Bi-Directional Polarised Light Transport

M. Mojzík T. Skřivan A. Wilkie J. Křivánek
Charles University in Prague

Computer
Graphics
Charles
University

Motivation

Motivation

State of Polarisation Support

- Goal: Support polarised light in bi-directional light transport algorithms

State of Polarisation Support

- Goal: Support polarised light in bi-directional light transport algorithms
- Previous implementations:
- only for uni-directional path-tracer
- details already gathered [Wilkie et al 2012]

State of Polarisation Support

- Goal: Support polarised light in bi-directional light transport algorithms
- Previous implementations:
- only for uni-directional path-tracer
- details already gathered [Wilkie et al 2012]
- Can we use it for bi-directional light transport?

Contribution

Contribution

- Radiometry of polarised light transport

Contribution

- Radiometry of polarised light transport
- Reference implementation of bi-directional algorithms

Proposed theory

Why New Theory?

- Goal: Generalize

Rendering eq.: $\quad L_{\mathrm{o}}=L_{\mathrm{e}}+\int_{S_{2}} f\left(\omega_{\mathrm{i}}, \omega_{\mathrm{o}}\right) L_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) d \omega_{\mathrm{i}}^{\perp}$
Measurement eq.: $\quad I=\int_{S_{2}} W_{\mathrm{e}}(\omega) L_{\mathrm{i}}(\omega) d \omega^{\perp}$

Why New Theory?

- Goal: Generalize

$$
\text { Rendering eq.: } \quad L_{\mathrm{o}}=L_{\mathrm{e}}+\int_{S_{2}} f\left(\omega_{\mathrm{i}}, \omega_{\mathrm{o}}\right) L_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) d \omega_{\mathrm{i}}^{\perp}
$$

Measurement eq.: $\quad I=\int_{S_{2}} W_{\mathrm{e}}(\omega) L_{\mathrm{i}}(\omega) d \omega^{\perp}$

- What is radiance L, BSDF f and importance W in the context of polarised light?
- Radiance:

$$
\begin{array}{cl}
\text { classical: } & L: \underbrace{\mathcal{M} \times S^{2}}_{\text {ray space }} \rightarrow \mathbb{R} \\
\text { polarised: } & L: \mathcal{M} \times S^{2} \rightarrow ?
\end{array}
$$

Brief Overview of Polarised Light

Stokes Vector

- We describe polarised light with Stokes vector \boldsymbol{S}

$$
\boldsymbol{S}=\left(S_{0}, S_{1}, S_{2}, S_{3}\right)
$$

$\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)$
$\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)$
$\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)$

- The Stokes vector depend on the choice of the coordinate system

Mueller Matrix

- Muller matrix M describes what happens to the light when it bounces of the surface

$$
\left(\begin{array}{c}
S_{0}^{\prime} \\
S_{1}^{\prime} \\
S_{2}^{\prime} \\
S_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right)\left(\begin{array}{c}
S_{0} \\
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right)
$$

- Its components depend on the coordinate frame of the incoming and outgoing light

Proposed Theory

Radiance

- Radiance in polarised light transport

$$
L: \mathcal{M} \times S^{2} \rightarrow ?
$$

Radiance

- First guess:

$$
\boldsymbol{L}: \mathcal{M} \times S^{2} \rightarrow \mathbb{R}^{4}
$$

Radiance

- First guess:

$$
L: \mathcal{M} \times S^{2} \rightarrow \mathbb{R}^{K}
$$

Bad choice: missing coordinate frame

Radiance

- First guess:

$$
L: \mathcal{M} \times S^{2} \rightarrow \mathbb{R}^{K}
$$

Bad choice: missing coordinate frame

- Solution:

$$
\boldsymbol{L}:(\boldsymbol{x}, \omega) \rightarrow[\boldsymbol{S}, F]
$$

Radiance

- First guess:

$$
L: \mathcal{M} \times S^{2} \rightarrow \mathbb{R}^{K}
$$

Bad choice: missing coordinate frame

- Solution:

$$
\boldsymbol{L}:(\boldsymbol{x}, \omega) \rightarrow[\boldsymbol{S}, F]
$$

- Stokes space \mathbb{S}_{ω} : space of all pairs, Stokes vector S and its coordinate frame F

$$
\boldsymbol{L}: \mathcal{M} \times S^{2} \rightarrow \mathbb{S}_{\omega}
$$

BSDF

- BSDF in polarised light transport

$$
\boldsymbol{f}: \mathcal{M} \times S^{2} \times S^{2} \rightarrow ?
$$

BSDF

- First guess:

$$
f: \mathcal{M} \times S^{2} \times S^{2} \rightarrow \mathbb{R}^{4 \times 4}
$$

BSDF

- First guess:

$$
f: \mathcal{M} \times S^{2} \times S^{2} \rightarrow \mathbb{R}^{4 \times 4}
$$

Bad choice: missing coordinate frames

BSDF

- First guess:

$$
f: \mathcal{M} \times S^{2} \times S^{2} \rightarrow \mathbb{R}^{4 \times 4}
$$

