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Figure 1: Sampling quality of our unified sampling framework for an analytic isotropic BRDF model with spatially varying roughness values
(left) and a measured BRDF from the MERL database (right). By using a PMM representation for the BRDF sampling function, our method
outperforms the current state-of-the-art sampling methods (as seen in the insets at the top and the false-color variance plots at the bottom).

Abstract
Virtually all existing analytic BRDF models are built from multiple functional components (e.g., Fresnel term, normal distribution
function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a
subset of the model’s components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively
impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified
BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the
associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines.
These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM
representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our
representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting
manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Keywords: BSDF, Importance Sampling, Product Importance Sampling, Global Illumination, Monte-Carlo Sampling

1. Introduction

The recent widespread adoption of physically-based rendering in
the visual effects industry [Jar13, FWKH17] has had, among others,
the following two effects. First, complex analytical or measured
bi-directional reflectance distribution functions (BRDFs) are the
prevalent way of modeling material appearance nowadays [Bur12].
Second, the need to accurately sample the BRDFs in the probabilis-
tic context of Monte Carlo rendering methods has become essential.
This is because the efficiency of Monte Carlo solvers largely de-
pends on their ability to sample transport paths proportional to the
illumination integrand of the rendering equation [Kaj86, Vea97].

Since the BRDF is one of the two key factors in the integrand, any
mismatch between its shape and the sampling probability density
function (PDF) will negatively impact the variance of the resulting
light transport solution.

Our work addresses exactly this issue: to provide a comprehen-
sive sampling methodology for complex BRDFs. Since analytic
physically-based BRDFs typically consist of multiple nontrivial
factors [PJH16], deriving a tight PDF proportional to their shape
is a research challenge – especially because such PDFs need to be
model-specific [WMLT07, Hd14]. For measured BRDFs, there ex-
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S. Herholz, O. Elek, J. Schindel, J. Křivánek, H. P. A. Lensch / Manifold PMM

ists no inherently correct sampling strategy, hence one has to resort
to expensive tabulated sampling.

Considering the above, the core idea of our approach is to use
a generic parametric model to agnostically represent the shape of
each BRDF. Our approach builds on the pioneering work of Lafor-
tune et al. [LFTG97] to represent BRDFs using a unified, non-linear,
parametric mixture model (PMM, Sec. 3). While we use standard nu-
merical optimization techniques for fitting the PMM to the BRDF’s
shape, there are two key improvements (Sec. 4). First, our objective
function is designed to optimize the fit for sampling, not direct visu-
alization. And second, we perform the fitting in the meta-space of
the PMM parameters. We show that with proper regularization, in
this space the parameters of the PMM form a smooth manifold, and
can thus be represented by an interpolating basis such as generalized
B-splines. We can therefore represent the sampling PDFs in a very
compact yet complete manner, i. e., covering the full directional
variation as well as the variation of the BRDF’s shape parameter (in
case of analytic ones). The main advantages of this approach are:

• Generality: no reliance on any specific assumptions about the
form of the represented BRDFs, with the exception that they are
smooth functions.

• Versatility: the PMM model can be configured to suit the needs
of different target applications, by using different component
kernels and their number in the mixture. We evaluate this by fitting
two mixture models with different degrees of expressiveness:
Gaussians and skewed Gaussians.

• Uniformity: the same sampling interface be used for a range of
different BRDFs by supplying different meta-parameters. This
simplifies implementation, requiring only a single sampling rou-
tine to be optimized and maintained.

Compared to the current state of the art (Sec. 2), our sampling
framework yields convincingly better BRDF sampling, both in terms
of overall sampling accuracy and the number of valid samples
(Sec. 6). In addition, our approach:

• supports the sampling of spatially varying BRDFs thanks to the
smooth manifold representation in the meta-parametric space;

• allows easy inclusion of additional terms (most prominently the
cosine of the incident angle);

• provides an approximation of the material’s directional hemi-
spherical reflectance (i. e., directional albedo);

• allows sampling according to the full illumination integral
in PMM-based product sampling frameworks such as Her-
holz et al. [HEV∗16].

Currently, the main shortcoming of our method is its limitation to
isotropic BRDFs. However, this is only the property of our current
fitting methodology (Sec. 4), and we firmly believe an extension to
anisotropic BRDFs is only a quantitative issue. Even in its current
form, our framework provides superior sampling for a range of both
analytic BRDFs (Phong, Ward, Torrance-Sparrow using GGX and
Beckmann microfacet distributions [PJH16]) and measured ones
(from the MERL database [MPBM03]), as we show in Fig. 1 and
demonstrate in Sec. 6 both numerically and in rendered images.

2. Related Work

Material modelling. For image synthesis purposes, material ap-
pearance is predominantly modeled by BRDFs, potentially enriched
by spatially varying components (SVBRDFs) or further general-
ized to high-dimensional texturing functions (BTFs). The number
of works in this area is particularly extensive, hence we refer the
interested reader to the excellent overview by Dorsey et al. [DRS08].
For physically based analytical models (which are our main target),
surface interaction is most commonly captured by the Torrance-
Sparrow model [TS67, CT82] with the Beckmann or more recently
the GGX function [WMLT07] applied to model the micro-facet
distribution. A well-known application from the industrial context
is the Disney “principled” BRDF [Bur12], among others. Finally,
most recent progress in this direction is well represented by the
works of Heitz et al. [Hd14, HHdD16, HDHN16], as well as Rib-
ardière et al. [MRS17] who considered a bi-variate micro-facet
distribution for the first time.

