


• This work was started during my last year’s stay at Weta Digital and deals with 

the calculation of subsurface scattering using Monte Carlo simulation as 

opposed to an analytic BSSRDF model. 



• The MC simulation involves a random walk, where the light path enters under 

the surface, scatters around in a way that is totally oblivious to where the 

surface actually is and then eventually, it may get out and connect to light 

sources, but often it just dies somewhere under the surface. 

• The visualization (top right) shows a superposition of a number of such 

random walks and you can see that they have the tendency to wander quite far 

from the entry point. 

 

• We thought this wasn’t a particularly smart way of doing things and we wanted 

to somehow inform the random walk that it should eventually get back to the 

surface because that’s where the light sources can be found. 

• The method we end up developing does exactly that. You can see that the 

resulting random walks are much more concentrated around the entry point, 

which is what we set to achieve. 

• (Note each path is rasterized with the same opacity, regardless of sample 

weight.) 



• However, the method we use does more than just guiding paths toward the 

surface, thus improving efficiency. 

• It is mainly a variance reduction scheme. The improved efficiency only 

comes as a nice extra benefit to it. 

• You can see one result here, the left image was renderer with a classic MC 

random walk, and the right one using our improved subsurface sampling 

scheme. 
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• Traditionally, subsurface scattering in graphics has been simulated using 

analytical BSSRDF models based on the diffusion approximation.  

• This approach was introduced to graphics by Jensen et al. in 2001. 



• There’s plenty of follow-up work on this topic, some of which is mentioned on 

this slide. 



• However, the diffusion-based BSSRDF models come with some serious 

limitations. 

• First, the model is usually valid only for semi-infinite media with a flat 

boundary, and this assumption is rarely met in practice. When rendering a 

human head, this would be problematic especially around the nose and the 

ears. 

• But even if the assumption held, there are inaccuracies of the diffusion 

approximation itself: after all, it’s an approximation. 



• For these reasons, an explicit Monte Carlo (MC) simulation of the subsurface 

scattering process is an interesting alternative to the approximate analytical 

BSSRDFS. 

• With this approach, many approximations and assumptions go away and the 

integration into a physically-based path tracer is very natural. 

• But the MC simulation can be very slow because a high number of scattering 

events have to be simulated for each path. Furthermore, the result is just a 

random sample with an associated variance (=noise), whereas evaluating a 

BSSRDF is relatively fast and gives a noise-free result. 

• Can we do something to alleviate the limitations of MC sampling? 

• As is often the case, it turns out that neutron transport research has 

investigated a similar problem many years ago. 



• The so called “deep penetration problems” used in reactor shield design are 

particularly closely related. 

• By design, only a tiny fraction of the incident radiation is allowed to pass 

through a reactor shield. 

• For example, in a blind MC simulation only one in a billion particles would 

make it through, which makes the classic MC simulation totally hopeless. 



• One of the approaches to solve this issue is the so-called “path stretching”. 

• The idea is to advance the particles toward the outside by artificially stretching 

the sampled distance whenever the particle in a MC simulation points toward 

the exterior, and to shrink it when the particle is directed to the interior. To 

compensate for this, one needs to adjust the weight of the particle, because its 

behavior no longer follows the laws of physics. 

• Path stretching has originally been derived heuristically and relied on an ad-

hoc parameter (the ‘strength’ of the stretching). While it often worked great, it 

could actually deteriorate the result (increase variance) when the stretching 

parameter wasn’t set judiciously. 

 



• This is where the theory of zero-variance random walks comes into play. 

• The idea that a random walk can be constructed in such a way that it always 

yields the correct answer with absolutely no variance has been around for 

almost as long as MC methods themselves. 

• Despite the zero variance theory being old, Hoogenboom's recent 2008 NSE 

article (Zero-variance Monte Carlo Schemes Revisited) is very important: he 

corrects some misconceptions about the uniqueness of zero-variance walk 

construction that have lingered for several decades, and includes discussions 

about boundary crossing and track-length estimators as well. 

