

Effects of Global Illumination Approximations on Material Appearance

Jaroslav Křivánek

James Ferwerda Kavita Bala

Cornell University & Charles University, Prague

Rochester Institute of Technology

Cornell University

Ę

Global illumination rendering

• Required for accurate appearance, but <u>slow</u>

Global illumination rendering

• Fast GI algorithms are inaccurate

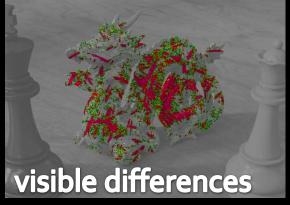
Overview

- VPL rendering (Instant Radiosity [Keller 1997])
 - Fast & popular
 - Image artifacts & energy losses

- Impact of VPL rendering on visual fidelity
 - Systematic perceptual study

Related work

- Perceptually-based rendering
 - Visible Difference Predictor [Mitchell 87, Bolin and Meyer 95/98, Myszkowski 02, ...]
 - Illumination components
 [Stokes et al. 04; Debattista et al 05]
 - Higher-level processing [Yee et al. 01, O'Sullivan et al. 04]
 - Material appearance

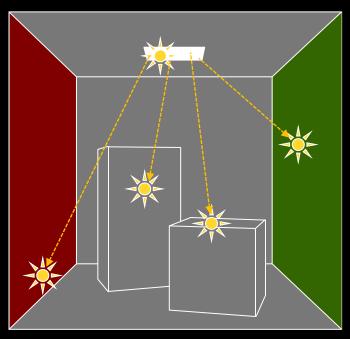

[Pellacini et al. 00; Westlund and Meyer 01; Fleming et al. 03; Khan et al. 06; Vangorp et al. 07/08]

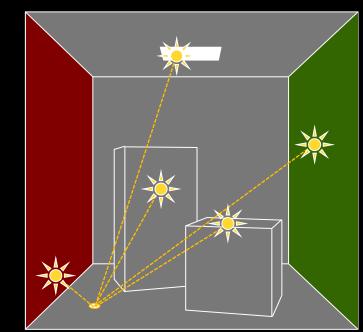
– <u>Visual Equivalence</u> [Ramanarayanan et al. 2007] ...

Related work – Visual equivalence

- Visually equivalent =
 - Same scene appearance
 - Visibly different

Foundation of our work

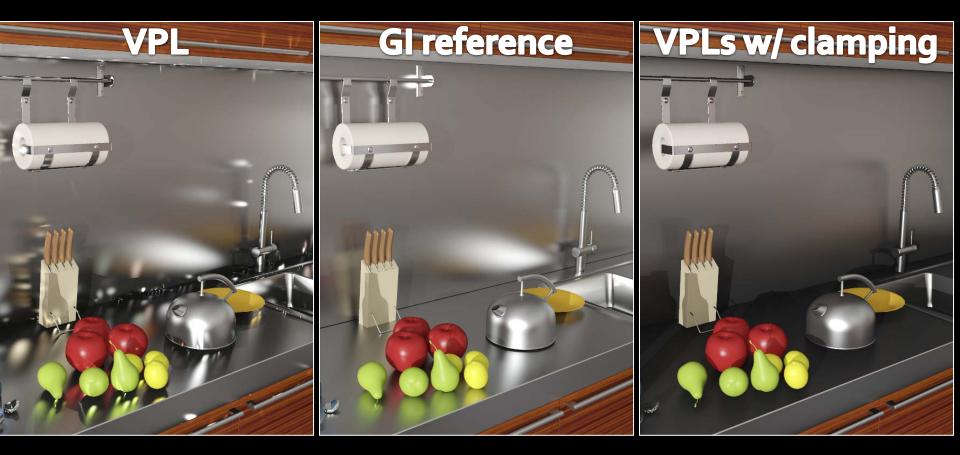

Apply visual equivalence to VPL rendering


Related work – VPL rendering

- Based on Instant Radiosity [Keller 1997]
- Approximate indirect illumination by Virtual Point Lights (VPLs)

1. Generate VPLs

2. Render with VPLs


Related work – VPL rendering

- Interactive GI (≈ 1,000 VPLs) [Wald et al. 02; Segovia et al. 07; Laine et al. 07; Ritschel et al. 08; Dong et al. 09; Yu et al. 09; ...]
- Preview-quality (≈ 100,000 VPLs) [Hašan et al. 07/09]

3. High-quality (> 1,000,000 VPLs) [Walter et al. 05/06]

Ē

VPL rendering is fast, but...

material change

VPLs for high-fidelity rendering

• **Q:** When do VPL methods produce high-fidelity renderings?

