

Improving Performance and Accuracy of Local PCA

V. Gassenbauer, J. Křivánek, K. Bouatouch, C. Bouville, M. Ribardière

University of Rennes 1, France, and Charles University, Czech Republic

Objective

Precomputed Radiance Transfer (PRT)

Bidirectional Texture Function (BTF) compression

Image courtesy of Hongzhi Wu

Need to compress large data set

Precomputed Radiance Transfer

Relighting as a matrix-vector multiply

- Matrix $T(x, \omega_i)$ Billions of elements
 - Infeasible multiplication
 - Compression (wavelet, Local PCA)

Related Work

Precomputation-based rendering

[Sloan et al. 02,03] Low-freq shadows, inter-reflections

[Liu et al. 04], [Huang et al. 10] High-freq shadows, inter-reflections

[Xu et al. 08] Dynamic scene, BRDF editing

Still use slow and inaccurate LPCA!

Related Work

- BTF compression
 - [Müller et al. 03], [Filip et al. 09]

- Simpler LPCA: k-means problem
 - Better performance [Phillips 02], [Elkan 03], [Hamerly10]
 - Better accuracy [Arthur et al. 07], [Kanugo et al. 02]

Compression Problem

- Input
 - High-dimensional points (rows of **T**)
 - Number of clusters k

- Output
 - Find *k* clusters i.e. low-dimensional subspaces

Kaohsiung, Taiwan

LPCA – The Algorithm

- Guess k clusters (i.e. subs.)
 - Initialize by randomly selected centers
- Repeat until convergence
 - Assign each point to the nearest cluster
 - Update PCA in the cluster

Motivation

Inefficient

 For each point compute distance to all clusters a_i

Inaccurate

Prone to get stuck in a local optimum

Our Contribution

Inefficient

• Forteaghtepint campate pistance to all clusters a

- Inaccurate
 - Bronnedarget stuck in a local optimum

Outline

- Improving Performance
 - SortCluster-LPCA (SC-LPCA)
- Improving Accuracy
 - SortMeans++
- Results

Accelerated k-means

• Δ -inequality [Phillips 02]

If
$$d(c_a, c_b) \ge 2d(\mathbf{x}, c_a)$$

$$\rightarrow d(\mathbf{x}, c_b) \ge d(\mathbf{x}, c_a)$$

$$\rightarrow$$
 $d(\mathbf{x}, c_b)$ not necessary to compute!

How does it work?

We know: potentially nearest cluster to x

We know: Distances of other cluster w.r.t. ca

Our Contribution: From k-means t

k-means

Piecewise reconstruction

LPCA

Piecewise reconstruction in low-dimensional subspaces

∆-inequality for LPCA

- Distance between subspaces
 - $d(a_a, a_b) = \inf\{ ||p q||; p in a_a, q in a_b \}$

• Δ -inequality for subspaces

If
$$d(\mathbf{a}_{a}, \mathbf{a}_{b}) \ge 2d(\mathbf{x}, \mathbf{a}_{b})$$

$$\rightarrow d(\mathbf{x}, \mathbf{a}_b) \ge d(\mathbf{x}, \mathbf{a}_b)$$

→ d(x,a_b) not necessary to compute!

Our SortCluster-LPCA

- When assigning x
 - Start from a_j
 - Proceed a_i in increasing order of distances w.r.t. a_j
 - Check ∆-inequality
- For all a_i precompute
 - Distances to each others
 - Ordering

Outline

- Improving Performance
 - SortCluster-LPCA (SC-LPCA)
- Improving Accuracy
 - SortMeans++
- Results

LPCA Accuracy

LPCA prone to stuck in local optimum

- Observation
 - Error comes from poor selections of cluster centers

Generation of Seeds

- Some heuristic
 - Farthest first [Hochbaum et al. 85]
 - Sum based [Hašan et al. 06]
 - k-means++ [Arthur and Vassil. 07]
 - ...
- Our approach: SortMeans++
 - Based on k-means++
 - Faster

Our SortMeans++

 Select initial seeds ility equal distances ability equal distances 2011

Kaohsiung, Taiwan

Outline

- Improving Performance
 - SortCluster-LPCA (SC-LPCA)
- Improving Accuracy
 - SortMeans++
- Results

Results

- Evaluate method with different parameters
 - Scalability with the subspace dimension

More than 5x speed-up

Overall Performance

Did several iterations of (SC)LPCA up to 24 basis

Model	Vertices [#]	LPCA	SC-LPCA	Speed Up	PRT
Horse	67.6k	3h 48m	11m	20.3x	22.5 s
Dragon	57.5k	3h 1m	28m	6.4x	25.5 s
Buddha	85.2k	4h 38m	50m	5.6x	31.6 s
Disney	106.3k	5h 50m	1h 8m	5.1x	46.5 s

Improving Accuracy

Latency and accuracy of seeding algs:

- Our SortMeans++
 - Generally lowest error & fast
 - Improve performance of SC-LPCA!

Conclusion

- SC-LPCA (accelerated LPCA)
 - Avoid unnecessary distance comp.
 - Speed-up of 5 to 20 on our PRT data
 - Without changing output!
- Improve accuracy (SortMeans++)
 - More accurate data approximation
- **Future work**
 - Test on other CG data
 - GPU acceleration

BTF Compression

Try several data sets

- SC-LPCA speed-up of about only 1.5x
 - Reason: Small number of subspaces

The End

- Acknowledgement
 - European Community
 - Marie Curie Fellowship PIOF-GA-2008-221716
 - Ministry of Education, Czech Republic
 - Research program LC-06008.
 - Anonymous reviewers

Thank You for your attention

