and compact functionality. CHAI 3D is def-
initely not the API with tons of functions ready for the implementation of
sophisticated applications. It is rather the API for academic and research
use where the extra functionality can be added.

Though the API manual or tutorials do not yet exist, the source code
is very well documented and is very easy to read and scan through. The
reference guide generated by a Doxygen documentation system 2 could serve
as a quick guide over the source code but it is not a comprehensive source
of learning CHAI 3D. Authors of CHAI 3D recommend to learn by the
examples in packages for different platforms. This method gives the learner
a decent overview of the API but does not allow to fully understand some
fundamental characteristics of the API which makes the learner read part
of the API source code eventually.

What makes CHAI 3D source code easy to read is a coding convention
definition 3 which defines a few aspects of coding that should be obeyed in
order to write code of the API. One of the most visible and helpful aspect
for a learner is separation of classes, class members, function parameters
and local variables by a preceding letter (e.g. cGenericObject for a class,
m parent for a class member and a affectChildren for a function parametr).

The CHAI 3D library is split into several modules and class groups that
provide specific tasks: Devices, Graphics, Math, Widgets, Scenegraph, Hap-
tic Tools, Haptic Effects, Force Rendering, Collision Detection, Timers, Files,
Extras, Viewports, GEL Dynamics Engine and ODE Dynamics Engine.

1http://www.gnu.org/licenses/gpl.html
2http://www.stack.nl/~dimitri/doxygen/
3http://www.chai3d.org/coding.html

16

3.2.1 Devices

CHAI 3D supports devices from Force Dimension, Novint Technologies,
MPB technologies and Sensable technologies. A virtual device for Microsoft
Windows operating system was specifically developed for an experimental
haptic lecture 4. It provides a graphical representation of workspace, the
haptic tool and generated force as a vector as shown in figure 3.1 and allows
the user to move the haptic tool using computer mouse and keyboard.

Figure 3.1: CHAI 3D virtual device

Adding support of a new haptic device is simple thanks to the modularity
and well documented source code. Support of libnifalcon - a Novint Falcon
cross platform driver - was added to CHAI 3D as part of this thesis (more
on that in chapter 4).

Low-level use of API

Though the CHAI 3D library is a scene graph API, use of CHAI 3D as
a low-level communication layer is convenient. CHAI 3D provides support
of many devices and an easy to use device handler cHapticDeviceHandler.

4http://cs277.standford.edu

17

Every device is then treated as a generic haptic device cGenericHapticDe-
vice with basic ability to get a position, set a force, device communication
opening, initialization and closing.

This method had a small drawback in the older version of CHAI 3D where
it was not possible to link the CHAI 3D library without OpenGL libraries
due to very close integration of OpenGL methods which made project code
dirty especially when using Microsoft DirectX for graphics rendering.

3.2.2 Scene graph

A scene graph of CHAI 3D contains standard shapes, meshes, virtual cam-
eras and lights.

Objects

The main unit of all objects in the scene graph is a cGenericObject class
which inherits from a general abstract type cGenericType. The generic object
creates a tree structure of objects using a standard template vector class of
children objects in a m children member. All methods for object modification
or property setting allow propagation to children by setting an optional
function parameter a affectChildren, which is by default set to false. CHAI
3D scene graph has one root node class for every object in the scene called
cWorld. This class is essential for further communication with graphics and
haptics.

The API contains only three standard object shapes (two implicit surface
objects) :

• a sphere (cShapeSphere) defined by a radius

• a torus (cShapeTorus) defined by an inside and an outside radius

• a line (cShapeLine) defined by two points as three-dimensional vectors

Adding such an object into a scene graph means calling a constructor of
the specified object with appropriate properties (e.g. radius of the sphere)
and adding it as child (using an addChild method) into another object that is
already in the scene, or directly to the world root node. Graphic and haptic
rendering is then performed from the root node recursively to children.

Beside standard shapes implemented in CHAI 3D API, it is possible to
load complex meshes of two file formats:

18

• .OBJ - geometry file format from Wavefront Technologies5

• .3DS - 3D Studio file format from AutoDesk6

Both file formats contain a list of vertices with their relative positions,
a list of polygons, material and texture references, texture mapping coordi-
nates and optionally normals (manual calculation of normals is necessary in
3DS file format).

Camera and lights

A virtual camera in the scene initiates the graphic rendering process by call-
ing a renderView method with appropriate function parameters of window
width, window height and image index identifying optional stereo rendering
frame. The virtual camera then renders all objects in the parent world into
which it was added.

The camera is basically a wrapper for the gluLookAt (part of the OpenGL
Utility Library) viewing transformation function with eye position, center
position (a look at position) and an up vector. A cCamera class is written in a
modular way so that creating a custom viewing transformation function that
alters the viewing matrix is a matter of adding a new class to the scene graph
API which alters the OpenGL viewing matrix and calls renderSceneGraph
method of the parent world.

As stated in the reference guide, the camera looks down the negative
x-axis which is the standard convention in general robotics. This coordinate
system convention may be confusing especially while working with complex
meshes edited in applications with a different coordinate system.

The lighting system was also adapted from the OpenGL library and
provides basic OpenGL functionalities wrapped in a cLight class. Parent
world manages a light source list on its own so that the programmer only
sets the properties and adds the light directly to the world or attaches the
light to the camera by adding it as a child of the camera instance.

3.2.3 Haptic tool

The scene graph representation of a haptic device is called a tool. An abstract
class defining all tools in the scene graph is cGenericTool. The only specific

5http://local.wasp.uwa.edu.au/~pbourke/dataformats/obj
6http://www.martinreddy.net/gfx/3d/3DS.spec

19

tool that CHAI 3D provides at this time is a 3-DOF tool identified as a
cGeneric3dofPointer. 6-DOF force rendering algorithms are not supported.