• Booth’s 2012 article (Common misconceptions in Monte Carlo particle 

transport) further clarifies and generalizes some of the concepts of zero-

variance schemes. He argues that Hoogenbooms’ conclusion concerning the 

uniqueness of the zero-variance construstions are not correct and that there 

are multiple ways in which a zero-variance walk can be constructed. 

• Dwivedi [1981] was the first to apply the theory of zero-variance random walks 

to deep penetration problems. 

• He has shown how the heuristic path stretching automatically follows from the 

theory, while giving a clear answer to the parameter setting. 

• He was also the first to show that to robustly reduce variance, the path 

stretching needs to be combined with an appropriate angular sampling. 

• While he conceived his work with reactor shield design problems in mind, we 

apply his ideas to subsurface light transport and make further improvements. 

 

 

 



• Because we believe that the theory of zero-variance random walks is important, 

we start by exposing it in a general setting, without any reference to our particular 

problem. 
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• Before starting, let me point out that constructing a zero-variance random walk 

is a hard problem. In fact, it is much harder than calculating the desired answer 

itself. 

• In order to construct a zero variance random walk, one needs to know the 

desired solution everywhere and be able to generate samples proportional to 

it. 

• So at the first sight, this looks like a fairly useless thing to do. 

• But, we can achieve practical results – something that approaches the zero-

variance ideal – by using suitable approximations. 

• And this is what Dwivedi did in neutron transport and what we propose to do in 

graphics. 



• Suppose we have a volume with a volumetric light source. 

• Particles (neutrons, photons) in this volume are defined by their position and 

direction of travel that we will, for the sake of conciseness, denote as r (the 

“phase-space position”). 

• The volume rendering equation can be written in a simple way as shown at the 

top of the slide. In this more general form, we refer to it simply as the transport 

equation. 

• It states that the radiance at r (please recall that r is both a spatial position and 

a direction) is the self-emission at r plus the radiance transported to r from all 

other positions r’ of the volume. 

• The transport kernel T consists of a spatial as well as the angular 

(=directional) part. The spatial part describes the effect of light attenuation 

along the line from r’ to r, and it is equal to the transmittance between r and r’. 

The angular part described the directional properties of scattering in the 

medium and is equal to the phase function at r. 



• Solving the transport equation using Monte Carlo involves a recursive 

application of MC integration to evaluate the integral on the right hand side. 

• To estimate the radiance at r, we sample a phase-space position r’ at random, 

evaluate the integrand and divide by the pdf of choosing r’. This involves 

evaluating the transport kernel and also the radiance at r’. But the radiance at 

r’ is unknown and we have to again evaluate it using a recursive MC 

estimation of the integral, this time at r’. 

• This leads to the classic random walk as we know it from the path tracing 

algorithm. 

 



• Clearly, if the result of the estimator were always the same, it would have zero 

variance. 

• Let us now see how to make this calculation return the same result no matter 

what random walk we sample. 

• What I describe here is just one way to construct a zero variance random walk, 

but it is not the only one as pointed out by Booth [2011]. 

• Rule 1: The walk termination probability must be equal to the ratio of the self-

emission to total radiance. In our words, the walk is only allowed to stop on a 

light source. The more indirect illumination, the less likely it is that the walk will 

stop. 

• Rule 2: The intermediate vertices of the walk must not make any contribution 

to the result; we only accumulate emission on terminating the walk. From the 

path integral point of view, one single random walk yields just a single light 

transport path (as opposed to the usual practice in, say, path tracing). 

• Rule 3: When continuing the walk, we pick the next phase-space position r’ 

from the unique pdf that is exactly proportional to the integrand in the transport 

equation. 

• Why is this difficult? One needs to know the answer L(r) to decide the 

termination. Furthermore, one needs to sample from the product of the correct 

solution (which, therefore, needs to be known everywhere!!!) and the transport 

kernel to pick the next phase-space position. 

 



• Let us now prove that these rules lead to a zero-variance calculation. Our goal 

is to calculate L(r) which is given by the sum of two terms. Let us calculate the 

sum with MC summation by picking only one of the two terms. To achieve zero-

variance, the probability of picking the terms must be exactly proportional to the 

their respective contributions to the sum. 



