Reconstructing Personalized Anatomical Models for Physics-based Body Animation

Petr Kadlecek^{*} Alexandru-Eugen Ichim^{*} Tiantian Liu Jaroslav Krivanek Ladislav Kavan

* joint first authors

- I. Build an anatomical rigged volumetric model from 3D scan data.
- Animate through physics simulation.
 e.g. with MOCAP data.

RELATED WORK

Data-driven

Forward Simulation Only

Inverse Material Modeling

CONTRIBUTIONS

- First method to reconstruct a fully physics-based subject-specific anatomical model
- New elastic potential more suitable for solving the inverse reconstruction problem
- Use different material types and growth models
- Collisions at reconstruction time

PIPELINE

TEMPLATE MODEL

through sampled bone vertices.

The skeleton offers both pose and character-specific parametrization.

TEMPLATE MODEL

PHYSICS-BASED SKINNING

Solve the optimization problem: $\operatorname{Skin}(\mathbf{X}^{\operatorname{src}}, \boldsymbol{\theta}_i, \boldsymbol{\pi}) = \operatorname{argmin}_{\mathbf{X}} E_{\operatorname{skin}}(\mathbf{X}^{\operatorname{src}}, \mathbf{X}, \boldsymbol{\theta}_i, \boldsymbol{\pi})$

INVERSE PHYSICS REGISTRATION

INVERSE PHYSICS REGISTRATION

FAUST Dataset 1

Input Scans

RESULTS – GROWTH MODEL

RESULTS – INVERSE COLLISIONS

RESULTS – INVERSE GRAVITY

ANIMATION

RESULTS – MOCAP ANIMATION

Walking Cycle

RESULTS – INERTIAL EFFECTS

Jumping Jacks Sequence - Faust 1

RESULTS – MUSCLE CONTRACTION

Skeletal Motion Only

Skeletal Motion and Bicep Contraction

LIMITATIONS AND FUTURE WORK

- Only capture large- and medium-scale details. The quality of the results depends on the template model.
- Muscle-bone interactions, e.g., collisions, sliding
- Due to the complexity of the optimization problem, we cannot scale to fitting more than 10 scans at the same time.
- Can only handle real scans. Fantastical creatures might need a different template model.
- Estimate the muscle contractions/forces from the scans.
- Perform reconstructions from sequences of scans, where the body is not in a steady-state.
- Biomechanics and computer graphics

Reconstructing Personalized Anatomical Models for Physics-based Body Animation

Thank you for your attention.

Petr Kadlecek* Alexandru-Eugen Ichim* Tiantian Liu Jaroslav Krivanek Ladislav Kavan

* joint first authors