For BRDF importance sampling, Walter et al. [WMLT07] pro-
vide a great overview and analysis of available methods. They also
proposed an improved approach by sampling the normal distribution
function (NDF) weighted by the cosine between the half vector
and normal itself. Heitz and d’Eon [Hd14] further increase the
sampling efficiency by only sampling the distribution of visible
normals, decreasing the incidence of invalid samples on the bot-
tom hemisphere. These methods usually achieve very good results,
but also demonstrate the difficulty of sampling the entire BRDF
model by jointly considering each term, which only gets worse
with increasing complexity of the model. Our approach circumvents
this issue by treating the BRDF holistically, therefore not caring
about its underlying complexity but only fitting to its resulting shape.
Lawrence et al. [LRR04] achieve comparable results based on a fac-
tored BRDF representation, but akin to Herholz et al. [HEV∗16] they
tabulate their fits over some dimensions of the BRDF, which makes
the methods impractical for SVBRDFs (due to storage requirements
and lack of interpolation in the discretized dimensions).

Model fitting. The main limitation in representing realistic mate-
rials in terms of analytic models (be it for direct visualization or
sampling) is the frequent lack of expressiveness of the latter to cap-
ture the complexity of the former. As Ngan et al. [NDM05] have
demonstrated by fitting a selection of analytic BRDFs to a large
database of measured materials, it is very challenging to find a single
analytical model that is both sufficiently compact and expressive.

Fitting measured or simulated BRDFs (and other functions)
with linear models has a long tradition in computer graphics, us-
ing piecewise-continuous representations [Kaj85, GMN94], spher-
ical harmonics [CMS87, WAT92], spherical wavelets [SS95] or
Zernike polynomials [KDS96], to name a few examples. Among
the first to recognize that capturing the qualitative features of
BRDFs might be preferable to a numerically optimal fit were Lafor-
tune et al. [LFTG97]. In this seminal paper they proposed to use a
non-linear fitting model based on normalized cosine lobes, with the
underlying argument that linear basis functions are generally agnos-
tic to features of the target BRDFs, such as glossy and off-specular
reflections. Albeit with different conditions and requirements, our
work applies this approach to obtaining sampling PDFs by extend-
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ing the fitting to the higher-dimensional manifold space of model
meta-parameters.

For directly representing glossy SVBRDFs in static scenes,
Wang et al. [WRG∗09] efficiently fit sums of spherical Gaussians
to the dominant parts of the model; Xu et al. [XSD∗13] generalize
the method to anisotropic Gaussians and distributions thereof. On a
related note, Heitz et al. [HHdD16] employ non-linear optimization
for fitting a generalized, transformed cosine lobe to model glossy
reflections of area light sources. This representation is unimodal,
however, and so it remains an open question how to efficiently fit
a mixture model of such transformed cosine lobes. In the context
of volumetric light transport, Jakob et al. [JRJ11] use expectation-
maximization to fit photon distributions for approximate rendering.

We point out that fitting a BRDF for direct representation versus
sampling conforms to very distinct criteria. For the former, the
representation needs to preserve salient perceptual features of the
BRDF, while for sampling, the focus is on global numerical accuracy.
This is because even small deviations from the actual BRDF can
cause significant variance spikes, especially in those parts of its
domain where the BRDF values are small. Our work therefore
focuses on establishing a robust framework for the sampling case.

Light transport sampling. Several works [LW95, Jen95, HP02],
and more recently Vorba et al. [VKŠ∗14] and Dahm and
Keller [DK17], have shown that including an approximation of
the (indirect) incident illumination helps to guide the transport paths
to important regions in the scene. This significantly decreases the
variance of Monte Carlo solvers, especially for difficult scenes dom-
inated by complex indirect transport. Herholz et al. [HEV∗16] fol-
lowed up on Vorba et al.’s concept, by using a Gaussian mixture
model (GMM) representation of the BRDF. Through the calculation
of the product of the GMMs for the BRDF and the incident illumi-
nation, they were able to sample an approximate representation of
the product integrand. However, similar to Lawrence et al. [LRR04]
they rely on an impractical, densely tabulated representation of the
GMM parameters, which is one of the shortcomings we address.

3. Background

This section introduces the two key concepts underlying our method:
we first generally elaborate the optimal ‘local’ BRDF sampling PDF
in the Monte Carlo context (Sec. 3.1), followed by a summary of
parametric mixture models which we use to represent the actual
BRDF-specific PDFs (Sec. 3.2).

3.1. Rendering Equation and BRDF Sampling

The canonical problem of rendering—synthesizing physically-
plausible and realistic images—is governed by the rendering equa-
tion [Kaj86]. The key challenge here is to evaluate the surface
radiance for a given point x reflected into the directionωo from all
directions on the upper hemisphereΩ+:

Lr(x,ωo) =
∫
Ω+

Li(x,ωi) fr(x,ωo,ωi)cosθi dωi. (1)

In the Monte Carlo context, sampling exactly in proportion to the in-
tegrand would yield a perfect zero-variance solution [Hoo08,KW08].

Since the integrand itself is the unknown solution, one possible ap-
proach is to pre-compute an approximation of the incident radiance
Li, and calculate and sample the product with the cosine-weighted
BRDF fr in run-time [VKŠ∗14, HEV∗16].