• Let’s see what happens if we pick the first term. 

• The probability of choosing this term must be proportional to the self-emission 

in order to obtain a zero-variance estimator of the sum. 

• Therefore, it is given by the self-emission Le
 divided by the sum (so that it is a 

properly normalized probability). 

• Notice that this probability is exactly equal to the termination probability of the 

zero-variance walk (cf. Rule 1). 

 

• The estimator of the sum, in this case, is given by the summand, Le, divided by 

the probability of choosing this first term.  

• This fraction is exactly equal to the desired answer L(r) because the self-

emission Le
 cancels out. 

• And because evaluating the first term of the sum only involves nothing but 

reading the value of Le from the scene database, there is really nothing left to 

do, so the walk terminates. 

• Note that in this case, the complicated thing is calculating the termination 

probability, as it requires knowing the correct solution L(r). 



• If we choose the second term, the estimator is given by the 2nd term of the 

sum (the integral) divided by the probability of choosing the 2nd term (which is 

1 minus the termination probability). 

• We do not know the value of the integral so we replace it by its estimator. 

• But in order for the entire random walk to yield a zero-variance result, the 

estimator of this integral itself must have zero variance. 

• This is achieved by sampling the next position r’ from a pdf exactly 

proportional to the integrand. 

• Of course, this pdf must be properly normalized, so it is given by the integrand 

divided by the integral itself.  

• The actual equations for these ideas are provided on the supplemental slide at 

the end of the slideshow. 

• After some manipulations (see the supplemental slide), the estimator in this 

case ends up being given by the formula: L(r) <L(r’)> / L(r’). 

• The estimator <L(r’)> is evaluated by recursively repeating the same zero-

variance procedure described here for r.  

• Sooner or later in the recursion, the first summand (self-emission) will be 

chosen, the walk will terminate, and start returning the actual value of L(r’) as 

a result of the estimator <L(r’)>.  

• As a consequence, <L(r’)>/L(r’) will cancel out and we are, again, left with the 

correct answer L(r). 



• This completes the proof that the given three rules yield a random walk that 

always returns the same correct answer. 



• It should now by clearer why constructing the zero-variance walk is actually 

that hard: We needed to know the answer L(r) to decide the termination 

criterion. Furthermore, we  needed to sample from the product of the correct 

answer and the transport kernel to pick the next phase-space position. 

• However, by using an approximate solution to preform these two operations, 

we can achieve a random walk that is close to the zero-variance ideal. 

 

• One way to obtain the approximate solution is through a rough Monte Carlo 

pre-calculation. 

• This idea has been used before in graphics, though without the reference to 

the theory of zero-variance walks (e.g. [Jensen 1995, Vorba et al. 2014] and 

many others).  

• These works use sampling according to the product of the BRDF and the 

incoming radiance to choose the direction of the next ray in path tracing.  

• This corresponds to choosing the next phase-space position r’ with a pdf 

proportional to the integrand of the transport equation.  

• However, what many of these previous works have missed is that in a truly 

zero-variance walk, the rules for terminating the walk must also be modified 

from the usual ones. 

• Probably the first work in graphics to consider the path termination issue in 

conjunction with approximating a zero-variance scheme is that of Vorba et al. 

[2014]. 



 

• Another option for obtaining the approximate solution is using an analytic 

solution for a canonical configuration for which a closed-form solution exists and 

which that is similar to the practical configuration under consideration. 

• This is the approach that we use for simulating subsurface scattering. 

 

 



• Let us now follow Dwivedi’s work and approximate a zero variance walk for 

subsurface scattering. 
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• We apply the technique in a unidirectional path tracer. 

• The zero-variance-based random walk is used only for the part of the path 

under the surface. 

• The rest of the path is not affected at all and follows the same rules as in a 

regular path tracer. 

 



• Since we do not know what the path tracer will encounter after escaping from 

the surface, we assume, for the sake of constructing the zero-variance walk, 

white-sky illumination, uniform in the directional and spatial domains.  

