
Good morning. Thank you for the introduction.  
 
I am going to present a new method … 
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… that aims at rendering scenes with difficult visibility. 
 
Such scenes comprise complex geometry and light reaches the camera only after 
several interactions with surfaces.  
 
In this example, the sunlight reaches the interior through a window and the small gap 
between the curtains and undergoes many interactions before it enters the dim room 
on the left. 
 
Now I will demonstrate, that rendering of such scenes remains an open problem. 
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It is generally considered that Metropolis light transport algorithm is a remedy for this 
problem. 
 
However, as you can see in the image, the result after 1h is very far from the 
reference. 
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Recently, Vertex Connection and Merging algorithm was introduced.  
 
This algorithm can efficiently handle high variety of lighting conditions thanks to 
connecting and merging of many light paths. 
 
However, as you can see, the difficult visibility remains a problem. 
 
There are simply too few light paths that could be connected or merged. The result is 
a noisy image. 
 
We aim to solve this problem by guiding of the path-sampling process.  
 
Now, I will show you the result of our guiding applied to VCM. 
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 As you can see, guiding of path-sampling process substantially reduced the noise. 
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To understand why such scenes are so difficult for rendering, we need to look at the 
rendering equation. 
 
The product of incoming radiance L_in and BRDF (which is highlighted in green) is 
integrated over the hemisphere of directions. 
 
State-of-the-art MC-based algorithms strive for importance sampling of the BRDF 
only and they often ignore the incoming radiance term. 
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But this term can be the source of high variance due to possible caustic lighting and 
highlights in the scene. 
 
And it also includes the visibility. So we could say that ignoring the radiance term 
makes the sampling blind to the rendered scene and results in waste of samples. 
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People tried to address this inefficient sampling in the past. 
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Jensen [1995], in his previous work, uses light particles – that is photons – to 
reconstruct the distribution of incoming radiance (Li). 
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They trace the photons in a preprocessing phase… 
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They trace the photons in a preprocessing phase… 
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and store them on surfaces for later use in path-tracing. 
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During the path-tracing, … 
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…, they reconstruct the directional distributions of radiance from nearest photons… 
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and use the distributions for sampling of reflected directions. Note that contrary to 
photon mapping, the method produces an unbiased image. 
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The reconstruction of a distribution starts with a search for nearest photons from the surface 
intersection. 
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They are interested in a directional distribution so they make the assumption that all particles hit the 
surface at one point. 
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To reconstruct the directional probability distribution … 
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they discretize the hemisphere into equal-sized bins and count the number of particle directions falling 
into each bin. 
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The result is a histogram over hemisphere. 
 
However, histogram density estimate is known to be a poor estimation method prone to over and 
under estimation. 
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Hey & Purgathofer [2002] alleviate the problem by using a different model to 
reconstruct and represent the directional distributions. 
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They represent the directional pdf by overlapping cones with adaptive width.  
 
The cones are centered around incoming photon directions 
and the size of the cones is inversely proportional to directional density of photons. 
[CLICK] 
This corresponds to a kernel density estimate with adaptive kernel size so the method 
allows to have more refined pdf than Jensen’s histograms. 
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The light transport can be considered a subfield to radiative transfer and transport 
theory of neutral particles.  
 
I will point out works of Spanier [1999], Booth [2000] and Franke et al. [2009]. 
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Similarly to their work, we also interleave photon and particle tracing steps to refine 
our distributions. 
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Now I will explain the main issue connected with previous methods. 
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Although they approximate the radiance term for importance sampling, they struggle 
in a wide range of scenes. 
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Let’s consider an interior scene where the camera is in a dim room and light is 
entering from the outside. 
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As the particles are scattered through BRDF at the beginning, it is not possible to 
obtain a sufficient number of particles everywhere for good reconstruction. 
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Note that, in the illustration, we have only one photon in front of the camera.  
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Using such a poor reconstruction in path-tracing would even increase the noise level 
in the rendered image. 
 
What we need is to get many more particles into the dim room, … 
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... but the problem is that we are limited by memory where all the particles need to 
be stored (including the particles outside of the room, where we do not need them at 
all). 
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Now I will present our solution to this problem that forms the cornerstone of our 
method. 
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We follow the same line of work. But instead of histogram or cones, we use a 
Gaussian mixture model to represent directional distributions.  
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This model can be progressively trained from a potentially infinite stream of particles. 
The important thing is that the particles do not need to be stored in memory. 
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So in this way our on-line learning allows to overcome the memory constraint. 
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This is how it works. 
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We trace particles in batches that can fit into memory. So we trace a first batch of 
photons, … 
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… we create a distribution on a scene surface… 
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and we use the nearest photons for its initial training. 
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Now the particles can be removed … 
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… because the information is absorbed in the distribution.  
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Then we trace another batch of particles, 
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… and we use the nearest ones to progressively update the distribution. 
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We can repeat this process until the distribution is fully trained. 
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Lets see what the Gaussian mixture actually is. 
 
