
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Survey of Markov Chain Monte Carlo Methods in
Light Transport Simulation

Martin Šik and Jaroslav Křivánek

Abstract—Two decades have passed since the introduction of Markov chain Monte Carlo (MCMC) into light transport simulation by
Veach and Guibas, and numerous follow-up works have been published since then. However, up until now no survey has attempted to
cover the majority of these methods. The aim of this paper is therefore to offer a first comprehensive survey of MCMC algorithms for
light transport simulation. The methods presented in this paper are categorized by their objectives and properties, while we point out
their strengths and weaknesses. We discuss how the methods handle the main issues of MCMC and how they could be combined or
improved in the near future. To make the paper suitable for readers unacquainted with MCMC methods, we include an introduction to
general MCMC and its demonstration on a simple example.

Index Terms—Markov Chain Monte Carlo, Metropolis-Hastings, Metropolis Light Transport, Light Transport Simulation, STAR.

F

1 INTRODUCTION

MARKOV chain Monte Carlo (MCMC) [1] is a class of
efficient sampling methods that have been applied

in fields such as statistics, econometrics, physics, biology,
linguistics, and last but not least in computer graphics. In
this paper we discuss their application in a specific branch of
computer graphics called light transport simulation, which
concerns itself with simulating how light propagates from
light sources through a virtual scene to the camera, with
the purpose of synthesizing realistic images. Its applications
include visual effects for movies, computer animation, ar-
chitectural visualization, product design, etc.

Veach and Guibas were the first to use MCMC in light
transport simulation with their Metropolis Light Transport
algorithm [2] more than twenty years ago. Since then re-
searchers have proposed numerous different MCMC meth-
ods to simulate light transport. The goals and applicability
of these methods vary and it may take a substantial effort to
get a high-level understanding of this research area.

For this reason the main goal of this paper is to offer
a comprehensive survey of MCMC methods used in light
transport (note that the survey by Jakob [3] covers only a
small subset of the algorithms discussed in our work). We
organize the existing algorithms into categories based on
their aim and/or their common specific features. In each
category, we point out strengths and weaknesses of the in-
dividual algorithms. We discuss how the existing methods
handle the main issues of MCMC algorithms and how they
could be combined and/or improved in the near future.

Besides the survey itself, this paper offers an introduc-
tion to general MCMC with both rigorous mathematical
formulas and an easy to follow example. When describing
different MCMC methods, we first discuss the particular
MCMC method in general, before showing how it is used in
light transport simulation. This should allow the reader to
more easily differentiate between the fundamental MCMC

• Martin Šik and Jaroslav Křivánek are with the Charles University, Prague,
Czech Republic
E-mail: sik@cgg.mff.cuni.cz, jaroslav.krivanek@mff.cuni.cz

ideas and the steps necessary for their application to graph-
ics.

The rest of the paper is divided into three parts:

• Introduction to general MCMC including an easy to
follow example and the first application of MCMC in
light transport simulation (Part I).

• Comprehensive survey of light transport MCMC
methods, divided by their aim and similarities into
individual categories (Part II).

• Discussion and conclusion (Part III).

PART I: INTRODUCTION TO MCMC AND LIGHT
TRANSPORT SIMULATION

We begin the first part of this survey by describing general
Markov chain Monte Carlo algorithms (Sec. 2). Then we
briefly introduce light transport simulation and show how
it can be solved by Markov chain Monte Carlo (Sec. 3).

2 MARKOV CHAIN MONTE CARLO

In this section we introduce a class of Monte Carlo sampling
algorithms called Markov chain Monte Carlo (MCMC) [1].
The MCMC algorithms can generate a sequence of samples
distributed according to an arbitrary probability density
function (which does not need to be normalized). Therefore
they can be effectively used to generate samples from other-
wise hard-to-sample distributions. Table 1 shows common
notation used throughout this section.

2.1 General MCMC algorithm
Given any initial state u0 from a state space1 U , an MCMC
algorithm generates a sequence of states from U such that
each state ui is a realization of a random variable with a dis-
tribution which depends only on the previous state ui−1.