• This is equivalent to saying that ‘escape’ from the medium is our only source of 

importance that guides the random walk. 

• Note that this is not a necessary step: the general theory (‘Caseology’ on the 

next slide) permits knowing (in theory) the full directional radiance distribution 

inside some volume due to a particular light source(s) outside of it. In this 

much more complicated case, the approximate internal radiance solution 

would guide the subsurface sub-paths not only to try to escape the medium, 

but also tend to positions which permit angle selections that then leave the 

medium in a direction that tends to hit the light. However, this would be quite 

complex in practice so we decided not to pursue this option. 

 



• In order to be able to build upon the zero-variance theory in constructing the 

random walk, we need an approximation of the radiance solution under the 

surface. 

• Note that the Monte Carlo estimator that we construct is unbiased irrespective 

of the accuracy of this approximate solution; the accuracy only affects the 

variance reduction but not the unbiasedness of the resulting estimator. 

• For this reason, we choose to approximate the true sub-surface distribution of 

radiance using a solution for a half-space with flat boundary. 

• In this setting, the phase space position r can be specified by the (optical) 

depth under the surface, x, and the direction cosine u. 

 

• The exact half-space solutions that we use can be derived in several ways, 

including what is known as Caseology, named after Kenneth Case who was on 

the theoretical division at Los Alamos building the first bombs. In 1960 Case 

studied in detail the 'spectrum' of the transport operator in the plane-parallel 

case, and derived an expansion into the discrete asymptotic diffusion mode, 

and the continuous spectrum of 'singular eigenfunctions' - so named because 

the angular distributions (the phi-functions on the slide) for the transient terms 

are singular. This study of the structure of exact solutions in transport is 

incredibly insightful and we are the first, to our knowledge, to exploit it directly 

in a rendering technique. 

• Each eigenfunction of the spectrum has the same form: the spatial term that  



only depends on the depth under the surface is a simple exponential, with 

different eigenfunctions having different decay rates. The angular term then 

corresponds to integrating the spatial term along a line from a given depth in a 

given direction. 



• Since the complete solution is rather complex – being given by an integral over 

the spectrum – Dwivedi choose to only use the discrete (asymptotic) mode of 

the spectrum, disregarding its continuous part. 

• This is a reasonable assumption because the spatial part of the discrete mode 

has a slower decay rate than the rest of the spectrum. Therefore, as one 

moves away from the boundary, this terms dominates all the other terms and 

asymptotically becomes the correct solution. 



• This slide illustrates in a log-plot the accuracy of approximating the spatial part 

of the sub-surface solution (the dotted lines) with a single exponential (the 

straight dashed lines). 

• We can see that the approximation is very accurate for the low absorption case 

(high albedo). As the absorption increases (albedo decreases) the 

approximation becomes less accurate, especially near the boundary, where the 

transient terms (the continuous part of the Case’s spectrum) dominates the 

solution. 



• We follow Dwivedi and use only the discrete, asymptotic term as an 

approximation of the true solution under the surface for constructing the 

random walk. 

• Given a particle as a location r = (x, u) under the surface, we want to randomly 

sample its next position r’ = (x’, u’). 

• This is decomposed into sampling the next collision distance along the line 

from x in the direction u, followed by sampling the new particle direction. 

• When sampling the collision distance, the zero-variance theory tells us that we 

should do this with a pdf proportional to the product of the spatial part of the 

transport kernel (i.e. transmittance = exponential) and the solution (which we 

assume to the Case’s discrete mode = exponential). 

• This yields an extremely convenient result, where we sample from a simple 

exponential pdf, where the transport coefficient is modified from its true value 

using the equation shown on the slide. 

• Note that this is exactly equivalent to the idea of path stretching: for directions 

toward the boundary the sampled distance will be stretched, whereas it will be 

shortened for directions away from the boundary. 

• Note that the v0 parameter is a constant here, because it only depends on the 

single scattering albedo of the medium. 



• The work of Dwivedi was the first to point out that path stretching must be 

accompanied by a corresponding modification of the direction sampling in 

order to achieve a robust variance reduction. 

