Motion – Capturing and Retargeting

Jaroslav Semančík Jaroslav.Semancik@mff.cuni.cz KSVI MFF UK 20. 5. 2003

- Intro to motion
- Motion capture
- Motion retargeting
- References

I. Motion

- What is motion?
- expressiveness, style, complexity
- abstraction, representation, higher level

How to Obtain Motion Data?

- keyframing
- procedural and simulation (kinematics, dynamics)
- capturing of a real motion

+ interpolation, blending

II. Motion Capture

- Def: Recording of motion in a form suitable for analysis, playback, editing and re-use.
- using special hardware

History of MC

- since 19th cent., E. Muybridge, E-L. Marey
- multiple photographs over a short period of time
- rotoscoping 1915
- extensive research and usage 1980+

MC Technologies

- electromechanical suits
- electromagnetic
- optical
- (computer vision based)
- hand and face capture

Electromechanical suits

- potentiometers attached to joints
- optical fibers transmitted light measurement

Electromagnetic MC

- external electromagnetic field transmitter
- electromagnetic sensors on the body

Wireless Cybersuit Image Courtesy of Ascension Technology Corp.

Optical MC

- reflective markers
- multiple cameras
- high frequency
 (100–200Hz)

MC Technologies – pros/cons

e-mechanical

+ no occlusion, portable suits, multiple performers, price
– constraining armature, fixed sensor positions

e-magnetic

+ no occlusion, add. orientation of sensors

- constraining cables, smaller volume, noise

optical

- + large volume, flexible marker positions, markers are not constraining, accuracy
- extensive postprocessing

MC Pipeline

Processing Stage

Motion Editing and Re-use

- Why to alter the captured motion?
- Abstraction, simple rigid-segment model \rightarrow articulated figure (skeleton)
- advantages/disadvantages of AF rep.

Conversion to skeletal data

- skeleton (AF)
 construction
- automatic manual
 human assisted
- direct geometric
- optimization

Applications of MC

- military, medicine, sport
- entertainment: video games, film industry, television

MC Tips

- performance only as good as the performer talent
- solving problems as early as possible
 - Markers close to bone, redundant, 3 per segment, asymmetry
- multiple shots of the performance
- have realistic expectations
- creative tricks

III. Retargeting of Motion

- instance of motion re-use
- adapting an animated motion from one character to another
- What's the problem?
- preserving the essence of motion
- computer puppetry

What is the problem?

- Preserve angles or end-effector positions?
- foot-floor probs. (flying, penetrating, skating)

Task Definition

- identical structure, different bone lengths
- preserve important aspects, alter the less important ones
- constraints

Constraints

- Sources of constraints
 - joint limits, interaction with environment, collisions, physical laws
- types of constraints
 - parameter in range, point in location, point in region, same place at two different times
- time range of a constraint

Principle of Motion Retargeting

- identify constraints in original motion
- adapt the motion to target character
- re-establish violated constraints (by optimization)

Implementation of MR

- constrained optimization
 - motion m(t)
 - set of constraints f(p)=0
 - objective function g(p)
- find a motion m(t) satisfying f(m(t))=0 and minimizing g(m(t))
- numerical solving (sequential quadratic programming, least squares method)

Retargeting Results

Computer Puppetry

- realtime motion retargeting, for television broadcasts
- heuristic what is important joint angles or end-effector positions
- Importance-based approach
- avoid optimization and other time-consuming methods
- realtime inverse kinematics

Computer Puppetry – Apps.

Closing Notes

- retargeting to a different structure
- general problems
- research areas

Images were reproduced from listed references and WWW.

IV. References

- GLEICHER, M. Animation from Observation: Motion Capture and Motion Editing Computer Graphics 1999.
- Motion Capture: Pipeline, Applications, and Use. SIGGRAPH'02 Course #28.
- Making Motion Capture Useful. SIGGRAPH'01 Course #51.
- GLEICHER, M. Retargetting Motion to New Characters. Proceedings of SIGGRAPH'98. 1998.
- SHIN, H. J. LEE, J. GLEICHER, M. SHIN, S. Y. Computer Puppetry: An Importance-Based Approach. ACM Transactions on Graphics. 2001.
- MONZANI, J. S. BAERLOCHER, P. BOULIC, R. THALMANN, D. Using an Intermediate Skeleton and Inverse Kinematics for Motion Retargeting. Computer Graphics Forum. 2000.