The generic tool is also a generic object which means that the tool has
its position, rotation and all other object properties. The tool itself needs
only a pointer to the haptic device from a device handler. It manages all the
initialization automatically by calling a start method. A stop method does
the opposite.

The default device mesh of the generic 3-DOF pointer displays the tool
as a sphere. The god-object algorithm mentioned in section 3.1.2 is used for
the haptic force rendering for which there are two meshes representing the
tool:

• a device mesh (m deviceMesh) which represents the real current posi-
tion of the haptic device touch tool

• a proxy mesh (m proxyMesh) which represents a model of the haptic
interface in the virtual environment

The force model is also defined as the abstract model (with a generic
class cGenericPointForceAlgo) split into cProxyPointForceAlgo and cPoten-
tialFieldForceAlgo classes. The cProxyPointForceAlgo class implements the
God-object method with collision detection and cPotentialFieldForceAlgo
class process local interaction relating to haptic effects. Interaction event
structures are defined as cInteractionEvent, cInteractionRecorder and cIn-
teractionSettings.

An overall force contains assigned local haptic effects and interaction
forces computed on the base of haptic device properties (e.g. stiffness), a
position relative to an interaction projected point on the interacting object
surface and a best new position of the proxy model in the proxy point force
algorithm. Interaction detection is not always precise especially in complex
meshes and the proxy model gets sometimes stuck and generates excessive
force.

The tool works in a workspace set by a radius. It is possible to change the
radius and position of the workspace and its rotation relative to the scene.
The tool is often attached to the camera so that the workspace corresponds
to the view of the camera.

20

3.2.4 Haptic effects

The CHAI 3D scene graph provides a set of haptic effects that can be as-
signed to objects. These effects are computed using a local interaction com-
puteLocalInteraction method of each implicit surface object. The mesh or any
other complex object without overridden computeLocalInteraction method is
not able to compute haptic effects because there’s no way how to compute
an interaction projected point from a generic object algorithm. A tempo-
rary mesh local interaction computation was implemented in the CHAI 3D
testing application described in a section 5.2.

Haptic effects with the base abstract class cGenericEffect in the API are
as follows:

• Magnetic model effect cEffectMagnet provides a magnetic field effect
near the object

• Stick-slip effect cEffectStickSlip provides an effect of sliding one object
on another with sticking caused by friction (e.g. rubber on a desk)

• Surface effect cEffectSurface provides a basic surface effect of a tool
pushing against the object

• Vibrations effect cEffectVibrations provides an effect of a vibration
with a specific frequency and amplitude

• Viscosity effect cEffectViscosity provides an effect of a tool moving
through a fluid

All effects are very sensitive to a good setting of properties such as a
maximal stiffness of the haptic device. A relatively small change of effect
properties can make a great difference in the effect perception and sometimes
even a different driver may result in a different effect behavior.

3.2.5 Other classes

There are a few other auxiliary classes in the CHAI 3D API that allow the
programmer to spend time on logic of the application rather than on creating
(not only) system specific functionality.

21

Collisions

The API provides standard optimized collision detection algorithms that
can be used in the scene graph. Beside a brute force collision detection
algorithm cCollisionBrute, CHAI 3D offers an Axis-Aligned Bounding Box
(AABB) tree collision detection cCollisionAABB and sphere tree collision
detection cCollisionSpheres.

A collision detector is then created for every object in the scene by calling
the appropriate method (e.g. createAABBCollisionDetector).

Graphics

There are many classes which help managing the graphics part of the scene
graph: class defining a color (cColor), vertex (cVertex), OpenGL texture
(cTexture2D), object material (cMaterial), etc.

Math

The cMaths class provides very helpful inline functions such as absolute
value, linear interpolation or clamping. The cMatrix3D class defines a three-
dimensional matrix and the cVector3D class defines a three-dimensional vec-
tor. There is also a class to represent rotations in quaternion form cQuater-
nion and a cString helper class for easier conversion between numerical and
string values.

Timers

A precise timer is often needed in real-time graphic and haptic rendering
to compute the time of graphics and haptics steps. A cPrecisionClock class
provides a high-resolution timer with start, stop and reset methods. The
timer uses very precise QueryPerformanceCounter and QueryPerformance-
Frequency functions with resolution in the order of microseconds on a Mi-
crosoft Windows platform. The GetTickCount function used on other plat-
forms has a resolution in the order of milliseconds which is sufficient in most
cases.

Basic thread handling is provided in the cThread class so that it is possi-
ble to start a haptic thread without calling system specific functions. Adding
another cross-platform thread handling library (e.g. a Boost library 7) is rec-

7http://www.boost.org/

22

ommended to obtain more sophisticated mutex handling.

Widgets

Widgets offer a way of creating a two-dimensional graphical user interface
on top of the three-dimensional scene. A cBitmap class loads only BMP and
TGA image file formats using a cImageLoader class on all platforms. On
a Microsoft Windows platform CHAI 3D uses OleLoadPicturePath which
is able to load more file formats. Unfortunately the function in the CHAI
3D 2.0.0 version has wrongly implemented working directory location and
doesn’t work properly. A fix can be found in the Haptic API suite (de-
scribed in chapter 5) version of CHAI 3D. Nevertheless, even an OLE func-
tion doesn’t provide a way how to load a PNG image file with alpha-channel
support. Libpng 8 library support in CHAI 3D was also added in the Haptic
API suite.

A cLabel class renders a two-dimensional text with specified properties
on the screen using a cFont class.

3.2.6 ODE module

The CHAI 3D library does not implement its own rigid body dynamics
simulation. There is, however, a module that connects the CHAI 3D scene
graph with the Open Dynamics Engine 9 (ODE) library.