A: Systematic perceptual study

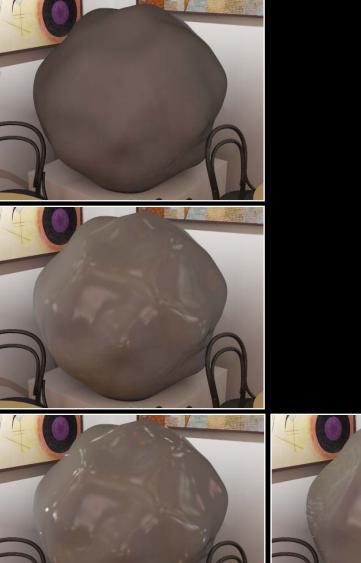
 trade-offs : VPL parameters vs. visual fidelity

visible

VPL rendering parameters

- VPL count
- clamping level

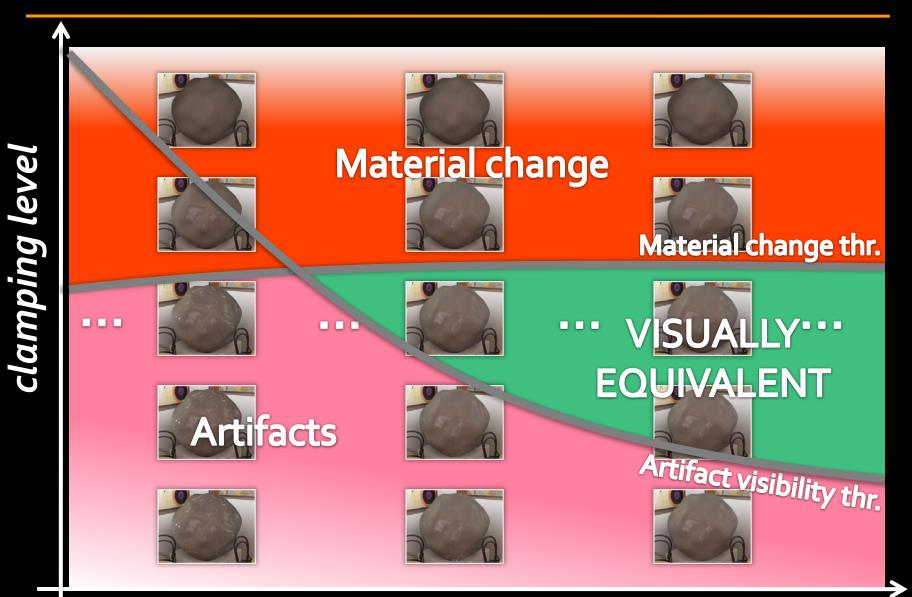
visible artifacts


VPL count

slow rendering

VPL rendering parameters

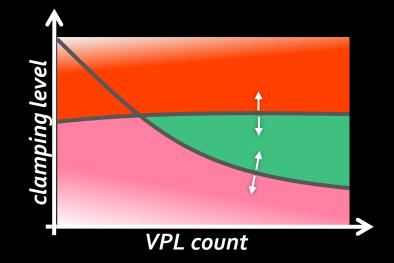
- VPL count
- clamping level



visible artifacts

VPL count

slow rendering


Space of rendering parameters

VPL count

Psychophysical experiments

- How are the thresholds affected by
 - shape complexity?
 - material?
 - illumination?

