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Abstract

Many binary halftoning algorithms tend to render extreme tones (i.e., very light or very dark
tones) with objectionable dot distributions. To alleviate this artifact, we introduce a halftone
postprocessing algorithm called the Springs algorithm. The objective of Springs is to rearrange
minority pixels in affected regions for a smoother, more attractive rendition. In this paper, we
describe the Springs algorithm, and we show results which demonstrate its effectiveness.

The heart of this algorithm is a simple dot-rearrangement heuristic which results in a more
isotropic dot distribution. The approach is to treat any well-isolated dot as if it were connected
to neighboring dots by springs, and to move it to a location where the energy in the springs is a
minimum. Applied to the whole image, this could degrade halftone appearance. However, Springs
only moves dots in selected regions of the image. Pixels that are not minority pixels are not
moved at all. Moreover, dot rearrangement is disabled on and around detected edges, since it could
otherwise render those edges soft and diffuse.

∗This work was performed while C. B. Atkins was with Purdue University.
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1 Introduction

Digital halftoning is the process of transforming a “continuous-tone” digital image into one which
may be rendered by a device having a relatively limited palette [1]. In the case of binary halftoning,
the intended output device can only produce two colors — usually black and white. This case is
especially important because of its relevance in the field of printing.

One drawback of many common binary halftoning algorithms is that they often render extreme
tones (i.e., very light and very dark tones) with objectionable dot distributions. One such algorithm
is error diffusion [2], which is known to produce a strongly directional “worming” artifact. Another
example is screening using traditional dispersed-dot dither arrays (see [3], for example), which
produce artificially periodic patterns.

What makes these behaviors so objectionable is that they suggest the presence of texture in
regions where there should not be any texture. When it comes to printing binary halftone images,
this is especially problematic in the case of light tones, where the minority pixels — black dots
against the white background [4] — tend to be more visible. This is generally less of a problem
in the dark tones, since the visibility of individual minority pixels — white dots against the black
background — can be significantly reduced because of factors collectively referred to as “dot gain.”

A variety of novel halftoning methods have addressed this problem. Included among them are
methods for modified error diffusion [5], dither array generation [6, 7, 8], two-dimensional pulse-
density modulation [9], and halftoning based on tree coding [10], which specifically address the
problem of how minority pixels are arranged in regions of extreme tone. These techniques work
by controlling the spacing among minority pixels in order to avoid the artifacts described above.
Despite the satisfactory performance of many of these methods, error diffusion (as it was originally
proposed) and traditional dither arrays are still in wide use.

In this paper we introduce a halftone postprocessing technique called the Springs algorithm,
which has been developed to suppress the above-described artifacts. The objective of Springs is to
rearrange minority pixels in affected regions, in order to give a smoother, more attractive rendition.

An important aspect of Springs is that it is separate and apart from whatever halftoning algo-
rithm was used to generate the input halftone image. Moreover, Springs works without any knowl-
edge of the continuous-tone image from which the input halftone was generated. This means that
Springs is a halftone postprocessing algorithm strictly, and it distinguishes Springs from halftoning
algorithms (or halftone optimization algorithms) that effectively perform halftone postprocessing
such as [11], [12], [13], and [14]. However, Springs does share some similarity with the algorithm of
Eshbach and Hauck described in [11], in that they are both based on treating minority pixels as if
they were connected to neighboring minority pixels by imaginary springs.

To our knowledge, there is very little prior published work in the area of halftone postprocessing
for improved rendition of extreme tones. One exception is [15], where we decribe an algorithm which
is very similar to the one described here. Other work in the area of halftone postprocessing relates
to the important but different field of digital document restoration [16, 17].