Communication of CHAI 3D and ODE is handled by cODE, cODE-
World and cODEGenericBody classes. The API contains precompiled ODE
libraries for both dynamic and static linking with double precision. Prepro-
cessors definitions need to be set correctly in order to run an application
properly without runtime errors. It is necessary to tell the ODE library to
use double precision by adding a preprocessor symbol dDouble. Such an
information would be very helpful in the API manual or at least as a com-
ment in the source code of examples of the ODE module for programmers
without knowledge of the ODE library.

Every object in the ODE simulation has to be added to a specific ODE
world. Such an object is defined as an ODE generic body with properties of
physical simulation and an image model of the scene graph. The ODE world
is a generic object which behaves as a child in the standard parent world

8http://www.libpng.org/pub/png/libpng.html
9http://www.ode.org/

23

but has a list of bodies instead of a list of children. This behavior affects
all recursive algorithms in the scene graph. For instance, it is therefore not
possible to assign a haptic effect to an object in the ODE simulation. A fix
of this behavior can be found in the Haptic API suite (described in chapter
5).

The ODE module enables creation of a dynamic box, sphere, capsule and
a mesh from an assigned image model. Static planes are also available. A
global gravity can be set as a three-dimensional vector describing a force.
Calling an ODE world updateDynamics method with a step time function
parameter updates the simulation.

Though the implementation of dynamics into the scene graph is simple,
a programmer still has to work with the ODE world as a separate world
and encounters a lot of disadvantages when using recursive scene graph
algorithms.

3.2.7 GEL module

The haptic technology utilizes an implementation of a deformable body sim-
ulation more than any other technology. CHAI 3D provides a module to cre-
ate such deformable objects in the scene graph which uses the GEL dynamics
engine developed at Standford University.

As in the ODE module, the GEL module is implemented as a separate
world (cGELWorld) of deformable objects. The main idea behind the defor-
mation is a skeleton model made of nodes (cGELSkeletonNode) and links
(cGELSkeletonLink) between them. Nodes are represented as spheres with
a given radius and mass connected with elastic links with spring physics
defined by elongation, flexion and torsion properties. Every node has its
physical properties (linear damping, angular damping, gravity field defini-
tion) and provides methods to control force and torque.

The GEL module provides a simple way to add deformable objects to the
scene graph, but integration of the GEL dynamics engine in the lower layer
of the scene graph with automated skeleton modeling would considerably
enhance the high level use of CHAI 3D.

24

3.2.8 BASS module

Another external module of the CHAI 3D API is a BASS module. BASS
10 is a library providing functions to manage audio samples, streams and
recording with a large support of many audio formats. The module itself has
no specific integration to the scene graph and it is up to the programmer to
read the BASS documentation and use BASS functions directly.

3.3 Novint HDAL SDK

Novint Haptic Device Abstraction Layer (HDAL) is a software development
kit specifically developed for the Novint Falcon haptic interface device. The
HDAL SDK provides a low-level interface to haptic device for applications
written in the C/C++ programming language on Microsoft Windows (XP
or newer) operating systems. A noncommercial licence agreement 11 grants
an own personal purpose and noncommercial use of SDK with limitations
of any form of reverse engineering and discovering principles of operation of
the SDK.

The HDAL SDK contains precompiled dynamically and statically link-
able libraries, C include files, examples, utilities, documentation and a ref-
erence guide. The documentation called HDAL Programmer’s Guide famil-
iarizes a programmer with haptics programming, Visual C++ integrated
development environment (IDE) settings of HDAL and the HDAL use in an
application.

The HDAL interface provides basic low-level API functions to get posi-
tion and send forces by using callback functions. There’s no need to manage
an extra thread for a haptic device in the application because the HDAL
runs its own thread hidden from the programmer. A data from the haptic
device can be obtained in two different ways:

• blocking servo loop callback which stops the thread where the function
was called and reads the data at the frequency of 1 KHz

• non-blocking servo loop callback which works with the latest received
data from the haptic device

10http://www.un4seen.com/
11Please read the whole licence agreement in order to use the SDK

25

HDAL also manages the initialization of the device with hdlInitNamed-
Device, hdlStart and hdlStop methods. The device configuration can be spec-
ified in a special INI file HDAL.INI which contains driver DLL settings, po-
sition and offset scaling or logging level. The INI file specification can be
found in the HDAL Programmer’s Guide.

Higher layer utility functions of HDAL provide mapping of the haptic
workspace to the application workspace (hdluGenerateHapticToAppWorkspace-
Transform) and a high precision timer function (hdluGetSystemTime).

The HDAL SDK is mostly used as a system specific low-layer interface
for the Novint Falcon device included in higher level APIs. Because the
source code is not available, its purpose of a device independent library is
at this time limited to only one device. If the programmer wants to run
an application on the Microsoft Windows operating systems and has no
intention to use any other devices, then HDAL is a good choice.

3.4 JTouchToolkit API

The accessibility of haptic devices and the high performance of computers
in last years have caused major changes in haptics programming. Altough
the most used programming language in real-time haptics is still C or C++,
new ways of haptic programming emerge.

JTouchToolkit 12 is an open source haptic API written in the Java pro-
gramming language, licensed under the GNU GPL v2 license and developed
by User-Lab 13. The aim of the project is to create a very easy to use API
in Java environment with support of various haptic devices (currently sup-
ported are SensAble devices and Novint Falcon).