Outline

- Experiment design
- Results & validation
- Applications

Test objects – Shape complexity

• Same as [Ramanarayanan et al. o7]

- Go ... sphere
- G1-G3 ... bumpy spherical objects

MetalMetalDielectricDielectricDielectricSmoothRoughBlackBlackGraySmoothSmoothRoughSmooth

Ward-Dür BRDF: $\rho_s \alpha \rho_d$

Ward-Dür BRDF: ρ_s

 $\alpha \rho_d$

specular reflectivity

 ρ_d

C

Ward-Dür BRDF: ρ_s

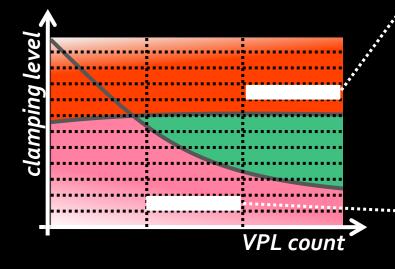
surface roughness

 ρ_d

Ward-Dür BRDF: $\rho_s \alpha$

diffuse reflectivity

Scene


- Art gallery café
- Studied object on a pedestal

Stimulus images

- Different VPL rendering parameters
 - 3 VPL counts11 clamping levels

Stimulus images –VPL count

5,000,000 (5M)

High-quality rendering

100,000 (100k)

Preview-quality rendering

1,000 (1k)

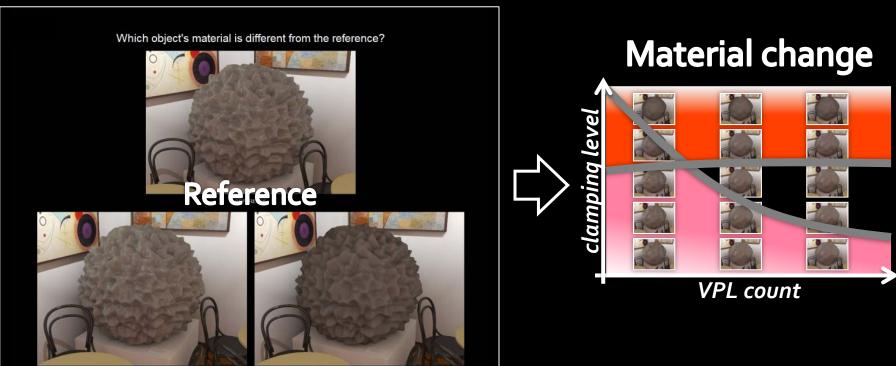
Interactive rendering

Stimulus images – Clamping level

11 levels from none to severe (Co – C10)