• This follows naturally from the zero-variance theory: we need to sample the 

direction from the product of the angular part of the transport kernel (=phase 

function) and the angular part of the true solution. 

• In our work, we assume isotropic media with a constant phase function, so we 

only need to sample from a pdf proportional to the angular part of the solution. 

• This can be derived simply by integrating the spatial part of the solution 

(=exponential) along lines of different direction. 

• Furthermore, in deriving the angular solution, Dwivedi assumes that the spatial 

solution extends beyond the boundary surface, so he does not need to treat 

the direction toward the boundary as a special case. 

• This yields an extremely elegant solution for the angular part, which is 

independent of the depth under the surface, and can be easily normalized and 

used for sampling in a closed form. 

• Note that because we only assumed 'escape' as our goal, the ‘guided’ direction 

selection only involves modifying the selection of the direction cosine u: the 

azimuthal angle selections at each step are chosen uniformly. This is one 

feature that would change if, say, you knew the source of light outside the 

medium came from a particular direction. In these cases, more advanced 

deterministic solutions interior to the medium would be required, and works of  



Jakob et al. [2014] (A Comprehensive Framework for Rendering Layered 

Materials) and d’Eon [2014] (A Dual-Beam 3D Searchlight BSSRDF) could both 

be used to produce such importance functions for walk guidance (for the plane-

parallel directional light source case, or the point source near a subsurface 

surface case). 



• These plots show the resulting angular pdf (the horizontal axis corresponds to 

the direction cosine and the vertical axis is the pdf value). 

• We can see that for low absorption (high albedo) the solution is mostly uniform, 

which corresponds to the well-known fact that the diffusive multiple scattering 

in low-absorption media leads to a solution that is mostly uniform in directions. 

• For high absorption, we can see a pronounced peak of the distribution with 

strong preference to sampling directions toward the boundary. 
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• Before using the method in rendering, we have tested it in a simple simulator 

of light transport in a half-space. 

• On this slide, we demonstrate the effect that the new method has on the 

trajectory of light paths under the surface. 

• In the classical sampling the paths tend to wander quite far from the point of 

entry, while the new sampling scheme concentrates most of the sampling effort 

around the entry point. This effect is more pronounced for higher absorption 

levels (lower albedos) because in this regime, the diffusive multiple scattering 

has only low effect on the final result. 

 



• The images on this slide correspond to rendering subsurface scattering on the 

flat, index-matched boundary of a semi-infinite medium under white-sky 

illumination.  

• These are exactly the assumptions used to build the zero-variance walk, so it 

is the best case for what we can achieve. 

• We can observe substantial variance reduction for low absorption, i.e. higher 

albedos (0.95 roughly corresponds to human skin). 

• There is little, if any, variance reduction for lower albedos. This is due to the 

fact that the assumed shape of the solution does not match the true shape 

(see slide 27). 

• However, when we take the computation time into account, we obtain a 

substantial net improvement in efficiency even in those cases because the 

resulting sub-surface walks are much shorter on average. 

 

• Note that in the case that there is no absorption (albedo = 1), the classical 

subsurface walk is already zero variance: you just keep sampling (with 

whatever sample weight you had as you entered) until finally you exit: with that 

same weight no matter where you went, so there is nothing to improve upon in 

that case (unless, as mentioned above, you knew more about where light 

sources might enter the medium). 

 



• To use the method in rendering, we assume that the half-space is aligned with 

the surface normal at the point where the path enters under the surface. 



• The assumed half-space solution may substantially differ form the true solution 

on curved regions of the geometry.  

• This may lead to occasional high sample weights, or fireflies (see top left 

image around the nose) because the estimated importance of each path was 

not accurately predicted.  

• We mitigate this problem by using Multiple Importance Sampling (MIS) at each 

transition to combine classical and Dwivedi sampling.  

• Note more fireflies near the nose and curved areas and their reduction as MIS 

mixes the classical and Dwivedi methods.  