But regardless whether the approximation of Li is available, ob-
taining a tightly fitting PDF for sampling the BRDF is still essential
for minimizing the estimator variance for Eq. 1. The optimal local
sampling strategy therefore encapsulates all factors of the integrand,
beside the unknown radiance Li, into a single composite PDF:

p(ωi|x,ωo) ∝ fr(x,ωi,ωo)cosθi. (2)

Deriving this optimal PDF is still far from trivial, as virtually all
physically-based BRDFs consist of multiple terms (e. g., Fresnel,
normal distribution function (NDF), and shadowing term). Common
sampling approaches then typically try to identify the dominant term
in Eq. 2 (such as the NDF [LRR04, Hd14] or even the cosine term
in case of near-diffuse BRDFs) and sample according to it. This in
turn introduces additional variance into the solution in proportion
to the neglected terms, and can even yield invalid samples (as we
elaborate in Sec. 6.1).

Our solution to this problem is to obtain an analytic fit to the
entire right side of Eq. 2, in particular using parametric mixture
models. Beside the fact that this solution is decoupled from the
complexity of the underlying BRDF model, it can also be directly
incorporated into the product sampling approaches discussed above.

3.2. Parametric Mixture Models

Parametric mixture models (PMMs) are used in numerous statistical
contexts, for instance classification or model representation in ma-
chine learning. A PMM consists of a sum of K weighted parametric
‘kernel’ functions and their corresponding parameter sets Θk.

P (y|Θ) =
K

∑
k=1
πk ·K (y|Θk) (3)

Θ= {Θ1, ...,Θk}. (4)

The weights πk define the contribution of each component to the
mixture. Based on the underlying kernel function the resulting mix-
ture model can have a variety of properties (sampling, integration,
product calculation, etc.) suitable for different applications. For ex-
ample, if the used kernel function is a probability density function
and the weights of the mixture fulfill the constraints that πk ≥ 0 and
∑πk = 1, the resulting mixture also represents a valid PDF.

Gaussian mixture model (GMM). One of the most common
PMMs is the Gaussian mixture model (GMM), which is based
on multivariate normal distributions [Bis06].

KG (y|Θk) = N (y|µk,Σk). (5)

The parameters for each component of a GMM are the mean µk and
the covariance matrix Σk of each normal distribution.

Skewed Gaussian mixture model (SMM). An extension to the
GMM is the skewed Gaussian mixture model (SMM). It replaces
the multivariate normal distribution by its skewed counterpart
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(SND) [AC99], allowing the kernels to adapt to non-symmetric
features of the data or function represented through the SMM:

KS (y|Θk) = 2 ·N (y|µk,Σk) · N̄ ((y−µk)
T sk). (6)

The SND is a product of the multivariate normal distribution N and
the cumulative distribution function N̄ of the standard univariate
normal distribution. The additional vector parameter sk ∈ (−∞,∞)d

defines the skewness of the distribution, where d is the dimension
of the SND – if null, the SND reduces to the regular multivariate
ND. Notably, the skewness of the SND is a desirable when it comes
to representing the cosine term and the hemispherical boundary for
BRDF lobes at grazing angles (Sec. 6.1).

Due to the ability to efficiently generate samples, fit and represent
distributions via expectation maximization or calculating the product
of two GMMs, they have been proven to be useful in computer graph-
ics and rendering [WRG∗09, JRJ11, XSD∗13, VKŠ∗14, HEV∗16].
Since the skewed normal distribution is based on the normal dis-
tribution, it inherits some of its features, such as efficient sample
generation or product calculation [AC99].

On the flip side, simple operations like calculating dis-
tances [LH00, MS05] or the interpolation between multiple PMMs
are not trivial. This is due to the fact that the correspondence between
the components of two mixtures is generally unknown, unless given
a-priori. Our solution is to define the PMM parameters in a smooth
manifold space over the dimensions of the BRDF parameters. This
way, we are not only able to achieve a compact BRDF-specific
representation of the PMMs, but also overcome the hurdle of inter-
polating two PMM representations between different (continuously
varying) sets of BRDF parameters.

4. Unified BRDF Sampling Framework

The primary motivation for this work has been to provide a unified
sampling framework specifically designed for BRDFs (according to
Eq. 2), but without requiring any knowledge about the complexity
of each individual BRDF. We especially aim to make the design
of new material appearance models (that is, BRDFs) easier by re-
moving the need to manually design sampling functions for them.
The secondary objective was for the resulting representation to be
useful in a wider array of sampling tasks, e. g., product importance
sampling [HEV∗16], sampling mixtures of BRDFs, or sampling
spatially varying BRDFs.

Our solution lies in the realization that probabilistically sampling
a BRDF conforms to different optimality criteria than their direct
visualization. Most prominently, sampling error is relative, since
even a small BRDF value can cause visible variance spikes if sam-
pled with a still significantly smaller PDF. On top of a generalized
parametric mixture model (PMM) as a representation for the PDF,
we utilize a loss function that reflects the relative nature of the sam-
pling error. Then, to overcome the issues with interpolating between
instances of PMM (cf. Sec. 3.2), we perform the fitting jointly over
all dimensions of the BRDF, and define all its meta-parameters on
a smooth manifold in the respective domains. This manifold space
can then be compactly represented by smooth interpolating func-
tions (we use generalized B-splines), which serves as an implicit
regularizer during the fitting process, and at the same time provides
the benefit of continuous queries in the meta-parametric domain.

Later in Sec. 6, we provide and evaluate PDF fits for a range of
common analytic BRDFs (Phong, Ward, Torrance-Sparrow using
GGX and Beckmann microfacet distributions), as well as measured
ones (from the MERL database). We also compare two different
PMM models: Gaussians and skewed Gaussians (which are particu-
larly suitable for representing asymmetric distributions). While our
framework can potentially handle anisotropic BRDFs (thanks to the
generalized spline representation of the manifold surfaces), due to
technical limitations of our fitting we focus on isotropic BRDFs (de-
tails in Sec. 4.3). We demonstrate that our PDFs yield numerically
and visually better sampling than existing BRDF-specific PDFs
(Secs. 6.1 and 6.2), and are useful for other sampling tasks.