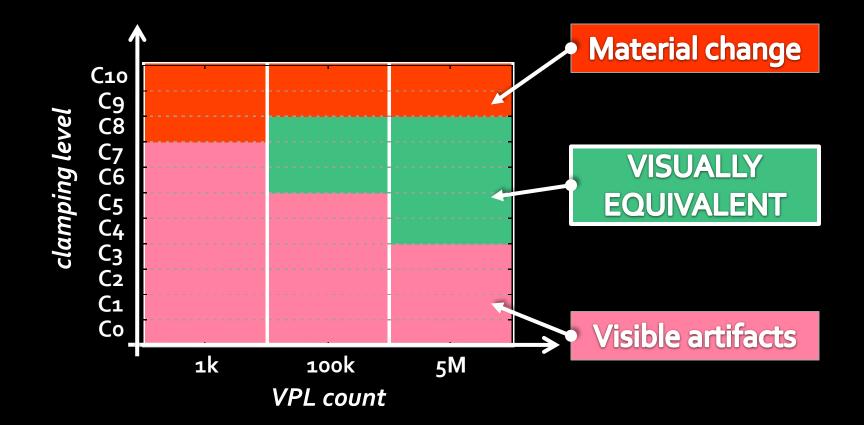
Ę

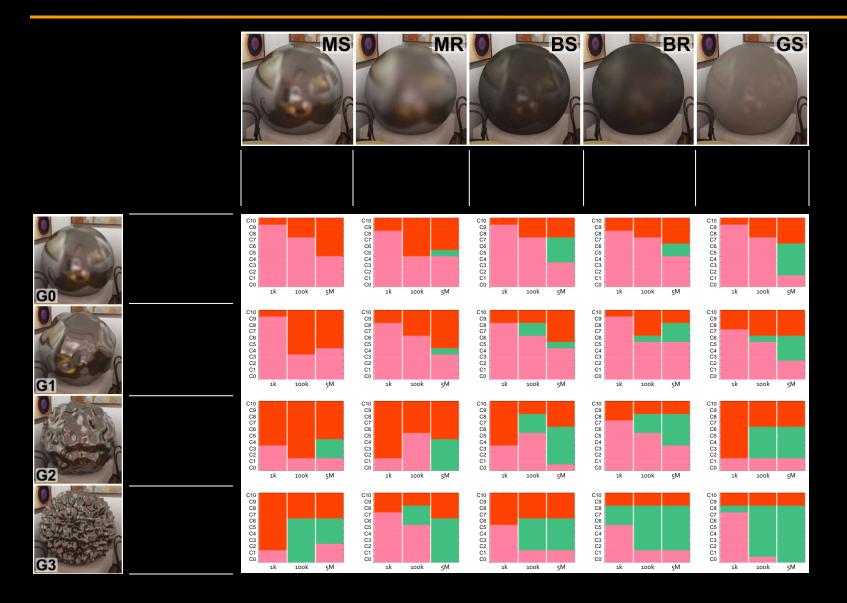
Experiment 1: Artifact visibility

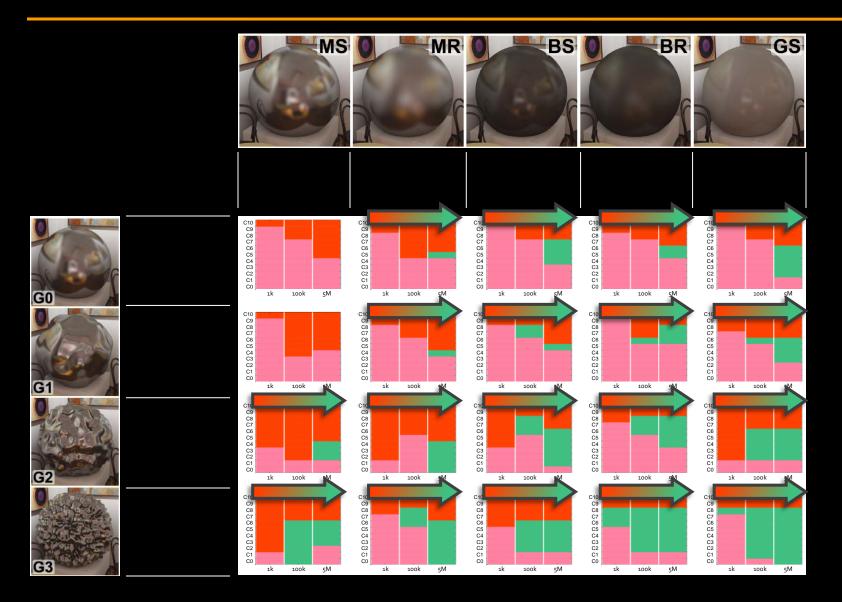

Select the image that has the artifacts.