It is a convex combination of Gaussian distributions that is fully described by [CLICK] a 
set of parameters theta. 
 
Each Gaussian is defined by its [CLICK] mixture weight, [CLICK] its mean and [CLICK] 
its covariance matrix. 
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The Gaussians are defined in plane, [CLICK] however, to obtain a distribution over the 
hemisphere, [CLICK] we simply use [CLICK] the mapping of Shirley and Chiu [1997]. 
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I would like to stress that on-line learning is not the only advantage of Gaussian 
mixture models over the previous directional distribution representations. 
[CLICK] 
It is also better at estimating of unknown distributions.  
 
Let me demonstrate on an example. 
[CLICK] 
We rendered a complex scene where we have traced as many photons in one single 
batch as we could. 
[CLICK] 
There is no on-line learning involved – that means that all models were given the 
same number of particles.  
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Then we used path-tracing guided by Jensen’s histograms, … 
[CLICK] 
… Hey and Purgathofer’s cones … 
[CLICK] 
… and our Gaussian mixtures. 
 
The amount of noise after 1h of rendering suggests that the Gaussian mixture model 
is clearly superior to the previous models. 
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For learning of Gaussian mixtures … 
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… we use the stepwise Expectation-Maximization. 
This is different from the usual EM algorithm previously used in graphics in that the E 
and M steps are performed immediately after observing each particle. 
 
[CLICK] In this 1D scheme we have a hemisphere  
[CLICK] that is mapped to a plane.  
The example mixture has only two Gaussians [CLICK] 
and the input of the algorithm is [CLICK] a batch of particles. 
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The algorithm takes the particles one-by-one [CLICK] and every particle is processed 
in two steps. First, in the E-step, [CLICK] it determines its “soft” assignment to all 
Gaussians in the mixture [CLICK]. 
 
Then follows the M-step, 
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in which the parameters of all Gaussians are updated.   
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The update is based on the assignment from the E-step. 
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The algorithm proceeds to another particle, it goes through the E-step [CLICK] and 
updates parameters in the M-step. [CLICK] 
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The algorithm proceeds to another particle, it goes through the E-step [CLICK] and 
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These steps are repeated for all particles in the batch… 
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These steps are repeated for all particles in the batch… 
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These steps are repeated for all particles in the batch… 
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… and when the last particle from the input batch is finally processed … 
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the algorithm returns to the first particle again.  
 
This process continues until convergence. 
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Thanks to the stepwise formulation, making the algorithm on-line is very simple. 
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All we need to do is to read particles from potentially infinite stream and never return 
to previously used particles.  
 
Note that this would not be possible with the usual E-M algorithm previously used in 
graphics. 
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Now I will finally outline the complete picture of our method. 
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Before rendering, we train our Gaussian mixtures in a training phase. 
 
The result of this phase are two spatial caches of distributions.  
 
[CLICK] 
 
One of them is trained from photons and thus contains directional distributions of 
radiance  
[CLICK] 
while the other is trained from camera particles and contains distributions of visual 
importance. 
 
These distributions are used to guide path-sampling during the rendering phase. 
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I will explain the guided path-sampling on the illustration. 
[CLICK] 
Here, we trace a path from the camera and we use the nearest radiance distributions 
for its guiding towards the light sources. 
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In our method we also sample the BRDF.  
 
To sample a new direction we randomly use [CLICK] either our guiding distribution 
[CLICK] or the BRDF. 
 
Both sampling strategies, are combined via multiple importance sampling. 
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During the guided path-sampling, we also create new distributions on-the-fly as 
needed. 
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During the guided path-sampling, we also create new distributions on-the-fly as 
needed. 
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Similarly to irradiance caching, if there is no distribution that could be reused at the 
intersection point … 
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… a new distribution is trained and placed into the spatial cache. 
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Now that I’ve finished the description of the guided path-sampling, … 
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we can look in detail at the training phase. 
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we can look in detail at the training phase. 
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We interleave the particle tracing steps which is possible thanks to on-line learning. 
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We start the training phase by blindly tracing importons using only importance 
sampling according to the BRDF. 
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Then, we trace photons, guiding them towards visually important places. 