1. A state space can be e.g. a simple line of all real numbers U = R,
or a subspace of a high dimensional space U ⊆ RN . In light transport,
the state space is often the space of light paths, as discussed below.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

U Markov chain state space
u, v ∈ U Markov chain state (a sample from MCMC)
t(u→ v) Transition probability of v given u
π∗
i Distribution of possible i-th states of a Markov chain
π∗
i (ui) Probability density of i-th state of a Markov chain
π(u) Target function
π∗ Stationary distribution of a Markov chain
π∗(u) Probability density of the stationary distribution
b Normalization constant of the target function
Q Mutation
q(u→ v) Mutation probability density of v given u
α(u→ v) Acceptance probability of v given u
p(u) Probability of generating u given some distribution
b∗ An estimator weight used to suppress start-up bias

TABLE 1: Common notation.

This property is known as the Markov property and the se-
quence is called a Markov chain.

Given the Markov property, we can define a transition
function t(u→ v), which gives us the conditional probability
(density) of going to state v given the current state u.
Each state ui is a realization of a random variable (sample)
with some distribution, whose probability density π∗i can
be defined as an integral over all states drawn from π∗i−1,
weighted by the transition function

π∗i (ui) =

∫
U
t(v → ui)π

∗
i−1(v)dv. (1)

If we then define an arbitrary non-negative target function
π : U → R+

0 , it can be proven that under some conditions
on the transition function t, the distribution π∗i will con-
verge to a stationary distribution π∗ with probability density
π∗(u) = π(u)/b (where b is equal to the probability normal-
ization constant

∫
U π(u)du). We can therefore consider states

of the Markov chain as samples generated by MCMC from
a distribution that converges to the desired distribution π∗

proportional to the target function π.
For the algorithm to converge to π∗, we must impose

the following conditions on the transition function t.

• The transition function t must be able to reach any
state u ∈ U with positive π∗(u) from any other state
v ∈ U with positive π∗(v) in a finite number of steps.
This property is called ergodicity.

• We must ensure that π∗ is invariant for the generated
sequence. This means that once the sample ui comes
from the stationary distribution π∗, using transition
function t to obtain the next sample ui+1 will result
in ui+1 being from π∗ as well.

• The transition function t must be aperiodic, meaning
that none u ∈ U is repeated periodically.

From the first two conditions it can be proven [4] that
the invariant distribution is unique and the chain is positive
recurrent, i.e. the expected number of steps needed to visit
any state u ∈ U with positive π∗(u) is finite. The third
condition then ensures that the distribution of generated
samples actually converges to the invariant distribution [4].

While MCMC will converge to the given distribution, in
general there is no way of telling when this will happen
or how fast it will happen. We discuss this issue together
with the selection of the initial sample in Sec. 2.5. In the fol-
lowing section, we will focus on a basic MCMC algorithm
Metropolis-Hastings [5] and explain on it the principles in
more detail. For detailed information about general MCMC,
we refer the readers to a more thorough material [6].

2.2 Metropolis-Hastings algorithm

We introduce here an MCMC algorithm referred to as
Metropolis-Hastings [5]. While this method is quite basic,
it is the most commonly used MCMC algorithm in light
transport simulation, and all other algorithms discussed in
this paper are derived from it.

The pseudo-code of Metropolis-Hastings (MH) is given
in Fig. 1. The algorithm starts with an initial sample (line 1),
which can be selected at random from some distribution
or it can be fixed. From the initial sample it continues to
generate a Markov chain. Given a sample ui the algorithm
generates the next sample ui+1 by first generating a pro-
posal v (line 3). The proposal v is sampled using a mutation
Q with a given conditional probability (density) q(v|u),
more commonly denoted as q(u → v). Next, the acceptance
probability α with which we will accept the proposal is
computed (line 4). The probability is defined as

α(u→ v) =

{
min

(
π(v)q(v→u)
π(u)q(u→v) , 1

)
if π(u) > 0

1 if π(u) = 0
(2)

The proposal is either accepted and set as the next sample
(line 7) or rejected meaning that the current sample is
repeated (line 9). An example is given in Fig. 2.

