Realtime Rendering of Planetary Atmospheres

Oskar Elek, MFF UK

Talk outline

Introduction

- light, atmosphere, light scattering
- Examples of light scattering
- Calculation of light scattering
- Visualisation
 - precomputation
 - rendering
 - comparation
- Why bother?

Interactive demonstration

Talk outline – part I

Introduction

- light, atmosphere, light scattering
- Examples of light scattering
- Calculation of light scattering
- Visualisation
 - precomputation
 - rendering
 - comparation
- Why bother?

Interactive demonstration

MFF_UK

Light I

- Often simplified to RGB triplets
- Light is electromagnetic radiation that is visible to the human eye."
- Main attributes:
 - \Box Amplitude \rightarrow Intensity
 - \Box Wavelength \rightarrow Colour
 - Polarisation

Visible Light Spectrum

Light II

- Color determined by spectral composition
- Example: blackbody radiation from Sun

Wave-particle duality – Albert Einstein 1900s

- Wave interference, scattering...
- Particle light pressure
- □ Every particle is dual (de Broglie 1929)

Light III

- Radiant flux
 - Can be diverged and attenuated

Polarisation

- Orientation of oscillations
 - Linear, circular or elliptical
- □ Can lead to attenuation of light

MFF_UK

Atmosphere

- Earth's atmosphere Gas molecules
 - N₂, O₂, CO₂...
 - □ Larger (aerosol) particles
 - Water droplets, dust, ice crystals, ash...
- The density (and pressure) drops down exponentially:

$$\rho = \exp(\frac{-h}{H_0})$$

- H₀ scale height
 - □ Gases ~ 8km (5.6km for exp2())
 - \square Aerosols ~ 1.2km (1.7km for exp2())

Light scattering

- Light scattering is process when the light passing through participating medium is forced to deviate from original trajectory."
- Reason of many phenomena, incl. color of atmosphere
- Denser medium ~ higher probability of scattering event
- Angular scattering pattern (distribution) given by phase function

Light scattering classification

Elastic

- Rayleigh scattering
- Mie scattering
- □ Takes place in the atmosphere
- Inelastic (energy loss)
 - Raman scattering
 - Brillouin scattering
- Special
 - Rutherford scattering (α-particles on gold foil)

Rayleigh scattering Pradue ■ J. W. Strut – 3rd Lord Rayleigh, 1871 Light scattering on particles $\rightarrow x \ll 1$ $x = \frac{2\pi r}{\lambda}$ At r~10nm transition to Mie scattering $\blacksquare 1/_{\lambda^4}$ dependency (730/380)⁴ = 13.6 times more blue pendicular than red light scattered Parallel y-symetric phase function Approximation: $F_R(\theta) = \frac{3}{4}(1 + \cos^2(\theta))$

MFF UK

Mie scattering

- German physicist Gustav Mie, 1908
- Light scattering on larger particles (x ~1 and more)
- No general λ dependency
- Phase function strongly anisotropic

Analytical approximation by Cornette-Shanks

MFF_UK

Multiple scattering

- So far only single bounce discussed
- Rayleigh and Mie are elastic → 'infinite' number of bounces
- Main difference:
 - Single scattering random occurrence (scatterer position uncertainity) – described by probability distribution
 - Multiple scattering averaged deterministic behaviour to high degree
- Can turn strongly anisotropic scattering medium into isotropic in terms of global phase function (i.e. clouds – cca 30 bounces)

Talk outline – part II

Introduction

light, atmosphere, light scattering

Examples of light scattering

Calculation of light scattering

Visualisation

- precomputation
- rendering
- comparation

Why bother?

Interactive demonstration

Examples of light scattering I

- Subsurface skin scattering
- Translucent materials (wax, marble...)
 - Smoke, haze
 - Human eyes (combined with absorptive reflectivity)
- Water blue (minor / share)
 - Animal realm (feathers, butterflies, reptiles – sharing colorfulness with interferential – – iridescence)

Examples of light scattering II

Colour of the atmosphere

Rayleigh scattering – chromatic parts
 Mie scattering – achromatiç (λ-independence)

Talk outline – part III

light, atmosphere, light scattering

- Examples of light scattering
- Calculation of light scattering
- Visualisation
 - precomputation
 - rendering
 - comparation

Why bother?