The following exposition has three stages with increasing levels
of abstraction:

• We start in Sec. 4.1 by detailing how to represent and sample
PDFs using generalized PMMs.

• Then in Sec. 4.2 we describe the manifold space for representing
the PMM’s meta-parameters, and explain how this is modeled via
generalized multi-dimensional B-splines.

• Finally in Sec. 4.3 we detail the joint fitting procedure, includ-
ing the optimal objective function which minimizes the PDF’s
sampling error.

4.1. BRDF Representation

Common analytic BRDFs usually consist of a diffuse and a glossy
(directionally dependent) component: we focus on sampling the
latter, since the former is trivial. For measured BRDFs we make no
such distinction. In either case, to decouple our representation from
the complexity of the underlying BRDF, we model its sampling PDF
using general PMMs (see illustration in Fig. 2):

P (ωi|Θq)≈ fr(q,ωi) · cosθi. (7)

Here, for any parameter set q of a given BRDF, our framework
proposes a PMM meta-parametrization Θq that then represents the
corresponding sampling PDF over the domain of incident directions
ωi (cf. Eq. 1). Given our assumption of isotropic BRDFs, we will
hereinafter work with q = {ωo,α}, where α stands for the shape pa-
rameter of typical BRDF models (such as the microfacet roughness).
For measured BRDFs the shape parameter is not necessary.

Following Herholz et al. [HEV∗16], we use the disk mapping
of the hemi-spherical domain of the BRDF to the [−1,1]2 domain.
This converts the space, in which the PMM from Eq. 7 is defined,

 
Optimal PDF PMM Representation

Figure 2: An optimal sampling PDF (cosine-weighted BRDF) and
its corresponding PMM representation with meta-parameters Θq.
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Figure 3: Visualization of the B-spline manifolds for a subset of the GMM meta-parameters (µx and σx) for a rough conductor BRDF using
the GGX NDF, with K = 4 components. The blue points visualize the control points of the B-splines coefficient vectors for the PMM parameter.

from the (hemi-)sphere to a two-dimensional XY-space. Similarly,
since we are only considering isotropic BRDFs (which are invari-
ant to azimuthal rotations) we can reduce the dimension of the
outgoing direction ωo to its zenith angle θo and adjust the PMM
representation later, by rotating it to the desired φo orientation.
The same fact allows us to reduce the PMM meta-parametrization
to Θk = {µx,σx,σy}k for a GMMs and Θk = {µx,σx,σy,sx}k for
SMMs (cf. Sec. 3.2).

For importance-sampling a BRDF according to Eq. 2, we normal-
ize the weights of the PMM and use the corresponding sampling
methods of the used mixture (which are defined analytically for
both GMMs and SMMs, see Apx. A). Conceptually, any PMM capa-
ble of representing hemispherical functions and having an efficient
sampling procedure can be used instead of Gaussian-based ones.

Compared to existing works, our representation:

• models the optimal sampling PDF including the cosine factor (not
only the BRDF or even only some of its terms), and

• the PMM represents the un-normalized version of Eq. 2.

This has the advantage that it allows accurately estimating the hemi-
spherical directional reflectance (or ‘directional albedo’ hereinafter)
of a BRDF parametrization by simply summing the PMM weights:

f̄r(q) =
∫

fr(q,ωi) · cosθi dωi ≈
K

∑
k=1
πk (8)

We take advantage of this property in Sec. 4.3, and later in Sec. 6.3
we show its benefit for sampling BRDF compositions.

4.2. Manifold Parametric Mixture Model Representation

An overwhelming majority of BRDFs exhibits a good degree of
smoothness – for instance analytic BRDFs are typically defined
by products of smooth functions (e. g., NDF, Fresnel, geometry
term). Consequently, they change smoothly in respect to their non-
directional parameters too (such as the shape parameter α). This
implies that the meta-parameters of the representing model should
likewise follow this behavior, even in the case of a mixture model.

Building up on this assumption the valid PMM meta-parameter
sets used to represent a complete BRDF model would lie on a

set of smooth manifolds (one for each actual PMM parameter
{πk,µk

x,σ
k
x, ...}) – in the PMM’s meta-parameter domain with the

dimensions of R|q| (i. e., same as the BRDF parameters q). With a
K-component PMM, and a kernel function with N parameters, we
need K(N +1) manifolds to represent a complete BRDF model.

Thanks to the assumed smoothness we are able to represent these
manifolds by an interpolation basis, such as generalized B-splines.
For the example of a GMM:

{πk,Θk}= {BCk
π
(q),BCk

µ
(q),BCk

Σ
(q)}. (9)

The coefficient vectors Ck
π, Ck

µ and Ck
Σ define the B-spline manifold

space of the k-th component of the GMM. Each vector contains
M|q| control points regularly distributed in the BRDF parameter
subset q. In this work we use M = 5, which in the case of an analytic
isotropic BRDF model with q = {θo,α} results in a coefficient
vector with the modest size of 5×5 for each PMM meta-parameter.
The order of the B-splines used to represent the manifolds is 3 for
each dimension, which has proven to be flexible enough to cover
the PMM meta-parameter variation. For completeness we provide
the formulas for evaluating a generalized B-spline in Appendix B.