1: Select u0

2: for i = 0 to the number of samples do
3: Generate proposal v using mutation Q
4: Compute acceptance probability α(ui→v)
5: Generate random number ξ ∼ U(0, 1)
6: if α(ui → v) > ξ then
7: Accept proposal: set ui+1 = v
8: else
9: Reject proposal: set ui+1 = ui

Fig. 1: Metropolis-Hastings algorithm.

2.3 Convergence of the Metropolis-Hastings algorithm

We have already discussed that the transition function t
must satisfy certain conditions, in order for the algorithm
to converge. It can be shown that the transition function
implied by Metropolis-Hastings indeed satisfies them.

The transition function of the MH algorithm is defined as

t(u→ v) =

{
q(u→ v)α(u→v) if u 6= v
1−

∫
U q(u→ v)α(u→v)dv if u = v

(7)
Here, for u 6= v the transition function is the probability
of proposing and accepting the proposal v, while for u = v
the function value is equal to the probability of rejecting any
proposed mutation (we assume for the sake of simplicity
that the proposed sample differs from the current sample,
i.e. q(u → u) = 0, otherwise we would have to distinguish
in Eq. (7) whether u = v is due to rejection or acceptance).

To achieve ergodicity, one must ensure that for a given π∗

the algorithm is able to reach any state u ∈ U with positive
π∗(u) via several accepted mutations. This is commonly
accomplished by using a mutation that can always propose
any state from U (e.g. the mutation QU from Fig. 2).

The invariant distribution condition (i.e. the fact that
the target distribution is maintained through any transition)



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 2: A simple mutation example for the Metropolis-Hastings algorithm (based on an example by Matt Pharr)
Let us consider a task of sampling according to a target
function π defined as

π(u) =

{
(u− 0.5)2 if u ∈ [0, 1]= U
0 otherwise (3)

In order to use the Metropolis-Hastings (MH) algorithm to
generate samples according to π, we must define mutations.
In the following text we assume the algorithm is always
initialized with u0 = 0 for illustrative purposes.
We first define a simple uniform mutation QU

QU(u, ξ) = ξ, (4)

where ξ ∼ U(0, 1) is a uniformly distributed random
number and u is the current sample. The mutation QU is
clearly independent on the current sample and generates
each v ∈ U with the same probability. Since QU ensures that
it is possible to visit every v ∈ U for which π(v) > 0 in just
one step, the algorithm will converge. Histogram (a) shows
samples generated using QU.
We now define another mutation QL

QL(u, ξ) = u+
ξ − 0.5

10
. (5)

Unlike the previous mutation, this one is dependent on
the current sample u and generates proposals only in
a small vicinity of u. Still, in a finite number of accepted
steps it can visit every v ∈ U for which π(v) > 0 and there-
fore the algorithm will eventually converge. Histogram (b)
shows a result of using QL to generate samples from π.

While the algorithm should theoretically converge, we see
that no v > 0.5 was generated. This is caused by poor
global exploration, meaning the algorithm failed to discover
all islands of the state space U where π(v) > 0.
Let us now consider a combined mutation QC

QC(u, ξ1, ξ2) =

{
QU(u, ξ2) if ξ1 < 0.1
QL(u, ξ2) otherwise (6)

where both ξ1 and ξ2 are uniform random numbers. As
can be seen from the histogram (c), using such a combined
mutation will get us superior results than just using QL
or QU. This is thanks to the mutation QL ensuring good
local exploration (i.e. good sampling of local subspaces of
U , also known as exploitation), while QU ensures good
global exploration (i.e. discovery of the important subspaces
of U ). A good balance between local and global exploration is
generally the key to a good performance of all algorithms based on
Metropolis-Hastings.