Interactive demonstration

Scattering integral - sketch

$I_V(\lambda) = I_i(\lambda) F_R(\theta) \frac{K}{\lambda^4} \int_{P_a}^{P_b} \rho(h) exp\left(-t(PP_c,\lambda) - t(PP_a,\lambda)\right) ds$

Optical length

Expresses attenuation along given path in participating medium

$$t(S,\lambda) = \frac{4\pi K}{\lambda^4} \int_0^S \rho(s) ds$$

- S path length
- *K* density constant (sea level)
- ρ density scale function ($0 \le \rho \le 1$)
- Without $1/\lambda^4$ for Mie scattering

Scattering integral

 Scattered light coming from certain direction (single scattering only!)

$$I_{V}(\lambda) = I_{i}(\lambda)F_{R}(\theta)\frac{K}{\lambda^{4}}\int_{P_{a}}^{P_{b}}\rho(h)exp\left(-t(PP_{c},\lambda) - t(PP_{a},\lambda)\right)ds$$

- I_V incoming scattered light
- Suitable for procedural calculation of light scattering

Scattering integral - analyse

$$I_{V}(\lambda) = I_{i}(\lambda)F_{R}(\theta)\frac{K}{\lambda^{4}}\int_{P_{a}}^{P_{b}}\rho(h)exp\left(-t(PP_{c},\lambda) - t(PP_{a},\lambda)\right)ds$$

- \blacksquare I_i incident light
- F_R phase function (at scattering angle θ)
- *K* atmosphere density constant

Scattering integral - analyse

$$I_V(\lambda) = I_i(\lambda) F_R(\theta) \frac{K}{\lambda^4} \int_{P_a}^{P_b} \rho(h) exp\left(-t(PP_c,\lambda) - t(PP_a,\lambda)\right) ds$$

- Integrating along view ray S in-scattering phase
 P_a first point on S where ρ(h)>0
- P_b last point on S where $\rho(h) > 0$

Scattering integral - analyse

$$I_{V}(\lambda) = I_{i}(\lambda)F_{R}(\theta)\frac{K}{\lambda^{4}}\int_{P_{a}}^{P_{b}}\rho(h)exp\left(-t(PP_{c},\lambda) - t(PP_{a},\lambda)\right)ds$$

- Attenuation function at sample point P outscattering phase
- PP_c path in direction of light
- PP_a path to observer

Talk outline – part IV

Introduction

- light, atmosphere, light scattering
- Examples of light scattering
- Calculation of light scattering

Visualisation

- precomputation
- rendering
- comparation
- Why bother?

Interactive demonstration

Precomputation

- Compute & store' concept
 - In some data structure (kD texture on graphics HW)
- Critical assumptions:
 - Sensible behaviour of target function (classical sampling problem)
 - □ Sensible dimensionality of TF
 - Sensible' means at most 4-5 DoF
 - Otherwise data will grow too large
- Fetch data during rendering
 Assuming 'fetch' is fast enough

Precomputation of atmospheric light scattering

- We want light intensity for:
 Every observer position ~ P[p_x,p_y,p_z] ... 3 DoF
 Every observer view direction ~ V[v_x,v_y,v_z] ... 3 DoF
 Every daytime (light direction) ~ L[l_x,l_y,l_z] ... 3 DoF
- 9 DoF is too many
- Let's assume:
 - Atmosphere is spherical with exponential density falloff, isotropic otherwise
 - □ Earth surface is spherical
 - □ Light rays from Sun are parallel (20" at most)