To visualize the smoothness of the meta-parameter manifolds,
Fig. 3 shows an example of such a B-Spline representation for an
isotropic rough conductor BRDF using the GGX normal distribution.
We now follow by describing how the coefficients for the B-Spline
manifold representation can be obtained using non-linear optimiza-
tion. Readers interested more in the practical application of this
framework might skip to Sec. 5.

4.3. PMM Representation Fitting

Fitting the manifold representation of the PMM meta-parameters
faces two major challenges:

• the PMM for a given BRDF parameter set needs to be optimal for
importance-sampling the BRDF according to Eq. 2, and

• the PMM meta-parameters for a given BRDF model should span
a smooth manifold (i. e., should not change abruptly), in order to
be well represented by generalized B-splines.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



S. Herholz, O. Elek, J. Schindel, J. Křivánek, H. P. A. Lensch / Manifold PMM

L2 LR

Figure 4: Left: the effect of different residual functions on the
resulting parametric mixture, which is used for importance-sampling
the BRDF. While the L2 residual ensures a good fit in high-valued
regions, it handles areas with lower values with less importance
(top), compared to our relative loss L r (bottom).

Relative loss function. The task of the loss function is to quantify
the quality (induced error) of a proposed PMM meta-parameter set
Θq for a given BRDF parameter q. During the optimization the
loss is calculated for N different directional samplesωn of Eq. 2 to
compare them to the evaluation of the proposed PMM. For simplicity
we label the BRDF samples as dn = fr(q,ωn)cosθn and the model
evaluations as mn = P (ωn|Θq).

Since the resulting PMM is used by a Monte Carlo estimator to
sample proportionally to Eq. 2, we design a relative loss function L r
which minimizes the variance of this estimator:

L r (dn,mn) =
[dn−mn

mn +ε

]2
. (10)

In contrast to the commonly-used squared error loss function (L2)
our loss considers the relative error between the BRDF and the
PMM representation of its PDF. This mainly ensures that the loss
function strongly penalizes significant under-sampling, in regions of
the BRDF where a small absolute difference in its PDF could cause
hyperbolic increase of variance. A small epsilon ε= 0.001 prevents
numerical instabilities.

Fig. 4 shows the difference between the L2 loss and our relative
loss L r . The L2 loss concentrates on fitting the high-valued peak of
the BRDF but neglects the tail(s), which are equally critical for a
well-behaved estimator.

Manifold fitting. Instead of starting with individual fits of the
PMM meta-parameters over the whole parameter sub-space of a
given BRDF model, and then trying to fit the B-spline manifolds
to these individual fits, we decided to fit the B-spline coefficients
directly. The advantage is that the smoothness of the B-splines acts
as an implicit regularizer for the PMM parameters, which ensures
their smooth variation. To fit the B-spline coefficients C{π,...,s} for a
given PMM model we use the following objective function:

argmin
Cπ,...,Cs

M

∑
m=0

[ N

∑
n=0

L r (fr(qm,ωn)cosθn,P (ωn|Θqm))
]
+R(f̄r(qm),Θqm)

(11)

where the spline coefficients C{π,...,s} are encapsulated in the evalua-
tion ofΘqm . To solve this optimization problem the BRDF parameter
space is discretized into M parameter sets {q1, ...,qM}. For each

I 4

I3

I2

I1

Progressive Fitting Sample Generation

Figure 5: Left: visualization of the progressive fitting process using
4 iterations {I1, ..., I4}. Right: example for the three sample sets
(cf. Sec. 4.3) generated for a microfacet BRDF model for an outgoing
angle θo = π/4 and roughness α= 0.3.

set of N samples we then calculate the loss, and add an additional
regularization term ensuring that the fitted PMM can be used to ap-
proximate the directional albedo f̄r for each BRDF parametrization:

R(f̄r(q),Θq) =
(

N · ∑πk

f̄r(q)

)2
. (12)

For uni-variate BRDF models such the MERL database
[MPBM03], the M parameter sets are distributed over a 1D space
of U different outgoing angles (M =U). For an analytical isotropic
BRDF where the BRDF parameter sub-space is 2D (q = {θo,α})
the M parameter sets cover this space with U angles and V rough-
ness values (M =U ·V ). For all our fits we used the same number
of discretization steps U =V = 63 (see Fig. 5, left).

Progressive fitting. To fit the B-spline coefficients we start with
the parameter set of size M in the center of the BRDF parameter
space (e. g., α= 0.3 and θo = π/4), then progressively extend the
parameter range considered in the evaluated objective function.

Fig. 5, left illustrates this procedure. In the first iteration I1 only
the central set is considered in the B-spline fitting. In the following
iterations (I2 to I4) the range increases until the full BRDF parameter
space is covered. We found that small increments of this range (about
20 iterations) allows the formation of smooth manifolds.

Sample generation. To evaluate the overall error of a proposed
PMM meta-parametrization Θqm the objective function (Eq. 11)
evaluates the loss for N different samples of Eq. 2. There are several
criteria for these samples to ensure good fit. They need to:

• represent the shape of the main BRDF lobe,
• cover the area outside the main lobe on the upper hemisphere,

and finally
• ensure that the fitted PMM is minimized across the lower hemi-

sphere.