The remainder of this paper is organized as follows. In the next section, we describe the general
structure of the Springs algorithm. Then, in Sec. 3, we give a detailed description of the dot-
rearrangement procedure which forms the basis of Springs. In Sec. 4, we describe the scheme that
is used to detect edge regions in the halftone, where dot rearrangement is not allowed. Finally, in
Sec. 5, we show some experimental results; and in Sec. 6, we give some conclusions.
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2 The Springs algorithm

The Springs algorithm works by first identifying regions where postprocessing may be warranted,
and then rearranging minority pixels in those regions for a more homogeneous distribution. The
two stages of this process are depicted in Fig. 1.

Note that this involves moving black dots in light regions, and it also involves moving white
dots in dark regions. In this paper, we will use the term “dot” to refer to a minority pixel in a
generic sense. There is little room for confusion here, since in regions of extreme tone, the meaning
of the term minority pixel is unambiguous; and we will see in Sec. 3 that we do not even move
pixels that are not minority pixels.

The movement of a dot amounts to the minimization of a cost functional. This cost functional
represents the energy stored in virtual springs that connect the dot to some neighboring dots,
as depicted in Fig 2. To minimize this functional, we allow the central dot to move, while the
neighboring dots remain fixed. Intuitively this minimization has the effect of relaxing the dot
distribution, which results in a more homogeneous texture. In order to evaluate the functional, we
assume that the “rest length” of each of the springs is equal to the mean of the distances between
the dot (at its starting location) and its neighbors. This means that the form of the functional
actually adapts to the initial dot distribution.

Prior to the dot-rearrangement stage, Springs generates a binary map identifying edge regions,
where dot rearrangment will not be allowed. This is important since subjecting edges to the dot-
rearrangment process could render them soft and diffuse.

3 Dot rearrangement

The dot-rearrangement stage of the Springs algorithm is iterative. Each iteration consists of one
raster-ordered pass through the lattice of pixel locations in the image. In the turn of each pixel
location, we consider the pixel there as a candidate for being moved; and we move it, provided that
certain conditions are met. These conditions are listed in the following paragraph. The form of
the cost functional depends upon the position of the dot relative to the positions of N neighboring
dots. An important aspect of the algorithm is the procedure by which we choose those neighbors.

In order for a pixel to be moved, it must satisfy three criteria. First, it must be spatially
separated from any edges detected in the halftone. These regions are identified by a binary edge
map. (We will describe how the edge map is generated in the next section.) Second, the pixel
must not be adjacent to any other pixel of the same color. This is important for the preservation
of delicate but continuous structures like thin lines and serifs in text. Finally, the mean of the
distances between the pixel and its N neighboring pixels of the same color must be greater than
some threshold value. For this threshold, we use a value of 3 pixel units. This is a requirement
since the rearrangement process does not improve distributions that are too densely packed. Note
that these last two rules effectively ensure that we will not move pixels that are not minority pixels.

3.1 Cost functional minimization

The dot movement is implemented as a sequence of short traversals which terminates at a local
minimum of the cost functional. In the (k+ 1)–th traversal, the dot is moved from its location n(k)

to the adjacent pixel location n(k+1) which decreases the cost the most. Any location which has
no adjacent locations that would decrease the cost is a local minimum. The only restriction to this
process is that the dot may not be moved into a location having another dot as a neighbor. We
describe our motivation for this restriction below.
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To evaluate the cost functional, it is only necessary to add up the energy stored in imaginary
springs which connect the dot to its neighbors. If the dot is at location n, then the total energy
e(n) is

e(n) =
N∑
i=1

ei(n) , (1)

where ei(n) is the energy in the spring connected to the i–th neighboring dot. This is computed
by squaring the magnitude of its displacement. Specifically,

ei(n) = |di(n)− r|2 , (2)

where di(n) is the distance between n and the location ni of the i–th dot,

di(n) = ‖n− ni‖ , (3)

and r is the rest length of the spring.
We assume that the rest length r is the same for each of the springs. It is computed as the

mean of the distances between the initial dot location and the neighboring dots; specifically, r is
computed as

r =
1

N

N∑
i=1

‖n(0) − ni‖ , (4)

where n(0) is the initial dot location.
Figure 3 shows some example dot-movement scenarios extracted from the processing of actual