There are many drawbacks in the JTouchToolkit API which may dis-
courage a lot of programmers:

• the development state of the API has stalled two years ago with 2.0
beta version released

• there is no practically usable documentation, nor examples of use

• the Novint Falcon device wrapper can be used only on Microsoft Win-
dows operating systems

12https://jtouchtoolkit.dev.java.net/
13http://www.user-lab.com/

26

The JTouchToolkit API is basically a Java wrapper of Novint HDAL and
OpenHaptics HDAPI/HLAPI. The only available documentation is gener-
ated from source code comments by the JavaDoc tool 14 which makes it
complicated to start working with the API. An interesting feature of JTouch-
Toolkit is a haptic position and motion recorder with the ability to save the
recorded data to an XML file.

A description of the JTouchToolkit API example in Haptic API suite is
in section 5.7.

3.5 libnifalcon library

Thanks to massive distribution of the Novint Falcon device as a new type of
USB game controller, an open source alternative to the Novint Falcon driver
called libnifalcon [5] was created. The libnifalcon library is written in the
C++ programming language and licensed under the BSD license 15.

The driver works on Microsoft Windows, Linux and Mac OS X operating
systems using two different USB access libraries:

• libusb 1.0 16 - an open source cross platform library prefered on Linux
and Mac OS X systems

• ftd2xx 17 - library used by the original Novint Falcon driver prefered
on Windows systems

The driver provides communication, device firmware loading, a kinemat-
ics algorithm and managing of switches on the Falcon device grips. Authors
made a deep research of all mechanical and electronic parts (motors, commu-
nication chips, DSP chips) used in the Novint Falcon and even present photos
of device disassembly. The development of the library is still in progress and
the main focus is now on performance of the communication.

The library substitutes not only the Novint driver and SDK, but also
provides utilities and wrappers for different programming languages for an
even better support of the Novint Falcon device. A FalconCLIBase class
provides a framework for parsing and managing command line arguments of

14http://java.sun.com/j2se/javadoc/
15http://www.opensource.org/licenses/bsd-license.php
16http://www.libusb.org/
17http://www.ftdichip.com/Drivers/D2XX.htm

27

the application which set properties regarding the haptic device such as the
device index or firmware type. There are currently two wrappers that use the
FalconDeviceBridge class to communicate with the libnifalcon driver: a Java
wrapper and a Python wrapper with included examples in lang directory of
the libnifalcon library.

A documentation of libnifalcon is generated by a Doxygen documentation
system but contains also an introduction, design overview and other useful
information which helps a developer. The library contains many examples
and even a template of udev rules file that enables libnifalcon communication
for non-root users in Linux operating system.

There are a few bugs when using libnifalcon especially on Windows.
Firmware loading of a not previously homed Falcon device using the ftd2xx
library needs to be repeated a few times in order to let libnifalon believe
that the firmware is really loaded or the firmware loading verification is
completely omitted. The getDeviceCount method returns -1 instead of 0.
Comments on bugs can be even found in the source code. The CMake18

build system does not generate all proper project files for Microsoft Visual
Studio and manual editing of the project is needed.

Libnifalcon provides a good alternative to the original driver and SDK.
The driver may not be as fast and efficient as the original one but offers cross
platform support. Libnifalcon is mostly integrated as a low-layer interface
for Linux and Mac OS X operating systems in high level APIs such as H3D
API. Integration of the libnifalcon driver to the CHAI 3D is a part of this
thesis described in chapter 4.

3.6 HAPI rendering engine

HAPI is a new complex open source low-level haptic API developed by
SenseGraphics 19 licensed under GNU GPL v2. Closed source license for
commercial use is also available. HAPI is written in the C++ programming
language and works on all major operating systems: Microsoft Windows,
Linux and Mac OS.

HAPI is one of the most active haptic APIs supporting devices from
Sensable, Force Dimension, Novint and Moog FCS Robotics. There are four
haptic rendering algorithms available:

18http://www.cmake.org/
19http://www.sensegraphics.com

28

• God-object algorithm - based on the article from Zilles and Salisbury
[1] described in section 3.1.2.

• Ruspini algorithm - based on the article from Ruspini et al. [2]

• CHAI 3D rendering - the CHAI 3D API rendering algorithm layer

• OpenHaptics rendering - an OpenHaptics API rendering algorithm
layer

HAPI provides not only the basic device handling, but there is also
a number of haptic force effects (HapticForceField, HapticPositionFunc-
tionEffect, HapticShapeConstraint, HapticSpring, HapticTimeFunctionEf-
fect, HapticViscosity), surface effects (FrictionSurface, DepthMapSurface,
HapticTexturesSurface, OpenHapticsSurface), collision detection (axis-aligned
and oriented bounding box trees), primitive shape creation and thread han-
dling.

A very specific functionality is graphics rendering based shape creation.
It allows a programmer to create haptic shapes using standard OpenGL
drawing functions. A FeedbackBufferCollector class collects all triangles that
are rendered via the OpenGL library.

HAPI is very well documented with an accompanying manual, reference
manual generated by Doxygen documentation system and a lot of examples
of all features. The source code of the basic device handling application
written in HAPI using the AnyHapticsDevice class has just about 20 lines.
HAPI can be downloaded as a Windows Installer or as the source code.

HAPI is one of the commercially developed open source API with a very
good support from authors. The manual and examples make HAPI very easy
to use. The HAPI source code and project hierarchy is not as transparent as
in the CHAI 3D API, but there’s almost no reason to read it at all. HAPI
is one of the best choice of commercial and non-commercial low-level APIs.

3.7 H3DAPI scene graph API

H3D API [6] is a high level scene graph API also developed by SenseG-
raphics. H3D API uses HAPI as a low-level layer for haptics, OpenGL for
graphics and the X3D20 XML-based file format to represent the scene. The

20http://www.web3d.org/about/overview/

29

library is written in the C++ programming language and is licensed under
GNU GPL v2. As with the HAPI library, a closed source license is also
available.

