Haptics – Don’t Lose Touch with Virtual Reality

Petr Kmoch
Computer Graphics Group
MFF UK

http://cgg.ms.mff.cuni.cz/~kmoch/
What is “Haptics”?

- Touch-based computer interface involving force
- Haptic ≠ tactile
 - Force × pressure
- Broad sense: force feedback controllers
 - Steering wheels, Nintendo Rumble Pak, Nintendo Wii, Sony DUALSHOCK, ...
- Narrow sense: force I/O devices
 - PHANTOM, omega, CyberGrasp, Freedom, ...
Presentation

- User’s view
 - Practical notes, overview
 - No claim of completeness

- Outline
 - Introduction to haptics
 - Device overview
 - chai3d
 - Live demo
Presentation

- User’s view
 - Practical notes, overview
 - No claim of completeness

- Outline
 - Introduction to haptics
 - Device overview
 - chai3d
 - Live demo
Introduction to Haptics

- Another scene modality
 - Sight
 - Hearing
 - Touch

- Haptics = force-based
 - Sensing and applying forces (I/O)
 - 3D shape

- Tactile = pressure-based
 - (Fine) texture

Petr Kmoch, Computer Graphics Group, MFF UK
Why Bother?

- Realistic haptic rendering
 - 3D perception
 - Material differentiation
- Non-realistic haptic rendering
 - Helps visualization
 - Potential fields, flow, ...
- Professional training
- Visually impaired users

Petr Kmoch, Computer Graphics Group, MFF UK
Technical Issues

- Rendering frequency
 - Visual: 25-30Hz
 - Haptic: 1kHz

- Device costs
 - Typically n×€10,000

- Device APIs
 - Manufacturer-specific
 - Some multi-device alternatives
Haptic Rendering (what)

- High level
 - Surface properties
 - Friction (static, dynamic)
 - Stiffness
 - Force fields
 - Function of device position

- Low level
 - Forces, torques
Haptic Proxy

- Common force computing mechanism
- Proxy object in scene
 - Device (probe): copies physical position
 - Proxy: blocked by virtual scene
- Collisions tested for proxy
- Force applied towards proxy
 - Typically spring-like
 - Depends on surface properties
Haptic Rendering (how)

- Haptic thread
 - Push approach
 - Custom thread running at 1kHz
 - Reading position
 - Writing forces & torques

- Callbacks
 - Pull approach
 - Haptic thread is in driver (or device)
Presentation

- User’s view
 - Practical notes, overview
 - No claim of completeness
- Outline
 - Introduction to haptics
 - Device overview
 - chai3d
 - Live demo
Device Classification

- Input degrees of freedom
 - 3DOF: position
 - 6DOF: position & rotation
 - 7DOF: 6DOF + extra (grip, scissors, ...)
- Output degrees of freedom
 - 3DOF: forces
 - 6DOF: forces & torques
Technical Parameters

- Workspace dimensions
- Angular range
- Force range
- Sensitivity
- Force compensation
3-DOF Devices

omega.3
Cubic3
PHANTOM Premium
Falcon

Force Dimension
MPB
SensAble
Novint
6/3-DOF Devices

omega.6

PHANTOM Omni

PHANTOM Premium

Virtuose 3D15-25

Force Dimension

SensAble

SensAble

Haption
6-DOF Devices

- delta.6
- Freedom S6
- PHANTOM Premium 6DOF
- Virtuose 6D35-45

Force Dimension
MPB
SensAble
Haption
Special Devices

- omega.7
- Freedom 7S
- CyberGrasp
- Falcon

- Force Dimension
- MPB
- Immersion
- Novint

- Grasping
- Medical
- Glove add-on
- Cheap :-)

Petr Kmoch, Computer Graphics Group, MFF UK
Presentation

- User’s view
 - Practical notes, overview
 - No claim of completeness

- Outline
 - Introduction to haptics
 - Device overview
 - chai3d
 - Live demo
chai3d

- Open-source library (GPL)
- C++, OpenGL
- Windows, beta Linux
- Multi-device
 - PHANTOM, delta/omega, Freedom, Falcon
 - Virtual device
- Scene graph
Feature Overview

- Graphic display
 - Viewport
- Scene graph
 - Mesh, camera, material, light, tool, shader, ...
- Collision detection
 - AABBs, spheres
- Force algorithms
 - Point contact, potential field
- Devices
 - Single-device, virtual device, meta-device
- Utilities
 - Loaders, algebra, text labels, timers, arrows, ...
Setup

- Create scene graph (world)
 - Lights, meshes, potential fields
 - Camera, tool
- Create collision detectors
- Initialize haptic device
 - Setup force algorithms
- Run
Scene Graph

- All nodes derived from `cGenericObject`
 - Transformation matrix
 - Global/local coordinates
 - Collision detector
- Visualization options
 - Bounding box
 - Coordinate frame
 - Scene graph tree
Mesh Node

- `cMesh (sub)class`
 - Colors, textures
 - Material
 - Graphics (A/D/S color, shininess, transparency)
 - Haptics (stiffness, friction)
- Visualization options
 - Normals
 - Wireframe
Potential Field Node

- cGenericPotentialField subclass
 - Force based on probe position
 - No common properties
- Two sample classes provided
 - Sphere
 - Torus
 - Properties set via material
Haptic Tool Node

- `cGenericTool, cGeneric3dofPointer`
 - Workspace size, proxy
 - Device position and velocity
 - Force algorithms
 - Device access (`cGenericDevice`)
 - Stores computed forces
- Visualization options
 - Proxy, device
Force Algorithms

- `cGenericPointForceAlgo` subclasses
- `cProxyPointForceAlgo`
 - Renders meshes
 - Spherical proxy
 - Manages contact state
 - Moving object support
- `cPotentialFieldForceAlgo`
 - Renders potential fields
Other Nodes

- cGenericShader
 - Shader applies to node’s descendants
- cBitmap
 - Uses glDrawPixels
- cCamera
 - Projection, 2D foreground
- cLight
 - OpenGL light properties
Haptic Rendering

- Haptic thread
 - Continuous or timer-based
 - Haptic call sequence:
 - tool->updatePose()
 - tool->computeForces()
 - tool->applyForces()

- Callbacks
 - If device supports them (now just PHANTOM)
Virtual Device

- Software “device”
 - Stand-alone .exe
 - 3DOF
 - Mouse-controlled
- Last resort for meta-device
- Can start automatically
 - In theory

Petr Kmoch, Computer Graphics Group, MFF UK
chai3d Summary

- High-level scene graph
 - Also access to low-level force computing
- Multiple devices
 - Force Dimension, MPB, Novint, SensAble
 - Run-time automatic selection possible
- Virtual device
- Extensible – virtual method mechanism
- Implementation a bit messy

Petr Kmoch, Computer Graphics Group, MFF UK
Alternatives

- Device manufacturers’ SDKs
 - Device dependent, optimized, closed-source
 - Level varies
- H3D
 - Open-source, high-level
- HAPI
 - Open-source, low-level
 - Used in H3D
Haptics Summary

- Another scene modality
 - Touch
- Haptic ≠ tactile
 - Force based
- Expensive devices
 - Falcon an exception
- chai3d, H3D multi-device APIs
- **Rendering frequency 1kHz**
Presentation

- User’s view
 - Practical notes, overview
 - No claim of completeness
- Outline
 - Introduction to haptics
 - Device overview
 - chai3d
 - Live demo