87 



Then, we trace importons again and we guide them towards light sources. 
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This is repeated several times … 
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… until the training phase is concluded by photon tracing. 
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Between the particle tracing steps we use gathered particles to update the cached 
distributions.  
 
So the distributions are getting more refined and in turn provide better importance 
sampling for the subsequent tracing. 
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For details about the presented algorithms, please, refer to the paper. 
 
Now I will present our results. 
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We have applied our method to [CLICK] PT, BDPT, PPM and VCM and we provide 
extensive comparison [CLICK] conducted on three different scenes. 
 
[CLICK] 
We compare the results also to Veach-style MLT with Manifold exploration. 
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However, I will show you only fraction of the results. 
 
All the images were rendered for 1h including the preprocessing time. 
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This slide shows the Living room scene that I have presented at the very beginning. 
 
[CLICK] 
 
I will draw your attention to a small region that is especially difficult to render. 
 
Note that this reference image was rendered by plain BDPT for 60 days. And you 
might still notice some noise. 
 

95 



This very noisy result was achieved with bidirectional path tracing after one hour. 
 
Now I will show you the result after application of our guiding method. 
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As you can see, the noise was substantially reduced. 
 
However, you may also notice some residual high-frequency noise visible especially 
around the picture on the wall.  We would like to address this in our future work by 
learning of distributions also during the rendering phase. 
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On another detail of the same scene I will demonstrate that the time spent on 
training is amortized by faster convergence of rendering. 
[CLICK] 
We use different number of training passes in the preprocessing.  
[CLICK] 
1 training pass corresponds to tracing importons followed by tracing photons.  
 
You can see that more passes produced better result even when we account for the 
preprocessing time. 
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The improvement is visible in the insets … 
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… and is also underlined by L1 error plots. 
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Based on our results, we suspect that guiding might render some path sampling 
techniques in bidirectional algorithms less important.  
 
[CLICK] 
 
The L1 error plots correspond to the living room scenes rendered with three different 
algorithms. (Path tracing, Bidirectional path tracing and VCM).  Green color is used for 
unguided methods while red depicts the guided algorithm. 
 
[CLICK] 
 
Clearly the highest relative improvement is always achieved for path tracing and … 
 
[CLICK] 
 
… guided bidirectional algorithms are only slightly superior to guided path tracing. 
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On another scene I will show the improvement achieved for simple path-tracing.  
 
The sunlight reaches the scene after passing through windows with jalousies and 
undergoes complex interactions in the classroom. 
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The simple path tracing fails to render the scene. In fact, all the sunlight is almost 
completely missing. 
 
Now I am going to show you the result after the application of our guiding method.  
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Again, the noise reduction is substantial and even higher then in the case of 
bidirectional path tracing. 
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On this famous scene I show the result using bidirectional path tracing.  
 
The light is coming from the other room through a small door slit.  
 
This is our guided version and finally the reference. 
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To sum up, we propose the use of a parametric mixture model to represent 
directional distributions.  
 
These distributions are trained in the preprocessing phase and used for importance 
sampling in the rendering. 
 
The proposed model allows on-line training from an infinite stream of particles which 
in turn enables rendering scenes with difficult visibility. 
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However, the overhead of our method, that comes from querying the distribution 
cache, may offset its advantages in simple scenes. 
 
[CLICK] 
 
In the future, we would like to refine the distributions adaptively also during the 
rendering phase. 
 
We also plan to combine our method with MLT. 
 
We think that these two approaches could complement each other to achieve further 
benefits. 
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The source code of our method is publicly available at the project home page. 
 
[CLICK] 
 
The method is implemented as a library and its sample usage for path tracing is 
available in the Mitsuba renderer. 
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Thank you for your attention. 
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We use our method also for guiding of emission sampling from environment light 
source. 
 
In other words, we drive the emission by visual importance. 
 
Both guiding of scattering and the emission fit nicely into the same framework. 
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Our Gaussian mixtures for sampling starting position are conditioned by a direction 
omega and are defined on a disk perpendicular to omega.  
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To allow progressive training, we store the distributions in a directional cache. 
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After every particle tracing step, distributions are trained from importons that left the 
scene. 
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The work of Peter and Pietrek [1998] extended Jensen’s idea … 
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… by using camera particles – importons – to guide photons to visually important 
places. 
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The algorithm starts by tracing particles from the camera – called importons. 
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Then the photon tracing pass uses the importons … 
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Then the photon tracing pass uses the importons … 
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… to reconstruct the visual importance distributions for scattering. 
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Thus the photons are guided towards the camera and during the path-tracing phase 
allow … 
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for better reconstruction of radiance in visually important places. 
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