3.7.1 X3D

The most interesting feature H3D API provides is scene definition in X3D file
format. The whole scene with a camera set, lights, primitive objects, complex
meshes, textures, etc. is defined as XML nodes. As X3D is originally web-
based technology, a texture or any other object loaded from a file can have
a URL path.

The haptic device is defined through a DeviceInfo node with the haptic
renderer specification, position calibration and the proxy model appearance.
H3D API implements all HAPI haptic rendering functionality to the X3D
specification. For instance, to add a frictional surface effect to the shape in
the scene, a XML node FrictionalSurface is added to the apparance node of
the shape with appropriate properties.

H3D API also supports X3D routes which makes it possible to read data
from one source and route it to a specified destination. That is for instance
routing the position of the mouse from the MouseSensor node to the shape
node position. A PythonScript node allows to route data from X3D to Python
programming language functions.

3.7.2 Python interface

H3D API propose a very unique way of haptic programming using Python
scripts on top of the X3D scene definition. A Python interface to the H3D
API implements X3D creation and write functions, special bindable node
access (haptic device info, viewpoint, etc.) and X3D field types so that it
is possible to create a comprehensive application just using the X3D and
Python when there’s no reason to develop efficient real-time application.

3.7.3 Scene graph and C++

H3D API is not only the Python and X3D. The entire application can be
written in the C++ programming language for better performance. The
C++ code allows to parse X3D strings which makes it easier to create objects
or set materials in C++. This method should be used only in initialization of

30

the scene because real-time X3D parsing in a graphics loop of the application
would lower the performance.

H3D API is a perfect tool to create fast prototypes of applications using
haptics. Python and X3D is available for a very rapid development and C++
for higher performance applications. H3D API has much in common with
HAPI, it contains a good manual [7], reference guide and examples. The API
can be downloaded as a Windows Installer or as a source code package.

3.8 OpenHaptics toolkit

OpenHaptics [8] is a commercial software development toolkit specifically
designed for SensAble devices written in the C++ programming language.
The toolkit is available only for people or organizations that have bought
the device from SensAble with appropriate license. Academics Edition for
eligible educational institutions can be downloaded for no charge.

The OpenHaptics toolkit is divided into these layers:

• QuickHaptics micro API

• Haptic Library API (HLAPI)

• Haptic Device API (HDAPI)

• PHANTOM Device Driver (PDD)

QuickHaptics micro API offers a quick development of haptic applica-
tions using a high level scene graph. A shape with many properties (texture,
draggable option, spinning, translation, ...) can be added to a DisplayObject
class that handles a display window. QuickHaptics also provide deformable
object support and dynamics simulation. The shape can be set deformable
just by calling the dynamic method of the TriMesh class. Gravity of the
shape is turned on or off by calling the setGravity method.

HLAPI is a high-level API with the main aim of easier integration of
haptics into existing graphics application. It provides mapping of haptic
workspace, shape rendering or surface and force effects. A feedback buffer of
OpenGL can be used to capture graphics primitives, as presented in HAPI.
A simple callback system of touch events in the scene is also implemented.

HDAPI is a low-level API that handles supported SensAble devices. As
every low-level API, it manages the initialization of the device, servo loop,

31

position, rotation and force update. There are two types of callbacks siilar
to the HDAL API:

• synchronous call - a blocking call which returns the current state of
the device

• asynchronous call - a non-blocking call which is often used in a haptic
loop to get the latest state of the device

OpenHaptics is a very comprehensive toolkit for SensAble devices. A
complete manual which familiarizes a developer with all layers called Open-
Haptics Toolkit Programmer’s Guide is a very good resource for learning
OpenHaptics.

3.9 Summary

A table of API specification presents a summary of haptic APIs with a grad-
ing from 1 (the best) to 5 (the worst). Development state is an overall state
of the project regarding updates, activity and fixed bugs. Devices support
grade specifies how many devices from different manufacturers does the API
support.

32

API CHAI 3D HDAL JTouchToolkit libnifalcon
Open source Yes No Yes Yes
Cross platform Yes No Partially Yes
License GPL v2/Com. Com./Non-com. GPL v2 BSD
Development state 2 1 4 2
API manual No Yes No No
API reference Yes Yes Yes Yes
Examples Yes Yes No Yes
Devices support 2 4 3 4
Overall grade 2 3 4 2

API HAPI H3D API OpenHaptics
Open source Yes Yes No
Cross platform Yes Yes Yes
License GPL v2/Com. GPL v2/Com. Com./Acad.
Development state 1 1 1
API manual Yes Yes Yes
API reference Yes Yes Yes
Examples Yes Yes Yes
Devices support 1 1 3
Overall grade 1 2 3

33

Chapter 4

Libnifalcon implementation in
CHAI 3D API

The CHAI 3D API supports many different devices. As the thesis is primarily
focused on the Novint Falcon device, one of the practical result of the thesis
is an implementation of libnifalcon support into CHAI 3D.

The main reason for implementing libnifalcon to CHAI 3D is cross-
platform support of the Novint Falcon device in CHAI 3D and a possibility
to make CHAI 3D free of proprietary parts.

4.1 Device support structure in CHAI 3D

The CHAI 3D API is a modular API with layered architecture. A cGener-
icDevice class is an abstract class for device communication. This class is
inherited by cGenericHapticDevice which is an abstract class of haptic device
used by the CHAI 3D haptic tool class cGeneric3dofPointer. A cLibnifal-
conDevice class implements the libnifalcon library support into the CHAI
3D device architecture as shown in figure 4.1.

4.2 Implementation

A preprocessor definition of the USB communication library was created,
because there are two different choices of libraries. When the symbol

#define ENABLE_LIBNIFALCON_FTD2XX_SUPPORT

34

is defined, the FT2XX library is used, otherwise (which is a default behavior)
libusb 1.0 is used.