To achieve this, three different batches of samples are generated. The
first batch samples 1024 directions using the standard importance-
sampling method of the BRDF, the second are 512 samples uni-
formly distributed over the upper hemisphere, and finally the third
batch consists of a belt of 512 samples around the lower hemisphere

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



S. Herholz, O. Elek, J. Schindel, J. Křivánek, H. P. A. Lensch / Manifold PMM
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Figure 6: Comparing the percentages of valid directional samples for different sample generation methods: respectively, left: the analytic
state-of-the-art sampling, center and right: our SMM and GMM based sampling.

boundary. Fig. 5, right gives an example of such a sample set gener-
ated for a microfacet BRDF using the Beckmann NDF (α= 0.3).

5. Implementation

We integrated our unified PMM-based sampling framework in the
scientific Mitsuba renderer [Jak10]. Since our algorithm only re-
places the sampling and PDF methods of a BRDF, it can be im-
plemented using the standard interfaces, while leaving the actual
integrator code (e. g., the path tracer we use) untouched. The PMM-
based BRDF sampling code, as well as the resulting fits for our
experiments (Sec. 6) will be made public on the project website.

The fitting of the B-spline surfaces, which represent the PMM
meta-parameter manifolds, is done in a pre-processing step the
Ceres [AMO16] optimization package. Since these manifolds con-
tain all the information needed to generate a PDF for each fitted
BRDF, we only need to store one set of manifolds per model. Us-
ing K = 4 GMM / SMM components, these occupy only about
2kB of storage for the analytic BRDFs, and even less for the
MERL [MPBM03] BRDFs (as they have one dimension less).
To translate the exponent of the Phong model to a roughness
value α ∈ [0,1] we use the conversion method described by Wal-
ter et al. [WMLT07]. From the MERL database we fitted and tested
four different materials: blue metallic, nickel, nylon and purple paint.

The overhead of our sampling compared to the state-of-the-art
methods varied from 0% for the Beckmann model (i. e., same cost
as [Hd14]) to about 100% for Ward [War92]. However, since the
directional sampling as such is only a small component in the path
generation process, the average total overhead was only 4% for a
path segment in our renderer evaluation.

6. Results

We evaluate our BRDF sampling framework in the perspective
of its use in stochastic Monte Carlo light transport algorithms. In
Sec. 6.1 we start by numerically analyzing the quality of produced
samples against state-of-the-art sampling methods. Then in Sec. 6.2
we demonstrate the positive impact of our sampling on the rendering
performance, when used in a complete rendering pipeline. Finally,
Sec. 6.3 showcases additional useful applications of our framework.

6.1. Numerical Sampling Evaluation

We evaluate the sampling quality using two metrics: the propor-
tion of valid samples produced, and the overall error of the sam-
pling. The comparison is done against Phong, Ward, and GGX-
and Beckmann-based microfacet BRDFs using their established
sampling routines [War92, LW94, WMLT07, Hd14].

Sample validity. We define a sample as invalid, if generated by
the sampling PDF in a null region of the associated BRDF. This
most prominently happens near the hemispherical boundary, i. e.,
at grazing angles. Such samples need to be avoided, since they
can dramatically increase the solution variance in renderers with
throughput-based path termination strategies.

Fig. 6 visualizes the percentage of valid samples generated from
the standard sampling methods and our PMM-based methods (using
both GMM and SMM for fitting) at different roughness values α ∈
{0.1,0.2,0.4,0.6} and for outgoing angles θo ∈ [0,π/2]. Thanks to
our dedicated fitting strategy which accounts for the hemispherical
boundary (Sec. 4.3) we obtain superior rates across the board. Also
observe that the skewness of the SMM adapts to the hemispherical
boundary better than GMM. While the microfacet model sampling
of Heitz et al. [Hd14] achieves slightly higher validity rates at near-
boundary angles (since they prevent the invalid samples for these
configurations explicitly) we still achieve better results overall.

Relative estimator variance. To evaluate our overall sampling ac-
curacy we computed the estimate of the directional albedo f̄r (defined
in Sec. 4.1) as it is the canonical integrated quantity in our problem.
We use the relative estimator variance V̄ as a metric, which itself is
conceptually equivalent to our relative loss function (Sec. 4.3):

V̄ (X) = E

[(
X−E[X ]

E[X ]

)2
]
. (13)

Where X is a set of random samples estimating f̄r, which are pro-
posed by the different sampling strategies, and E[X ] is equal to the
ground-truth f̄r. We use 4k samples to estimate Eq. 13, and 16k
samples generated with the standard sampling method to obtain the
ground-truth f̄r.
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S. Herholz, O. Elek, J. Schindel, J. Křivánek, H. P. A. Lensch / Manifold PMM

GGX Beckmann

Ward Phong
Our (SMM)

Our (SMM)

[LW94]

[Hd14]

Our (SMM)

Our (SMM)

[War92]
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Figure 7: Comparing the normalized MC variance of estimating
the directional albedo for different BRDFs, using our SMM-based
sampling versus the standard methods.
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Our (GMM)

Our (SMM)
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Figure 8: Similar comparison as in Fig. 7, focusing on the difference
between SMM and GMM fits respectively. Please note the different
error scales in the two comparisons.

Fig. 7 and Fig. 8 evaluate the relative variances for the complete
2D space of BRDF parameters q (outgoing angels and roughness
values). In Fig. 7 we see that our sampling yields dramatically
lower variances than the standard sampling methods, again with
the singular exception of extreme grazing angles in comparison with
Heitz et al. [Hd14]. In Fig. 8 the SMM / GMM comparison leads
to the same conclusion as before, i. e., that the SMM handles the
asymmetric configurations in grazing angles better.

6.2. Renderer Integration

Next, we evaluate our sampling framework when incorporated into
Mitsuba’s path tracer with next event estimation (however, being a
black-box model it can be used by any path-based integrator).