Bad choice: missing coordinate frames

- Solution:

$$
\boldsymbol{f}:\left(\boldsymbol{x}, \omega_{\mathrm{i}}, \omega_{\mathrm{o}}\right) \rightarrow\left[M, F_{\mathrm{i}}, F_{\mathrm{o}}\right]
$$

BSDF

- First guess:

$$
f: \mathcal{M} \times S^{2} \times S^{2} \rightarrow \mathbb{R}^{4 \times 4}
$$

Bad choice: missing coordinate frames

- Solution:

$$
\boldsymbol{f}:\left(\boldsymbol{x}, \omega_{\mathrm{i}}, \omega_{\mathrm{o}}\right) \rightarrow\left[M, F_{\mathrm{i}}, F_{\mathrm{o}}\right]
$$

- Mueller space $\mathbb{M}_{\omega_{i}}^{\omega_{o}}$: space of all triplets, Mueller matrix M, incoming frame F_{i} and outgoing frame F_{o}

$$
f: \mathcal{M} \times S^{2} \times S^{2} \rightarrow \mathbb{M}_{\omega_{\mathrm{i}}}^{\omega_{0}}
$$

Operations on \mathbb{S}_{ω} and $\mathbb{M}_{\omega_{i}}^{\omega_{o}}$

- Define integration and multiplication

$$
\boldsymbol{L}_{\mathrm{o}}=\boldsymbol{L}_{\mathrm{e}}+\int_{S_{2}} \boldsymbol{f}\left(\omega_{\mathrm{i}}, \omega_{\mathrm{o}}\right) * \boldsymbol{L}_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) d \omega_{\mathrm{i}}^{\perp}
$$

Operations on \mathbb{S}_{ω} and $\mathbb{M}_{\omega_{i}}^{\omega_{o}}$

- Define integration and multiplication

$$
\boldsymbol{L}_{\mathrm{o}}=\boldsymbol{L}_{\mathrm{e}}+\int_{S_{2}} \boldsymbol{f}\left(\omega_{\mathrm{i}}, \omega_{\mathrm{o}}\right) * \boldsymbol{L}_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) d \omega_{\mathrm{i}}^{\perp}
$$

- Multiplication

$$
\begin{gathered}
{\left[M, F_{\mathrm{i}}, F_{\mathrm{o}}\right] *[\boldsymbol{S}, F]=[\underbrace{\mathcal{F}_{\mathrm{i}} F^{-1}}_{\text {transformation from } F \text { to } F_{\mathrm{i}}} \boldsymbol{S}, F_{\mathrm{o}}]}
\end{gathered}
$$

Operations on \mathbb{S}_{ω} and $\mathbb{M}_{\omega_{i}}^{\omega_{0}}$

- Define integration and multiplication

$$
\boldsymbol{L}_{\mathrm{o}}=\boldsymbol{L}_{\mathrm{e}}+\int_{S_{2}} \boldsymbol{f}\left(\omega_{\mathrm{i}}, \omega_{\mathrm{o}}\right) * \boldsymbol{L}_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) d \omega_{\mathrm{i}}^{\perp}
$$

- Multiplication

$$
\begin{array}{r}
{\left[M, F_{\mathrm{i}}, F_{\mathrm{o}}\right] *[\boldsymbol{S}, F]=[M \underbrace{F_{\mathrm{i}} F^{-1}}_{\text {transformation from } F \text { to } F_{\mathrm{i}}} \boldsymbol{S}, F_{\mathrm{o}}]}
\end{array}
$$

- Integration \Longleftrightarrow addition

$$
\begin{aligned}
& {[\boldsymbol{S}, F]+[\boldsymbol{T}, G] }=[\boldsymbol{S}+\underbrace{F G^{-1}}_{\text {transformation from } G \text { to } F} \boldsymbol{T}, F] \\
&
\end{aligned}
$$

Importance

- Measurement equation

$$
\boldsymbol{I}=\int_{S_{2}} \boldsymbol{W}_{\mathrm{e}}(\omega) \boldsymbol{L}_{\mathrm{i}}(\omega) d \omega^{\perp}
$$

- Importance \Longleftrightarrow camera/eye sensitivity

Measurement

$$
\boldsymbol{S}^{\prime}=\underbrace{F G^{-1}}_{\text {frame transformation }} \boldsymbol{S} \quad I=\frac{1}{2}\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
S_{0}^{\prime} \\
S_{1}^{\prime} \\
S_{2}^{\prime} \\
S_{3}^{\prime}
\end{array}\right)
$$

Measurement

$$
\underset{\text { frame transformation }}{\boldsymbol{S}^{\prime}=\underbrace{F G^{-1}} \boldsymbol{S}}\left(\begin{array}{c}
I_{0} \\
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
S_{0}^{\prime} \\
S_{1}^{\prime} \\
S_{2}^{\prime} \\
S_{3}^{\prime}
\end{array}\right)
$$