Precomputation of atmospheric light scattering – 1 try

Representing

- Observer position as altitude ~ h ... 1 DoF
- \Box Observer view direction as **view-zenith angle** ~ θ ... 1 DoF
- \Box Light direction as **light-zenith angle** ~ δ ... 1 DoF

Precomputation of atmospheric light scattering – 2 try

- Everything stays, but we add **azimuth** ~ ω ... 1 DoF
 - Problem graphics HW supports only 3D textures!
 - Use vertical tiling
 - Problem data are too large!
 - Use nonlinear importance mapping for sampling texture's parameters (priorize areas with larger gradient)
 - One more flaw Mie phase function
 - Is too steep! (forward lobe)
 - Deferred evaluation (in fragment shader)

Multiple scattering

- Single scattering computation complexity is C*n² for every texel (C not neglectable)
 - □ n ... sampling rate
- Multiple scattering C^{k*}(n²+n³)^k per texel!
 - \Box k ... number od orders
 - □ Brute force approach will 'never' finish
- Solution dynamic programming
 - \Box 1) Compute 1. order normally and store it
 - 2) Each k. order compute from stored (k-1). order as if computing single scattering (with a bit more complicated gathering step)
- New complexity $\rightarrow C^*n^2 + (k-1)^*(C^*n^2+C^*n^3)$
 - 'n³' term now very fast (n*n² fetching op-s)
 - Result complexity almost linear in relation to k (!!)

Spectral precomputation

- Tens of spectral values instead RGB triplet
- λ sampling as next DoF
 - □ Computational cost grows up only few %
 - λ only multiplies integrals
- Conversion spectrum→RGB before storing

Rendering I

- CPU-based precomputation
- GPU-based realtime renderer
- Sky and planet represented
 by simple tesselated spheres

- Sky is simple
 - \Box 1) Calculate **h**, θ , δ and ω in the fragment shader
 - □ 2) Fetch the sky colour

Rendering II

- Ground is little bit harder
 - □ 1) Scattering same as sky
 - □ 2) Add direct illumination (after attenuation)
 - □ 3) Add water reflections
 - Precomputed data serve as environment texture

Comparation – 'engines'

Evening sky during sunset

- Real photo (continental sky, Prague)
- Non-realtime system (Maxwell Render)
- Realtime system (my renderer)

MFF_UK

Multiple scattering

Single scattering

Talk outline – part V

Introduction

- light, atmosphere, light scattering
- Examples of light scattering
- Calculation of light scattering

Visualisation

- precomputation
- rendering
- comparation

Why bother?

Interactive demonstration

Who need realtime atmosphere?

- Majority of 3D games
 FPSs, RTSs, RPGs, racers, <u>flight sims</u>, ...
- Professional flight simulators (training purposes)
 - □ Aircraft pilots
 - Spacecraft pilots
- Animated movies
 - □ Much less (maybe interactive ones?)
- Scientific visualisations
 - □ Meteorology, climatology, ...

Talk outline - conclusion

Introduction

- □ light, atmosphere, light scattering
- Examples of light scattering
- Calculation of light scattering
- Visualisation
 - precomputation
 - rendering
 - comparation
- Why bother?

Interactive demonstration

Thank you for your attention!

Questions?

References, further information

- Elek Oskar: Rendering Planetary Atmospheres in Real-Time, Bachelor Thesis, MFF UK, 2008
- Nishita T., Sirai T., Tadamura K., Nakamae E.: Display of The Earth Taking into Account Atmospheric Scattering, Siggraph '93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, 175-182, 1993
- Schafhitzel T., Falk M. and Ertl T.: Real-Time Rendering of Planets with Atmospheres, Journal of WSCG, Vol. 15, 2007
- Bruneton E. and Neyret F.: Precomputed Atmospheric Scattering, 19th Eurographics Symposium on Rendering, EGSR08, Sarajevo, 2008
- Keywords: atmospheric light scattering, Rayleigh scattering, Mie scattering, multiple scattering, spectral rendering
- My homepage: http://www.oskee.wz.cz/stranka/oskee.php