Fig. 9 shows an evaluation of a selection of BRDFs (microfacet
GGX and Ward at two different roughness values, and two materials
from the MERL database [MPBM03]) when sampled by our PMM-
based framework, compared to the respective standard sampling
methods. The sampling for the measured BRDFs was done accord-
ing to Dupuy et al. [DHI∗15] (by first fitting a microfacet BRDF
to each measured one and then using its sampling routines). From
the false-color variance plots, as well as insets, it is clear that our
PMM-based sampling performs on par or better, depending on the
configuration. Table 1 presents a comprehensive evaluation using
the same scene, where we measure the standard RMS error, as well
as proportions of valid samples generated for each configuration.

When analyzing these results, it should be noted that the noise in
the renders results from the variance of the entire estimator, meaning
that even a perfect BRDF sampling (according to Eq. 2) would still
retain the variance of the illumination sampling. That then explains
the discrepancy between the performance gains measured in the
numerical analysis (e. g., in Fig. 7) and the rendered results.

6.3. Additional Benefits

Spatially varying BRDFs. Since our manifold PMM representa-
tion covers a continuous range of the BRDF parameters, we can
seamlessly apply it to SVBRDFs (e. g., with a spatial variance of the
roughness parameter α). In Fig. 1 we show a comparison for a GGX
microfacet BRDF, using a texture to define the roughness variation.

Table 1: RMS errors and proportions of valid samples for rendered
scenes in the same set of configurations as analyzed in Sec. 6.1.

α= 0.1 α= 0.2 α= 0.4 α= 0.6
GGX rMSE | VS rMSE | VS rMSE | VS rMSE | VS
SMM .0448 | 99.7 .0454 | 99.3 .0382 | 98.4 .0313 | 96.4
GMM .0449 | 99.6 .0456 | 99.2 .0382 | 98.4 .0311 | 96.6
[Hd14] .0445 | 98.5 .0484 | 95.5 .0465 | 87.3 .0414 | 78.0
Beck.
SMM .0335 | 99.9 .0398 | 99.9 .0422 | 99.4 .0402 | 95.8
GMM .0336 | 99.9 .0401 | 99.8 .0423 | 99.3 .0397 | 95.9
[Hd14] .0337 | 99.7 .0404 | 99.1 .0439 | 96.5 .0423 | 92.2
Ward
SMM .0365 | 99.9 .0405 | 99.9 .0383 | 99.7 .0332 | 97.9
GMM .0365 | 99.9 .0407 | 99.8 .0385 | 99.5 .0331 | 97.9
[War92] .0379 | 99.0 .0444 | 96.6 .0464 | 88.5 .0429 | 78.5
Phong
SMM .0243 | 99.9 .0296 | 99.9 .0352 | 99.8 .0381 | 99.5
GMM .0241 | 99.9 .0296 | 99.9 .0351 | 99.8 .0384 | 99.4
[LW94] .0244 | 99.7 .0304 | 99.0 .0389 | 96.3 .0462 | 91.7

Given that our PMM representation is very compact (cf. Sec. 5),
it could be used in conjunction with illumination-based guiding
methods [VKŠ∗14, HEV∗16] for a practical product sampling with
SVBRDFs (instead of resorting to expensive tabulated representa-
tions as Herholz et al. [HEV∗16] had to).

Directional albedo. In Fig. 10 we demonstrate the accuracy of our
estimate of the hemispherical directional reflectance (cf. Sec. 4.1),
which we can trivially evaluate from the weights of the PMM (Eq. 8).
We compare to an MC-estimated ground truth for two different
materials under different outgoing angles.

An example where an accurate estimate of the directional albedo
is useful is the importance sampling of mixtures of different BRDF
models. Fig. 11 demonstrates the sampling of such a mixture model
(diffuse plus glossy microfacet BRDF) with a mixture weight of
w = 0.5. The default approach is using this weight to randomly
decide on the sampled component, neglecting its actual contribution.
Our accurate estimate of the directional albedo, on the other hand,
allows to make this sampling decision optimally.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



S. Herholz, O. Elek, J. Schindel, J. Křivánek, H. P. A. Lensch / Manifold PMM
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Figure 9: Comparing our PMM-based framework to standard sampling routines for two analytic BRDFs (microfacet GGX and Ward at
two different roughness values), and two materials from the MERL database. The false-color maps visualize the per-pixel relative estimator
variance (Sec. 6.1) of each respective render.

Phong Torrance (GGX)

Figure 10: Comparing our approximation of the directional albedo
f̄r to the ground truth (gt) for two different BRDF models: Phong
and Torrance-Sparrow (GGX) with a roughness of α= 0.4.

7. Discussion and Limitations

We believe that the proposed approach has the potential to sub-
sume and unify the existing approaches to BRDF sampling, for
two reasons. First, the formulation is general and agnostic to the
complexity of the fitted (SV)BRDF, instead only caring about the
extrinsic features (which can be captured by different numbers of
PMM components). For the same reason, the BRDF can be defined

Mixture: 
Torrance + Diffuse

Our
rMSE: 0.068

Std
rMSE: 0.075

Figure 11: Using our approximation of the directional albedo for
choosing the optimal sampling weight of a composite BRDF (25%
diffuse and 75% specular component using a dielectric specular
Torrance-Sparrow lobe) yields an improved result compared to static
sampling according to the composition weight alone.

both analytically and by measured data. Second, our framework pro-
vides a unified access interface, which is potentially very convenient
for industrial rendering software where modularity is important for
robust and optimized implementation.
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Anisotropic BRDFs. Since the used B-spline surfaces generalize to
higher dimensions, a natural extension of this work would be fitting
and sampling anisotropic BRDF models. Due to the high memory
requirements of our optimization package [AMO16], we have been
limited to using the two-dimensional manifolds (representing the
outgoing angle and the BRDF shape parameter). Examining or
developing optimization methods that would scale better with regard
to the dimensionality of the joint fitting problem would therefore be
a meaningful question to investigate.