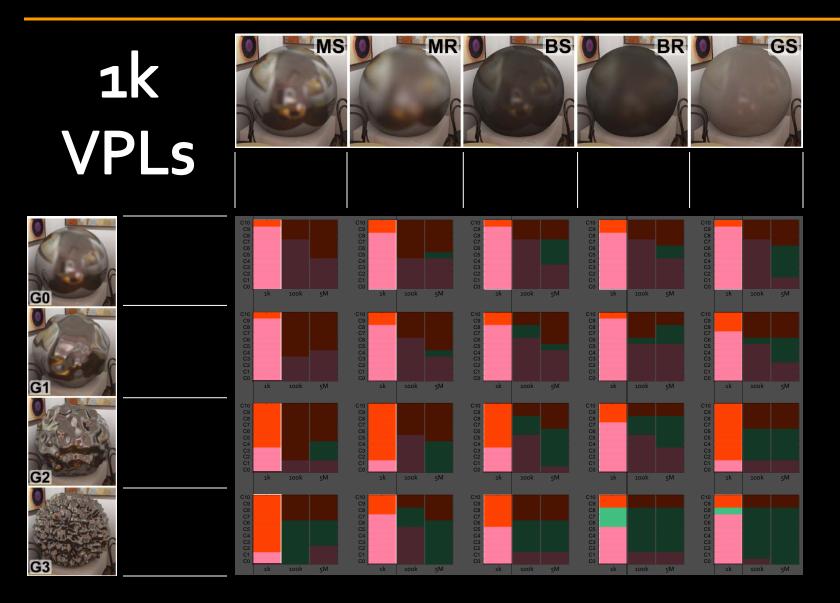
- Standard two-alternative forced choice method
- 480 trials, 12 participants

Experiment 2: Material change

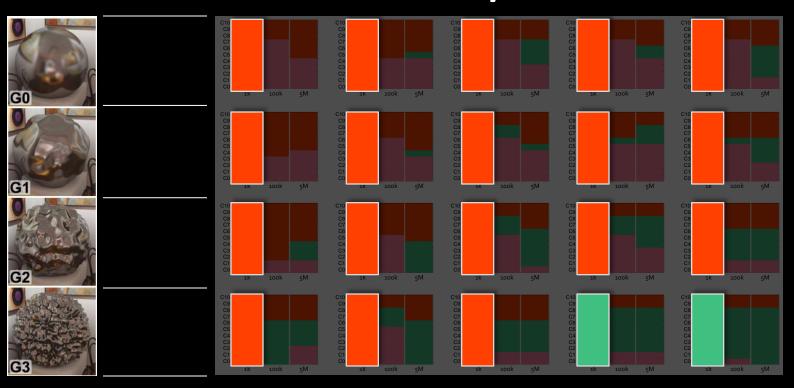

Which object's material is different from the reference?