halftone images. The contours represent the level sets of the different cost functionals. Note how
the form of the cost functional depends upon the locations of the neigboring dots, which are inside
circles. We have viewed several example dot-movement scenarios. For the most part, the cost
functionals are approximately convex, with minor non-convexities occuring around the locations
of the neighboring dots, as shown in Figs. 3 (a) and (b). But generally, the cost functionals can
have considerably more irregular shapes. Moreover, they can have multiple local minima, as shown
in Fig. 3 (c). In any case, since the minimization is greedy, the dot being moved always ends up
at the minimum of the “watershed” that contains its initial location. Of course, if the dot being
moved has its initial location at a local minimum, then it is not moved at all, as shown in Fig. 3
(d).

3.2 Finding neighboring dots

It is critical to choose the N neighboring dots so that the resulting dot distribution is homogeneous.
For this, we choose one neighboring dot from each of N separate sectors subtending equal angles,
as illustrated in Fig. 4. This has the effect of forcing dots to mingle. Otherwise, isolated groups of
at least N + 1 dots could permanently congregate in self-stable “cliques.” (We actually observed
this in early experiments, when we were using a different neighbor-selection procedure.) To further
encourage isotropic dot distributions, we orient the boundaries of the sectors randomly for each
dot. This too is illustrated in Fig. 4. We tried several other methods for choosing the neighboring
dots; but the procedure described here gives the best results.

Note that since we find the neighboring dots in separate sectors, there may be other neighboring
dots which are close to the dot being moved, but which are not included in the cost functional.
Practically, the only potentially bad consequence of this would be that the dot could end up adjacent
to another dot. This would actually be a serious problem, since an adjacent pair of minority pixels
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in a region of extreme tone is surprisingly visible. To prevent this, we enforce the rule that the dot
is not allowed to move into any location that has another dot as a neighbor.

Finally, an important parameter is the number N of neighboring dots which are chosen. We
have used a value of N = 4 to obtain our most homogeneous, isotropic dot distributions.

We found that two iterations of the dot rearrangement is sufficient for good results. More
iterations will increase the smoothness and homogeneity of the dot distribution. However, this may
not be worth the extra computation.

4 Generating the edge map

Before the dot-rearrangement stage, we generate an edge map E that assigns the value 1 to pixel
locations close to edges, and the value 0 to all other pixel locations. It is used to disable postpro-
cessing around edges, which can be rendered diffuse and soft by the dot rearrangement process.
Other approaches to finding edges in binary images have been proposed [18]. However, the ap-
proach that we describe here is specifically geared toward finding edges in regions of extreme tone.
An overview of our edge map generation process is illustrated in Fig. 5.

We obtain E as the logical “or” of two separate edge maps: one identifying edges in light
regions, and the other identifying edges in dark regions. Formally, for pixel location n,

E(n) =

{
1 if El(n) = 1 or Ed(n) = 1
0 else

, (5)

where El and Ed are edge maps for the light and dark regions, respectively.
The edge maps El and Ed are obtained from lower-resolution edge maps el and ed using block

replication. For this reason, the high-resolution edge map E often has a blocky appearance.
To generate el and ed, we use a lower-resolution version of the input halftone called the decimated

image array. By convention, we define each element in this array to be the number of black dots in
an (L×L)–pixel block of the halftone image, where L is the subsampling factor (see Fig. 6). This
means that the decimated image array takes values in {0, . . . , L2 − 1}.

To construct el, we assign a 1 to any location in the decimated image array which is part of a
2× 2 block where either a horizontal or vertical edge was detected, and a 0 to all other locations.
To detect edges in a block, we apply edge operators to the block, each of which yields a scalar
output as illustrated in Fig. 7. The magnitudes of the scalars are compared to a locally adaptive
threshold τ ; and if one of them is greater than the threshold, then we say that an edge is present.
The threshold τ is computed as

τ(σ) = K1σ +K2 , (6)

where σ is the sum of the values in the 2 × 2 block, and K1 and K2 are nonnegative constants.
For the block outlined in bold in Fig. 7, for example, the threshold τ would take the value of
K1(3 + 4 + 0 + 0) +K2, or K1 · 7 +K2.