Importance

- Importance for polarised light transport

$$
\boldsymbol{W}^{T}:(\boldsymbol{x}, \omega) \rightarrow\left[W^{T}, F\right]
$$

Importance

- Importance for polarised light transport

$$
\boldsymbol{W}^{T}:(\boldsymbol{x}, \omega) \rightarrow\left[W^{T}, F\right]
$$

- Importance space $\overline{\mathbb{I}}_{\omega_{i}}$: space of all pairs, measurement matrix W^{T} and its coordinate frame F

$$
\boldsymbol{W}^{T}: \mathcal{M} \times S^{2} \rightarrow \overline{\mathbb{I}}_{\omega}
$$

Importance

- Importance for polarised light transport

$$
\boldsymbol{W}^{T}:(\boldsymbol{x}, \omega) \rightarrow\left[W^{T}, F\right]
$$

- Importance space $\overline{\mathbb{I}}_{\omega_{i}}$: space of all pairs, measurement matrix W^{T} and its coordinate frame F

$$
\boldsymbol{W}^{T}: \mathcal{M} \times S^{2} \rightarrow \overline{\mathbb{I}}_{\omega}
$$

- Define multiplication

$$
\boldsymbol{I}=\int_{S_{2}} \boldsymbol{W}_{\mathrm{e}}^{T}(\omega) * \boldsymbol{L}_{\mathrm{i}}(\omega) d \omega^{\perp}
$$

Summary of Theory

- We have defined radiance, BSDF and importance in the context of the polarising light transport
- Rendering and measurement equations are now well defined
- Path integral formulation is now well defined too

Reference implementation

Target platform

- Extending SmallUPBP
- Non-polarising algorithms already implemented.
- Better presents the necessary changes.

Polarisation-Capable Uni-Directional Path Tracing

Polarisation-Capable Uni-Directional Path Tracing

- $\mathbb{S}_{\omega} \Rightarrow$ Light, $\mathbb{M}_{\omega_{o}}^{\omega_{i}} \Rightarrow$ Attenuation
- Light sources and BSDF return them
- Potential reordering of expressions

Polarisation-Capable Uni-Directional Path Tracing

- $\mathbb{S}_{\omega} \Rightarrow$ Light, $\mathbb{M}_{\omega_{o}}^{\omega_{i}} \Rightarrow$ Attenuation
- Light sources and BSDF return them
- Potential reordering of expressions
- Matches standad polarisation support
- Data type separation
- Clear changes to light transport code itself

Polarisation-Capable Bi-Directional Path Tracing

 Importance- Matrix representation of importance
- Measuring Stokes components - identity matrix
- Coordinate frame based on camera orientation

Polarisation-Capable Bi-Directional Path Tracing

Path direction

- Non-polarising BDPT can disregard path direction with BRDF

$$
f\left(\omega_{i} \rightarrow \omega_{o}\right)=f\left(\omega_{o} \rightarrow \omega_{i}\right)
$$

- What about polarising BDPT:

$$
\mathbf{f}\left(\omega_{i} \rightarrow \omega_{o}\right) \stackrel{?}{=} \mathbf{f}\left(\omega_{o} \rightarrow \omega_{i}\right)
$$

Polarisation-Capable Bi-Directional Path Tracing

Path direction

- Non-polarising BDPT can disregard path direction with BRDF

$$
f\left(\omega_{i} \rightarrow \omega_{o}\right)=f\left(\omega_{o} \rightarrow \omega_{i}\right)
$$

- What about polarising BDPT:

$$
\mathbf{f}\left(\omega_{i} \rightarrow \omega_{o}\right) \neq \mathbf{f}\left(\omega_{o} \rightarrow \omega_{i}\right)
$$

- Matrices match, but frames do not.
- incoming frame must match incoming direction
- outgoing frame must match outgoing direction
- Information of path direction propagated

Polarisation-Capable Photon Mapping

- Tracing works the same
- Type Light stored in photon map
- Photons transformed through BSDF into view direction
- Averaging leads to eligible operations

Polarisation-Capable Volumetric Bi-Directional Path Tra

- Equivalent changes to BDPT and VPT
- Transmittance accumulation + bi-directional $=$ problem
- Accumulation dependant on path direction

Results and optimizations

Test Scenes

S_{0}

degree of polarisation overlaid in red

Test Scenes

S_{0}

degree of polarisation overlaid in red

Test Scenes

S_{0}

degree of polarisation overlaid in red

Test Scenes

Volumetric glass

S_{0}

degree of polarisation overlaid in red

Bathroom scene

S_{0}

degree of polarisation overlaid in red

Efficiency

Efficiency

- Polarisation support brings overhead
- Comparing with non-polarising version
- Optimizations on data types
- unpolarised Light
- depolarising Attenuation
- plain Attenution

Efficiency

Conclusion

- Reformulated the radiometry for polarised light
- Developed reference implmenetation of BDPT, VBDPT and VCM
- Examined the efficiency of polarisation support and suggested optimizations

Thank you.

Acknowledgement

Work supported by grants GAR 16-08111S and SVV-2016-260332.