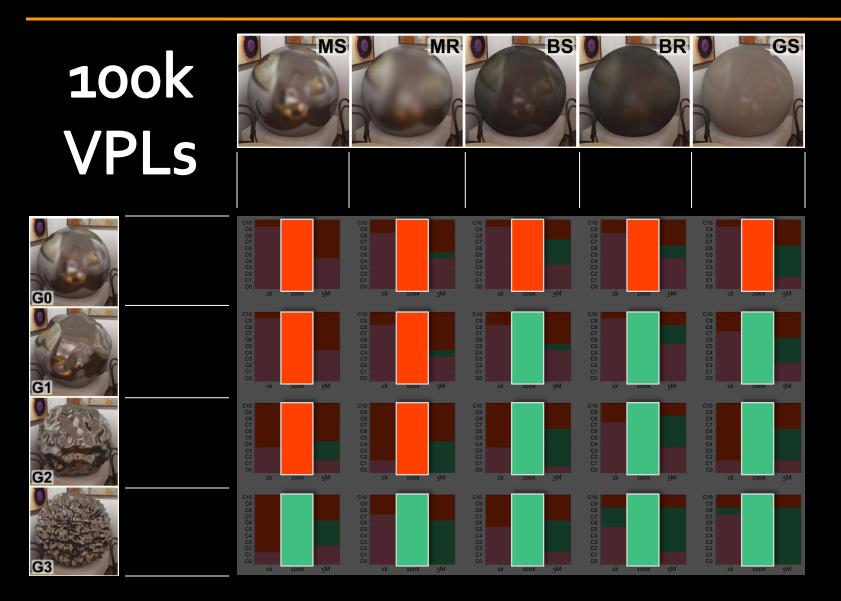

- Standard two-alternative forced choice method
- 520 trials, 14 participants

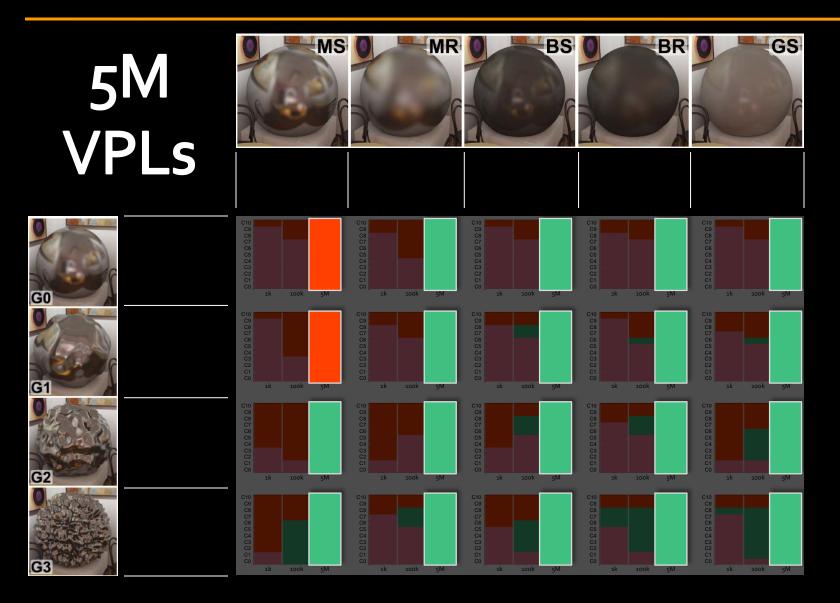

Data analysis

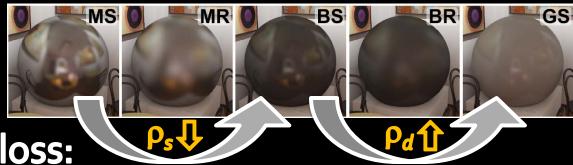

Extract thresholds from subjects' answers
 Standard 75% 2 AFC threshold criterion

Experiment results






ık VPLs

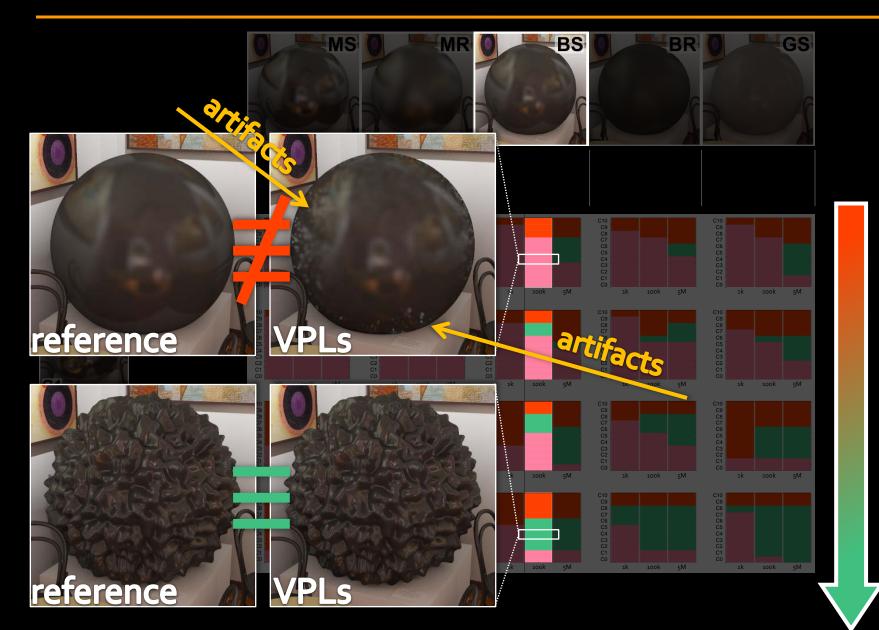

... mostly insufficient

Trends – Material contrast gloss

contrast gloss:

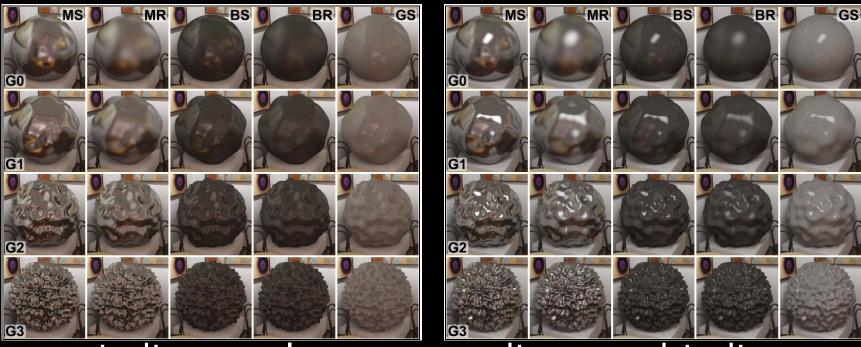
lower contrast gloss \rightarrow greater equivalence

Ę


Trends – Shape complexity

complex shape \rightarrow greater equivalence

G3	G2	GI	GO
C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0	C10 C9 C7 C6 C5 C4 C3 C2 C1 C0	C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0	C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
ık	ik	īk	ık
100k	look	100k	look
5M	5M	5M	5M
C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0	C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0	C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0	C10 C9 C7 C7 C6 C5 C4 C3 C2 C1 C0
ık	ik	ik	ık
look	look	look	100k
5M	5M	5M	5M
C10 C9 C7 C6 C5 C4 C3 C2 C1 C0	C10 C9 C8 C7 C5 C4 C3 C2 C1 C0	C10 C9 C6 C7 C6 C5 C4 C3 C2 C1 C1 C0	C10 C9 C6 C7 C6 C5 C4 C3 C4 C3 C1 C0
ık	ik	ık	ık
100k	look	look	100k
5M	5M	5M	5M
C10 C9 C3 C6 C6 C5 C4 C3 C2 C2 C1 C0 1k	C10 C9 C8 C7 C6 C5 C4 C3 C2 C2 C2 C1 C0 1k	C10 C9 C8 C7 C6 C5 C4 C3 C2 C2 C1 C0 1k	C10 C9 C8 C7 C6 C5 C4 C2 C2 C1 C0 L k
100k	look	100k	100k
5M	5M	5M	5M
C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 1k	C10 C9 C8 C7 C6 C5 C4 C3 C2 C2 C1 C0 L1 k	C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 L1 k	C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 1k
look	look	look	100k
5M	5M	5M	5M


Trends – Shape complexity

Trends – Illumination

- Does accurate direct illumination help preserve material appearance?
 - No significant improvement measured
 - Further investigation needed

indirect-only

direct-and-indirect

Validation

 Real-world geometry

 Trends confirmed

2. New material (diffuse)

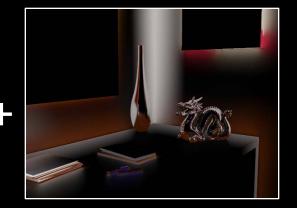
- Most forgiving material
- Need more than 1k VPL to achieve equivalence

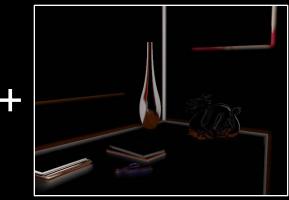
Applications

Per-object clamping

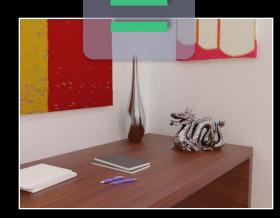
Luminance normalization

Application – Per-object clamping

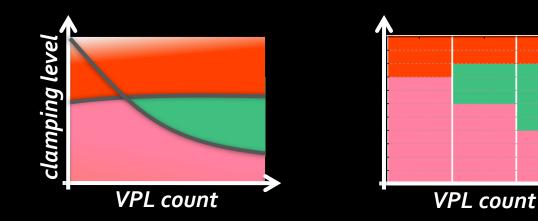

Energy compensation [Kollig & Keller o4]


clamping (VPL)