Figure 4.1: CHAI 3D device use architecture

A constructor of the class decides whether the system is available by
determining a number of working devices supported by libnifalcon. The main
problem in the libnifalcon library (described in section 3.5) is the firmware
loading on Microsoft Windows operating system. There’s a loop which tries
to load a firmware five times and continues even if the firmware does not
load properly. The process of haptic device initialization is printed to the
standard output.

The class is forcing the homing mode of the device in every call that
runs the servo loop. The LED diagnostics of homing provided by the Novint
driver do not work in the libnifalcon driver which may be confusing. Switches
on the grip of the Falcon devices are assigned in the same way as the original
Novint driver does.

4.3 Benchmark

A special purpose haptic benchmark utility was created in CHAI 3D to test
libnifalcon performance. Implementation details of the benchmark utility are

35

given in section 5.5.
The benchmark consists of three tests:

• Test 1 - single haptic loop frequency

• Test 2 - multiple haptic loop frequency

• Test 3 - position resolution

In the first test, there’s only one thread that reads the current position
of the haptic device and measures the frequency of the haptic loop. The
frequency reflects a performance overhead of the communication, kinematics
algorithm and system calls.

The second test starts a thread where all currently available haptic de-
vices are used. This test shows a practical application where more than one
device is used in the haptic loop.

The third test measures attainable position resolution of the device on
the basis of haptic tool movement. A minimal, average and maximal distance
between positions of two successive servo loops is calculated.

4.4 Result

The benchmark was tested on a dual core Intel Atom processor clocked at
1.6 GHz with Hyper-threading support, 2 GBs of RAM running Microsoft
Windows 7 32-bit operating system and Ubuntu Linux 9.10 Karmic Koala.
The first haptic device was a Novint Falcon device, the second device was
a CHAI 3D debug device (cDebugDevice) which is the virtual device with
extra setPosition and getForce methods created for the purpose of CHAI 3D
high level testing application described in section 5.2.

On the Microsoft Windows operating system the original Novint driver
achieved approximately 3546 KHz with the Novint Falcon device and 16
MHz with the debug device in the first test. The second test lowered the
performance of both devices by 10%. A debug build of the benchmark utility
lowered the performance by 70%.

The libnifalcon driver using the FT2DXX library on the same system had
a performance of about 90% of the original driver and the position resolution
test was almost identical.

The benchmark provided interesting results on the Ubuntu Linux oper-
ating system using the libnifalcon with libusb 1.0 library. The first haptic

36

loop test achieved a frequency of exactly 1 KHz, which is the frequency
of the Novint Falcon device. The position resolution test showed that the
Linux implementation of libnifalcon may not be as accurate as the original
Novint driver. However, this test is not exactly precise, because the user may
move the grip of the device at a different speed which causes a difference in
position resolution calculation.

37

Chapter 5

Haptic API suite

Haptic API suite is a collection of testing applications created to show a
basic functionality of haptic APIs presented in this thesis that support the
Novint Falcon device.

5.1 Content of the suite

The Haptic API suite tries to cover most APIs usable with the Novint Falcon
device. Low-level APIs such as HDAL SDK and libnifalcon support just the
Novint Falcon device. High-level APIs support various devices from Sensable,
Force Dimension or HapticMaster.

Figure 5.1 shows Haptic API suite system architecture layers starting
from the Novint Falcon device at the top and ending with the scene graph
high-level APIs at the bottom. White boxes represent APIs, light grey boxes
are classes wrapping the driver or low-level API and dark grey boxes repre-
sent abstract device classes within the API.

Next, Figure 5.2 represents all testing applications in the Haptic API
suite. As in the previous figure, white boxes represent haptic APIs. Testing
applications are in grey boxes connected with the API used.

38

Figure 5.1: Haptic API layer schema

39

Figure 5.2: Content of the Haptic API suite

5.2 CHAI 3D - highlevel application

The aim of the CHAI 3D - highlevel application is to show possibilities of
the CHAI 3D scene graph API in more detail. The main purpose of the
application is to use most of the functionality that CHAI 3D offers to the
developer. To satisfy this requirement, the application provides a graphical
user interface for general scene graph methods and can be described as a 3D
haptic prototyping application. The source code follows some of the code
convention and aspects of the CHAI 3D API.

40

5.2.1 GLUT library

CHAI 3D provides OpenGL graphics rendering but it won’t handle opening
windows, nor process input devices (mouse, keyboard, etc.). The CHAI 3D
high-level application uses one of the simplest libraries called OpenGL Util-
ity Toolkit (GLUT). GLUT manages the cross-platform window creation,
input device processing and graphics loop. GLUT is a C library and all up-
dates (render, input) are managed via C function pointer callbacks that have
to be global or static. The file system.cpp contains all system calls to and
from GLUT such as updateGraphics, updateMouse and even an UpdateHap-
tics function.

5.2.2 Threads

The CHAI 3D high-level application uses a main thread (graphics rendering,
application logic computing) and a special haptic thread. The main reason
for creating an extra thread is the sample rate of the haptic device. Novint
Falcon programmer’s guide states that the application has approximately a
millisecond to calculate the forces to achieve a credible haptic effect. The
time spent on haptic calculations is called a haptic step in the CHAI 3D
high-level application and is shown in the status bar at the top of the screen.

A haptic tool uses and modifies resources that the main thread is work-
ing with. Adding a new mesh into the scene within a haptic thread with-
out locking the main thread can cause miscalculations and the application
might start to behave unstable or even throw a run-time error. The Boost
scoped lock class instance locks the variable m lock for the whole scope of a
code for all threads. If any other thread tries to lock them lock for itself it
has to wait for the other thread to unlock this variable. The simplest spin-
lock algorithm is sufficient enough because there are just two threads in the
application and the operation takes reasonable time to complete.