(a) (b) (c)3

2

1

0 0.2 0.4 0.6 0.8 1

3

2

1

0 0.2 0.4 0.6 0.8 1

3

2

1

0 0.2 0.4 0.6 0.8 1

This figure shows normalized target function (blue) and
histograms of 20,000 samples (red) generated by ten runs of
Metropolis-Hastings with different mutations: (a) Uniform
mutation QU, (b) local mutation QL and (c) combination of
both QC. All runs are initialized with the same u0 = 0.

can be proven [7] from the fact that Metropolis-Hastings
satisfies the so called detailed balance for all u, v ∈ U :

π(u)q(u→ v)α(u→ v) = π(v)q(v → u)α(v → u). (8)

It is important to note that while the detailed balance is
a sufficient condition, it is not a necessary one (see Sec. 2
of the supplemental material).

Aperiodicity of the transition function is ensured if er-
godicity holds and at least one state u ∈ U has non zero
probability of being repeated (t(u→ u) > 0) [8].

2.4 Using MCMC for quadrature

One of the common uses of MCMC is for numerical in-
tegration (quadrature), which is also the case of all light
transport algorithms presented here. Let us first consider
the following integral

I =

∫
U
h(u)π(u)dµ(u), (9)

where π is a non-negative function and h is an arbi-
trary function. We can use Monte Carlo to estimate this
integral as follows

〈I〉 =
1

N

N∑
i=1

h(ui)π(ui)

p(ui)
(10)

where the samples ui were generated with probability den-
sity p(u). If p(u) > 0 whenever h(u)π(u) > 0 it can
be shown that the estimator is unbiased, i.e. E[〈I〉] = I .

The variance of this estimator will depend on the number
of samples N and on how similar the pdf p is to h · π. In
the ideal case, where p is exactly proportional to h · π up to
a normalization constant, we get the so called zero-variance
estimator (and thus no variance). Unfortunately, it is usually
impossible to directly generate samples from such a pdf.

Let us now consider how we could utilize MCMC in this
example. In MCMC settings, we can use π(u) as the target
function. This way the MCMC algorithm generates samples
according to p = π/b, where b =

∫
U π(u)du is the normal-

ization constant. The resulting estimator is as follows

〈I〉 =
1

N

N∑
i=1

h(ui)π(ui)

p(ui)
=

b

N

N∑
i=1

h(ui). (11)

If the function h does not introduce too much variance, this
estimator should theoretically have low variance.

Unfortunately, we have to compute the normalization
constant b and we cannot use samples generated according
to p = π/b to do this, since the resulting estimator would be
equal to the unknown b. This is also the reason why MCMC
is not used to sample from h · π. We have to compute b
from samples generated from a distribution with a known
normalization (or use other quadrature technique). Such
a computation will suffer from variance and thus we may
have gained nothing compared to ordinary Monte Carlo.

The advantage of MCMC will be more apparent in a sce-
nario when we need to compute many correlated integrals,
which all share the same scaling factor b. Consider a large
number of integrals that differ only in the h(ui) function:



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

I1=
∫
U h1(u)π(u)dµ(u), I2=

∫
U h2(u)π(u)dµ(u), . . . In that

case we can utilize the same samples generated according
to π to estimate all of the above integrals and, more impor-
tantly, their common factor b is computed just once. This is
exactly the case of light transport simulation (pixel values
are the individual integrals, as will be discussed in Sec. 3.1).

2.5 Start-up bias
While a Markov chain steadily converges to the stationary
distribution, it will only reach it in the infinity. Therefore
especially in the beginning, the distribution of Markov chain
samples can be far from the stationary distribution. This
issue is often referred to as start-up bias [9]. A common
solution applied in computational statistics is to throw away
a number of samples [6]. However, it is unclear how many
of these samples are sufficient, in order to get the start-up
bias below some threshold.

Veach and Guibas [2] proposed a different solution for
handling start-up bias when computing quadrature. The so-
lution requires an alternative sampling technique (like bidi-
rectional path tracing [10] in the case of light transport
simulation) that selects an initial state of the Markov chain.
If the initial state u0 were selected with probability equal
to p0(u0), the quadrature estimate would be just weighted
with π(u0)

p0(u0) instead of the normalization constant b. It can
then be proven [2] that an average over many estimates of
the quadrature will be unbiased.