To construct ed, the procedure is essentially the same. The only difference is that instead of
using the decimated image array, we use the inverted decimated image array, which is computed as

Dinv = L2 − 1−D , (7)

where D and Dinv denote the decimated image array and the inverted decimated image array,
respectively.

Note from (6) how the edge-detection threshold τ depends linearly on σ. In the case of generating
el, for example, the result of this is that the edge detection process is most sensitive to edges in the
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lightest regions; and it gets less sensitive as the tone decreases in lightness toward the midtones. (An
analogous situation exists for the case of generating ed.) The adaptive threshold always performs
at least as well as a fixed threshold would, since that is simply the same as constraining K1 to equal
0. In a majority of our experiments, the best result achievable by allowing both K1 and K2 to vary
is about the same as the best result achievable by fixing K1 to be 0. However, in some cases, our
adaptive-thresholding approach can perform appreciably better.

We found that the best way to obtain values for K1 and K2 is to experiment with ranges of
values for these variables, and then to pick the pair that yields the best result. Certainly, it would
have been preferable to find a fixed pair (K1,K2) that is suitable for all images. But short of this,
we do recommend choosing values for K1 from [0.0, 0.6], and for K2 from [2.0, 8.0].

An important parameter in the edge detection process is the block size L for the decimated
image array. If L is too large, then the resulting edge map is too coarse. However, if L is small,
then the dynamic range of the decimated image array will also be small. This can degrade the
edge detection by limiting the range of values that the edge operators can possibly yield. After
experimenting with a wide range of images, we found that a value of L = 8 yields an edge map
that identifies edges adequately without being too coarse.

5 Results

We tested the Springs algorithm by applying it to images acquired from various sources and
halftoned using both error diffusion and screening. In this section, we first show the results of
applying Springs to three different images. Then we demonstrate some shortcomings of the Springs
algorithm. All images in this paper are reproduced at 100 dots per inch (dpi).

Figures 8, 9, and 10 show results generated using three different images. The image for Fig.
8 was scanned from a magazine and halftoned by error diffusion; the image for Fig. 9 was taken
from a photo CD library and halftoned by error diffusion; and the image for Fig. 10 was created in
Photoshop and screened using a 128 × 128 dispersed-dot dither array. Here, by “error diffusion,”
we refer to the instantiation introduced in [2]; and to design the dither array for screening, we
used the algorithm described in [6]. The Springs algorithm could equally well have been applied to
halftones generated by other versions of error diffusion (see, for example, [19], [5], [20], or [4]), or
by screening using dither arrays generated from other methods (see, for example, [21], [22], [23], or
[8]).

In each figure, image (a) shows the input halftone, and image (b) shows the output of the Springs
algorithm obtained using the parameters shown in Table 1. Note that in the light regions and in
the dark regions, the minority pixels have been redistributed for a smoother, more homogeneous
appearance. Image (c) in each figure shows the edge map, with black representing the regions
where dot rearrangement was not allowed due to the detection of edge structures. To see why this
is important, refer to image (d), which shows the result of rearranging dots while ignoring the edge
segmentation. It is clear that if the edge segmentation is not used, then major edges in highlight
and shadow regions — which are of critical importance when it comes to image quality — can be
rendered soft and diffuse.