Product importance sampling. As already discussed, our sam-
pling PDFs could be used in a product sampling framework for a
globally optimal sampling of the full illumination integral. We plan
to investigate this possibility, for instance by integrating our method
into the GMM-based product sampling of Herholz et al. [HEV∗16].

BRDF representation and compression. The PMM framework is
robust enough to be considered as a replacement for BRDFs them-
selves, leading to an out-of-the-box perfect BRDF sampling. An
additional benefit would be in compressing measured BRDFs and
SVBRDFs, instead of fitting specialized microfacet models akin to
Dupuy et al. [DHI∗15] and hence having to adopt additional assump-
tions about the measured materials. Since our fitting is designed for
sampling optimality (especially the loss function), a step towards
that direction would be using perceptually oriented metrics for such
direct representation.

Choice of PMM. As we demonstrated by using both GMMs and
SMMs, the choice of the particular PMM is not instrumental in
obtaining high-quality sampling. Still, potential improvements could
be gained by considering different mixture kernels (e. g., von-Mises-
Fisher or Kent distributions), mainly to satisfy different application-
specific criteria.

Manifolds and perception. Having a general BRDF representation
defined over a smooth manifold in the meta-parameter space could
be conducive to better perceptual characterization of the model
[SGM∗16]. Examples include linearization of the model and more
intuitive navigation in the parametric space of the BRDF.

8. Conclusion

We have presented a unified manifold framework for sampling
isotropic BRDFs. The framework is based on parametric mixture
models such as Gaussian mixtures and skewed Gaussian mixtures.
Our system enables querying a compact PMM representation of a
full BRDF model with continuously varying parameters, which can
then be used for efficient importance sampling.

In contrast to the current state-of-the-art analytic sampling so-
lutions for physically-based BRDFs, our framework considers all
components of the BRDF. Since this full representation leads to
sampling PDFs proportional to the full BRDF, we have shown a
positive impact on the efficiency of rendering algorithms based on
Monte Carlo integration. Our framework can be implemented either
as a new PDF model, or as a black-box wrapper around existing
models, and therefore be easily integrated in production rendering
systems such as Arnold, Manuka, or Corona.
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Appendix A: PMM Importance Sampling

Generating a sample xi with a PDF, proportional to a PMM model,
with normalized weights (∑πk = 1), is a two step process. First, a
component k of the PMM is picked, using a random variable ζ 0 and
the weights of the PMM, so that:

k

∑πi < ζ 0 <
k+1

∑ πi. (14)

After a component has been selected, the sample xi is generated by
importance sampling the corresponding ‘kernel’ function. The fol-
lowing paragraph presents the formulas for importance sampling the
bi-variate Gaussian ‘kernel’ function used by our GMM to represent
the optimal sampling lobe of the BRDF models. A similar analytic
sampling method also exists for the bi-variate skew Gaussian distri-
bution used by our SMMs. A detailed explanation of this method
and also other interesting features (such as the product calculation)
is given by Azzalini and Capitanio [AC99].

Bi-variate Gaussian importance sampling. Importance sampling
a bi-variate normal distribution is done, by first sampling the unit bi-
variate normal distribution using the Box Muller transform [BM58],
followed by transformation to the desired normal distribution. There-
fore, two uniform random variables ζ 1 and ζ 2 are need. Alterna-
tively ζ 0, which was used to select the current PMM components,
can be re-normalized and then re-used as ζ 2:

ζ 2 =
ζ 0−∑

i−1πi

πi
. (15)

The Box Muller transformation generates a random sample zi with a
PDF of p(zi) = N (zi,0, I) by generating the disk coordinates r and
the φ of zi from ζ 1 and ζ 2:

r =
√
−2lnζ 1 (16)

φ= πζ 2 (17)

zi = [r sin(φ),r cos(φ)] (18)
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To transform zi into xi so that p(xi) = N (xi|µk,Σ), only the mean
µk and the lower triangular matrix Ak defined as Σk = AkAT

k are
needed: xi = Akzi +µk. Methods like the Cholesky decomposition
can be used to calculate the lower triangular matrix Ak.

Appendix B: B-Spline Surfaces

B-spline surfaces are an extension of the B-spline curves to the
2D domain. They are defined via a regular set of (n+1)× (m+1)
control points, stored inside a coefficient vector C, and two ‘knot’
vectors U = {u0, ...,un + p} and V = {v0, ...,vm +q}. The orders p
and q define the respective degrees of continuity in each dimension.
To evaluate a B-spline surface at given coordinates u and v, the
support of each control point Ci j is defined by the product of the
B-spline curves for each dimension. Since the support of a control
point depends on the orders p and q, only a subset of control points
needs to be evaluated for a given u and v:

BC(u,v) =
n

∑
i=0

m

∑
j=0

Ci jBi,p(u)B j,q(v)

Bi,0 :=

{
1, if ti ≥ u < ti+1

0, otherwise

Bi,p(u) :=
u−ui

ui+p−ui
Bi,p−1(u)+

ui+k+1−u
ui+k+1−ui+1

Bi+1,p−1(u).

(19)
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