Less clamping for diffuse & complex objects



compensation (PT)


Less work, 2x speedup

Summary of results

• Visual equivalence in space of VPL parameters

- Trends in equivalence
 - VPL count
 - Shape complexity
 - Contrast gloss decrease

Conclusions

 Adequacy of VPL methods for high fidelity rendering

- Take-home messages
 - VPL methods produce equivalent renderings for a wide range of scene settings
 - 1k VPLs used in interactive apps \rightarrow no equivalence
 - Smooth metal & simple shape \rightarrow no equivalence
- Solid perceptual foundation for VPL methods

Future work

Model for visual equivalence in VPL rendering

- Effects of accurate direct illumination
 Ambiguity between artifacts and highlights
- Scalable & equivalent VPL methods

Acknowledgements

- Marie Curie Fellowship PIOF-GA-2008-221716
- NSF CAREER 0644175
- NSF CPA 0811680
- Intel
- Microsoft

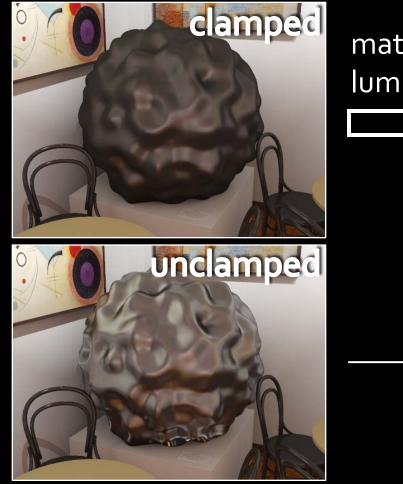
Experiment participants

Thank you

Additional Slides

Ambiguity: highlights vs. artifacts

highlights or artifacts?



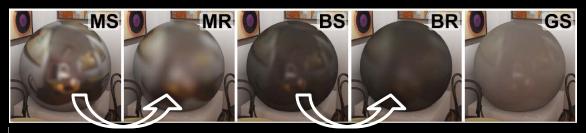
indirect-only

direct-and-indirect

Apps: Luminance normalization

• Re-introduce energy removed by clamping

match avg. luminance



- Validation
 - Can increase equivalence

Apps: Luminance normalization

Trends – Material roughness

rougher \rightarrow greater equivalence

SXX.	G2		G1	GO	
	S.	20	R		De
	C9 C8 C7 C5 C5 C4 C3 C2 C1 C0	C10 C9 C8 C7	C10 C9 C8 C7 C6 C5 C4 C3 C1 C0 C0	_	C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1
	1,000			1,000	
	100,000		100,000	100,000	
	5,000,000		5,000,000	5,000,000	
	C6 C5 C3 C2 C1 C0	C10 C9 C8 C7	C10 C9 C6 C5 C4 C3 C2 C1 C1 C0		C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C1 C1
	1,000		1,000	1,000	
			100,000	100,000	
			5,000,000	5,000,000	
	C6 C5 C4 C3 C2 C1 C0	C10 C9 C8 C7 C6 C5	C10 C9 C6 C7 C6 C5 C4 C3 C2 C1 C0 C0	00	C10 C9 C8 C7 C8 C5 C4 C3 C2 C1 C0
	1.000		1,000	1,000	
	100,000		100,000	100,000	
	5,000,000	7	5,000,000	5,000,000	
	C8 C7 C6 C5 C4 C3 C2 C1 C0	C9 C8 C7	C10 C9 C6 C5 C4 C3 C2 C1 C0	00	C10 C9 C8 C7 C8 C5 C4 C3 C2 C1 C0
	1,000		1,000	1,000	
	100,000		100,000	100,000	
	5,000,000		5,000,000	5,000,000	
	06 05 04 03 02 01 01	C10 C9 C8 C7	C10 C9 C8 C7 C6 C5 C4 C4 C3 C2 C1 C0		C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C1
	1,000		1,000	1,000	
	100,000		100,000	100,000	
	5,000,000		5,000,000	5,000,000	