Since the basic action of Springs is to rearrange selected dots, two types of problems can occur:
dots can be moved when they should not have been moved; or they can remain fixed when they
should have been moved. These two scenarios are demonstrated in Fig. 11. To generate this
figure, we first created a continuous-tone input image in Photoshop with the deliberate intent of
“breaking” the Springs algorithm. The results of applying the Springs algorithm for this image
appear for error diffusion on the left, and for dispersed-dot screening on the right. (Again, for error
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diffusion, we used [2]; and for the dither array generation, we used [6].) For the edge segmentations,
we used a value of L = 8 for the block size; K1 = 0.0, K2 = 6 for the error diffusion result, and
K1 = 0.2, K2 = 2 for the screening result. (These were the best sets of parameters that we could
find for these images.) Note that for the halftone generated by error diffusion, some “worming”
artifacts in the background were detected as edges and actually protected from the postprocessing.
In both results, the edge between the light background and the darker region in the upper, left-hand
corner was not detected completely. Wherever that edge was not detected, the dots of the darker
region appear to have “leaked” into the background as a result of the pixel rearrangement.

6 Conclusions

In this paper, we introduced Springs, an algorithm for improving halftone appearance by rear-
ranging minority pixels in highlight and shadow regions. Springs moves a dot by first defining a
cost functional based on the locations of neighboring dots, and then moving the dot to a local
minimizer of the cost functional. This has the effect of relaxing the dot distribution. Since the
dot-movement procedure has the effect of softening edges, it is only allowed in regions where edges
are not detected. We demonstrated the effectiveness of the Springs algorithm on halftone images
generated using both error diffusion and screening.
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Figure L K1 K2

8 8 0.0 8
9 8 0.2 6
10 8 0.0 8

Table 1: Edge segmentation parameters used for Figs. 8–10.

Halftone
image

Postprocessed
halftone image

Rearrange minority pixels
in selected regions

Generate edge map

Figure 1: Structure of the Springs algorithm.

Figure 2: Central dot connected to neighboring dots by springs. (Neighboring dots are inside
circles.)
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(c) Only three neighbors were found. (d) Dot was not moved.

Figure 3: Example dot-movement scenarios. Curves represent level sets of the cost functional,
which is defined by the relative positions of neighboring dots. (Neighboring dots are inside circles.)
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Figure 4: One neighboring dot is found in each sector. Boundaries of sectors are oriented randomly.

Detect edges
in light regions

Halftone image

Invert
decimated image array

Generate
decimated image array

Detect edges
in dark regions

D

D inv

Block replicate
to resolution of halftone 

Block replicate
to resolution of halftone 

Edge map E

Ed

ed

El

el

Figure 5: Edge map generation process.
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Halftone
image

Decimated 
image array

Figure 6: Construction of the decimated image array with a subsampling factor of L = 2.
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Horizontal
edge opterator

Vertical
edge opterator

Figure 7: Edge-detection operators.
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(a) Input image scanned from a magazine ad-
vertisement, then halftoned using error diffu-
sion.

(b) Image (a) after postprocessing by the
Springs algorithm.

(c) Segmentation generated by Springs while
processing image (a).

(d) Image (a) after postprocessing, ignoring
the segmentation.

Figure 8: Postprocessing results for a scanned image halftoned using error diffusion.
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(a) Input image acquired from a photo CD
library, then halftoned using error diffusion.

(b) Image (a) after postprocessing by the
Springs algorithm.

(c) Segmentation generated by Springs while
processing image (a).

(d) Image (a) after postprocessing, ignoring
the segmentation.

Figure 9: Postprocessing results for an image halftoned using error diffusion.
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(a) Input image generated using Photoshop,
then halftoned by dispersed-dot screening.

(b) Image (a) after postprocessing by the
Springs algorithm.

(c) Segmentation generated by Springs while
processing image (a).

(d) Image (a) after postprocessing, ignoring
the segmentation.

Figure 10: Postprocessing results for a synthetic image halftoned by dispersed-dot screening.
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Error Diffusion. Dispersed-dot screening.

Input halftone images.

Images after postprocessing by the Springs algorithm.

Segmentations generated during the postprocessing.

Figure 11: Demonstration of some shortcomings of the Springs algorithm. The input images were
generated by first using Photoshop to create the continuous-tone original, then halftoning by error
diffusion (left column) and dispersed-dot screening (right column). (This image was generated with
the specific objective of breaking the Springs algorithm.)
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