5.2.3 cScene and cConfig classes

The CHAI 3D high-level application is divided into five main classes. The
most important class cScene defines the whole scene, i.e. the world of ob-
jects, physics world, cameras, movement, haptics. On one hand it is good to
split functionality into several classes, but on the other hand there’s often
a need of communication between them. This very complex communication
dependency makes the source code unmanageable. One solution is to create

41

a singleton class that will create a communication interface. This solution
has its negative impact on the code consistency because it is possible to ac-
cess the scene from everywhere. It is then up to the programmer to use the
singleton interface carefully and only when really needed. Another singleton
is a cConfig class. It provides access to the configuration such as window
width, height or current mouse position.

5.2.4 cHaptic class

A cHaptic class provides methods to initialize haptic devices, update haptic
devices data and haptic tools as well as methods to obtain specific informa-
tion about the haptic device. One of the aspects of the CHAI 3D high-level
application is that it is possible to use more haptic tools at once. For this
reason there’s a standard vector class of tools included in this class.

The cHaptic class also manages a 2D user interface cursors to control a
hud menu at the bottom. Part of the project was also integration of a new
virtual debugging haptic device into CHAI 3D because the original virtual
haptic device works only on Microsoft Windows operating systems. This
device class is called cDebugDevice and as the generic haptic device provides
methods to get position and set force, the cDebugDevice provides setPosition
and getForce methods to control the haptic device. The update method of
the cHaptic class contains code to update the cDebugDevice with a mouse
by casting a generic device to cDebugDevice class.

5.2.5 cHud class

The fourth class is the cHud class that provides the interactive menu in-
terface at the bottom of the screen. Every state of the menu is defined by
a sHud structure that contains the name of the menu, menu items and a
CHAI 3D generic object. Clicking the hud invokes the onClick event and the
processHudAction method is called with the arguments of hud type, action
(specified by the clicked item or empty if no item was clicked), item index
and haptic index which is fundamental to the interface itself because some
actions (e.g. fly-by spectator camera) need to know which haptic device
initiated the action.

42

5.2.6 cCameraSet class

The cCameraSet abstract class defines the interface for camera interaction.
Every camera type has to inherit the cCameraSet class to work properly.
The update method takes only one attribute - stepTime - which defines the
time between the last frame rendered and current time.

There are five types of cameras in the application:

• Default camera - a camera set on the start of the application

• Static camera - a static camera that remembers the last direction

• Observer camera - a camera that observes a haptic tool

• Object camera - a camera that observes a selected object

• Spectator camera - a fly-by spectator camera

5.3 Metuunt project - CHAI 3D - lowlevel

application

The project Metuunt intended to be a basic 3D engine for MMORTS game.
It was a semester project for a programming course.

Project Metuunt was used for a testing application that would implement
haptic support into an existing project that had no plans to include such a
support at a time of development.

Metuunt is divided into several classes providing special functionality,
i.e. loading 3DS model file format (C3ds.h), octree frustum culling [9] (COc-
tree.h), input device processing (CInput.h), high-precision timer support
(CTimer.h), configuration (CConfig.h), logging mechanism (CLog.h), world
object management (CObject.h), graphics management (CGraphics.h) and
the scene containing objects (CScene.h).

The global instance of CSystem class System provides communication
interface. The application uses WINAPI functions to manage window cre-
ation and DirectX 9.0c for rendering the scene. The important file for the
Haptic API suite is CHaptic.h containing CChai class definition. It man-
ages the initialization, receiving haptic position for the spectator camera
and calculation/normalization of global forces.

43

The basic object sphere collision (this can be tested against the church
building) is defined in the CObject class itself. Providing the three-dimensional
vector of a collision tool the CObject::getCollisionForce method returns the
normalized force. All forces are summed up and sent to the device by invok-
ing the CChai::SetForce method. If the size of the force is greater than the
maximum force allowed for the specified haptic device the update algorithm
simply normalizes this force.

5.4 CHAI 3D - minimal application

CHAI 3D - minimal application is an application that shows the very basic
use of the API.

As this project aims to be really minimalistic, it does not used any
separate haptic thread (which CHAI 3D supports too) and it simply runs
an infinite loop which ends on a haptic button press. CHAI 3D provides
classes to work with three-dimensional vectors cVector3d. In order to get
the position of the haptic device it simply calls a method cGenericHap-
ticDevice::getPosition and passes the reference to the position vector as a
function parameter. The last segment of code detects user switches (haptic
button press) and checks whether the position has not changed so that it
doesn’t have to print the same coordinates again.

This example doesn’t show the way how to send forces to devices. This is
simply done by calling the method setForce within the cGenericHapticDevice
instance with appropriate force vector.

5.5 CHAI 3D - haptic benchmark

CHAI 3D - haptic benchmark is an application developed for libnifalcon
library performance testing. The application uses the same functionality of
CHAI 3D as CHAI 3D - minimal application and the Boost library is used
for thread handling.

As described in the section 4.3, there are three tests in the benchmark.
The first test starts an extra thread for all available devices and measures
the frequency of haptic loop for five seconds.

The second test creates a thread for every device. Every thread waits for
a synchronization flag called threadHandler1 and then runs the haptic loop
with frequency measuring.

44

The third test measurers the attainable position resolution for every de-
vice by computing the distance that the haptic tool covered in the workspace
in each iteration of the haptic loop. The user has to move the haptic tool
adequately to get correct results.