• Also note how the render time changes. While the use of the classical 

sampling is essential to avoid the fireflies for the curved regions, for flat regions 

like the cheek the pure Dwivedi walk works well and mixing in the classical 

sampling actually adds some noise. To get the best performance, the mixing 

weights could be driven by local curvature. 



• Despite the fact that the importance function driving the sampling assumes 

uniform hemispherical illumination, the modified path sampling lowers variance 

even when the illumination is nonuniform.  

• The images rendered with classical sampling use 100 samples/pixel while in 

our results we trace about 50% more samples/pixel in the same time.  

• While the speedup is a profitable side-effect, most of the variance reduction is 

due to the sampling pdfs closely approximating the zero-variance sampling 

scheme.  

• As on the previous slide, the subsurface medium has a single scattering 

albedo of 0.943 for all wavelengths and index-matched smooth boundaries.  

• The individual rows show results for different environment maps. 
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• There are a few reasons for which the Dwivedi sampling scheme still yields a 

substantial amount of variance, despite being derived from a zero-variance 

scheme. 

• First, the assumed solution inside of the medium is a poor approximation when 

absorption is high. 

 



• Second, the Dwivedi scheme assumes that the exponential importance 

solution extends all the way outside of the medium, when in fact, the 

importance is constant (equal to one) for any point outside of the medium 

(remember that ‘escape’ is our only source of importance and it does not 

matter to us where exactly we escape from the medium). 

 

 



• We can see in these plots that there can be a significant discrepancy between 

the directional distributions assumed by Dwivedi and those obtained by a 

reference MC simulation, especially just below the surface. This is a 

consequence of both considering only the discrete asymptotic mode of the true 

solution and ignoring the boundary. 

 

 



• In our work on improving the Dwivedi scheme, we build on the paper by 

Hoogenboom [2008] who describes precisely how to construct a truly zero-

variance walk for a half-space that considers the correct probability of escaping 

from the medium at any given step. 

• To approach the zero variance ideal more closely, we employ a better 

approximation of the solution inside the half-space, based on matching the 1st 

and 2nd moments of the true solution. 

• Another important aspect is that we explicitly take the boundary into account. 

This has a significant effect on the probability of escaping the medium and on 

the shape of the angular distribution. 

 

 



• With this improved scheme, we are able to achieve a variance reduction of two 

orders of magnitude compared to classical sampling. 

• So far, we have only tested the scheme in our synthetic half-space simulator. 

Application to rendering is an ongoing work. 



• Much work remains to be done.  

 

• First, in our tests, we have assumed index-matched boundary.  Changing the 

roughness or Fresnel ratio at the boundary does actually change the 

magnitude of the asymptotic term, but not its decay rate. Because the Dwivedi 

sampling discards the transient terms and renormalize, the magnitude of the 

asymptotic part goes away, and the Dwivedi scheme is then completely 

invariant to the boundary conditions.  

• However, in our improved approach, changing the boundary condition - and 

therefore the magnitude of the solution - has a huge effect. This is because in 

the improved method we strictly separate the solution approximation inside of 

the medium (an appropriately scaled exponential), and outside (constant, unit 

source of importance). So one can say that Dwivedi's invariance to boundary 

conditions is only a lucky 'artifact' of some major simplifications in his scheme. 

 

• Another open issue is anisotropic scattering. As the phase function changes 

away from isotropic, more and more discrete asymptotic terms appear. You 

can pick the largest one and still apply Dwivedi’s scheme with success (we've 

tried HG with g = 0.75 and still get a nice variance reduction). 

 

• Of course, we still need to apply our improved scheme in rendering. 

 



• And finally, we believe there is much space for exploring other applications of 

the zero-variance theory in rendering problems. 



• In conclusion, in this talk we have proposed a first practical solution for 

subsurface scattering based on MC simulation. 

• Unlike for analytical BSSRDFs, the accuracy of the scheme is not affected by 

the departure from model assumptions. 

• To achieve this goal, we have built upon the theory of zero-variance random 

walk. To the best of our knowledge, we are the first to bring this theory to the 

attention of the computer graphics research community. 