5.6 HDAL - minimal application

Project HDAL - minimal is an application that uses the HDAL proprietary
driver and SDK. It does not treat the situation of a missing Novint Falcon
driver in the system and the application may throw an access violation error.
The purpose of this application is to show the way of accessing and sending
data to the haptic device using the HDAL SDK.

After the successful initialization, the access to the device data can be
obtained in two separate callbacks as described in the section 3.3.

5.7 JTouchToolkit - minimal application

JTouchToolkit API does seem to be a dead project but it still provides quite
a good way to develop Java application that use a haptic device.

Java platform may be operating system independent but the support of
the Novint Falcon is strictly Microsoft Windows dependent because it wraps
the Novint HDAL driver. To use a Novint Falcon on the Linux operating
system, please see the libnifalcon library Java wrapper.

It is possible to compile JTouchToolkit - minimal in Microsoft Visual
Studio with a custom tool using javac.exe that has to be set in the PATH
environment variable. Please use a native Java IDE for better debugging and
other tools. JTouchToolkit contains libraries JHDAL.dll, JHDAPI.dll and
JHLAPI.dll that need to be in the working directory to run the application.

JTouchToolkit uses a method of adding haptic listeners very similar to
HDAL callbacks without a need of setting blocking or non-blocking access. A
class that can operate with the device is created by implementing HapticLis-
tener class and overriding appropriate methods. Initialization of the device
is done by a static function FalconDevice.newFalconDevice with a function
parameter specifying the index of the device. The number of devices is re-
turned by a static function FalconDevice.countDevices.

45

5.8 libnifalcon - minimal applications

The libnifalcon library provides a very fast way to test haptic applications.
This part of the API is the framework FalconCLIBase that manages all the
initialization, command line parsing and firmware loading on its own.

To use FalconCLIBase, the programmer just needs to inherit the class
and override methods addOptions and parseOptions. The runLoop method
is the standard haptic loop method for getting a device data and setting
the type of libnifalcon kinematics. A few bugs can be found in the Falcon-
CLIBase, e.g. help program option always prints the name of the application
as falcon test cli instead of a real application name.

The minimal application not using the FalconCLIBase framework is also
available.

5.9 HAPI - minimal application

The HAPI - minimal application is the smallest low-level haptic API appli-
cation (in source code length). The HAPI library contains an AnyHaptics-
Device class that initializes any available haptic device by calling initDevice
and enableDevice methods. The HAPI::HAPIHapticsDevice::DeviceValues
structure is then used to work with the haptic data.

5.10 H3DAPI - highlevel application

The H3DAPI - highlevel application shows the basic use of the X3D and
Python interface of H3D API. The application uses an AnyDevice X3D node
to work with the haptic device and the God-object algorithm to render
haptic shapes. The scene contains one animated sphere with a frictional
surface effect and one mouse proxy sphere. The haptic tool defined as stylus
is also represented as a sphere.

46

Chapter 6

Conclusion

6.1 Summary

The thesis has introduced the haptic technology as human-computer interac-
tion along with possible practical applications and the Novint Falcon device
was presented as the main haptic device used in the survey.

Diversity of Haptic APIs architecture was analyzed and the survey de-
scribed three different abstraction layers of haptics programming. The CHAI
3D library was examined in more detail with a description of the scene graph,
haptic tool, force effects, rigid body dynamics simulation module and de-
formable body simulation module. A technology, licensing, documentation,
development state and a functionality specification of all haptic APIs was
presented and summarized in the section 3.9.

The libnifalcon library was successfully implemented to the CHAI 3D
API with some minor problems and the benchmark application developed
for performance testing provided data to compare the device manufacturer
driver and libnifalcon driver.

Testing applications that demonstrate basic use of APIs together with a
larger application presenting the CHAI 3D library with some added features
were created and included in the Haptic API suite.

6.2 Possible future extensions

The Practical Survey of Haptic APIs was primarily limited by the number
of haptic devices. The only haptic device available at the faculty was the

47

3-DOF Novint Falcon device. A PHANTOM Desktop 6-DOF haptic device
from SensAble will be available during the 2011/2012 academic year which
would allow to analyze more APIs, especially the complex OpenHaptics
toolkit.

The very promising H3D API and HAPI libraries could also be examined
in more detail.

48

Appendix A

Contents of the accompanying
CD

The structure of accompanying CD is as follows:

• /bin - contains compiled binaries of demonstrated programs for Mi-
crosft Windows XP (or newer) operating system along with application
data files

• /doc - contains the bachelor thesis in PDF format and the Haptic API
suite documentation

• /ext - contains external libraries used in the Haptic API suite

• /src - contains source code of the Haptic API suite together with a
Microsoft Visual Studio 2008 solution and project files

• install.exe - is an installer of the Haptic API suite

49

Bibliography

[1] Zilles C. B., Salisbury J. K.: A Constraint-based God-object Method For
Haptic Display, ASME Haptic Interfaces for Virtual Environment and
Teleoperator System, 1994.

[2] Ruspini C. D., Kolarov K., Khatib O.: The Haptic Display of Com-
plex Graphical Environments, In SIGGRAPH 97 conference proceed-
ings, volume 1, pp. 295-301, August 1997.

[3] CHAI 3D library http://www.chai3d.org

[4] Novint Technologies Incorporated Haptic Device Abstraction Layer
(HDAL) Programmer’s Guide, 2008.

[5] libnifalcon library http://libnifalcon.sourceforge.net

[6] H3D & HAPI libraries http://www.h3dapi.org

[7] SenseGraphics AB: H3D API MANUAL, 2009.

[8] Openhaptics toolkit http://www.sensable.com

[9] Foley D. J., van Dam A., Feiner S. K., Hughes J. F.: Computer Graph-
ics: Principles and Practice in C (2nd Edition), Addison-Wesley, Proffe-
sional, 1997.

50