Unfortunately, each individual estimate can be com-
pletely off. Just consider a situation when π(u0) equals zero,
in that case the estimate will be zero as well. Veach and
Guibas address this issue by randomly selecting a whole
set of N initial samples {u0,i; i = 1, . . . , N}. Among these
samples the one initial sample is selected by random selec-
tion with probabilities proportional to the weights π(u0,i)

p0(u0,i)
.

The quadrature is then weighted by the following weight

b∗ =
1

N

∑
i=1

π(u0,i)

p0(u0,i)
. (12)

Note that b∗ is a Monte Carlo estimate of the normalization
b =

∫
U π(u)du, that is E[b∗] = b. Since this technique for

removing start-up bias is applied in almost all algorithms
discussed in this paper, from now on we will use the weight
b∗ instead of the true normalization b in all equations.

2.6 Common optimization
Before we move on to light transport, we give here a few tips
for optimizations used in MCMC quadrature computation.

Parallelization. First, modern hardware is able to run
several threads at once, therefore it is advantageous to run
MCMC algorithm in parallel. Effectively parallelizing a gen-
eration of one Markov chain is a difficult task (although
it is possible [11]). Instead, several independent chains
are commonly computed in parallel and their estimates
are combined. When initializing the chains, one can draw
their individual initial samples from the same set of initial
samples, thus their quadrature estimates will be weighted
by the same constant b∗.

Convergence testing. Using several independent chains
has another advantage: we can compare their estimates in

order to determine whether the overall quadrature estimate
has converged enough. We should be careful though, since
having similar estimates does not always ensure the algo-
rithm has sampled all important parts of the state space
properly due to poor global exploration (Fig. 2).

The use of expected values. When we use MCMC to
compute quadrature, we can use the rejected proposals to
improve the estimation. Common MCMC algorithms (like
MH) use a step that includes accepting or rejecting a pro-
posed sample v with a given probability α(u→v) (where u
is the current sample). Therefore the proposal v contributes
to the quadrature with probability α(u→ v), while the cur-
rent sample u contributes with probability 1−α(u→v). We
can thus improve efficiency by always accumulating both
samples u and v weighted by the corresponding probabili-
ties. Effectively, this optimization replaces a random variable
by its expected value [7, p. 357]. This technique is an exam-
ple of Rao-Blackwellization [12], and it is especially useful
for parts of the state space where the target function value
is low and therefore fewer samples are distributed there.

3 MCMC IN LIGHT TRANSPORT

In this section we show how to use MCMC as a sampler for
Monte Carlo light transport simulation. We first introduce
light transport equation in Sec. 3.1 and show how it can
be computed using general Monte Carlo. We also discuss
in Sec. 3.2 a common technique for combining estimators
called Multiple importance sampling (MIS) [13], since it is used
in many of the algorithms described later.

Once we understand the light transport equation, we
demonstrate on an example how we can apply MCMC to
solve it. As the example algorithm we have chosen the orig-
inal Veach and Guibas’ Metropolis light transport (MLT) [2],
since it was this work that introduced MCMC to light
transport. The methods described in the subsequent sections
then attempt to improve upon the original MLT algorithm.

Fig. 3: A light transport path x can be imagined as a polyline
between a light source and the camera. The interior vertices
correspond to light interactions with scene surfaces.

3.1 Light transport equation
Light transport can be expressed by the path integral

Ij =

∫
Ω
hj(x)f(x)dµ(x), (13)

where Ij is the pixel value of the j-th pixel, Ω is the space
of all possible light paths. A light transport path x ∈ Ω
can be imagined as a polyline that represents the trajectory
of a packet of light energy traveling through the scene.
The first vertex lies on a light source, the interior vertices
correspond to light reflection/refraction or scattering, while
the last vertex is at the camera (Fig. 3). A path of length k
can therefore be represented as a vector of k + 1 vertices
x = (x0, . . . , xk). The path contribution function f gives
the amount of light energy transported along the path x.
hj is the pixel filter of the pixel j and µ is the measure
associated with the path space Ω [7].



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 4: We can construct the same light path x in various
ways. Given already sampled vertices x1 and x2, the vertex
x0 can be sampled by (a) selecting x0 on a light source or
(b) sampling direction from x1 and intersecting the light
by a corresponding ray. A path sampling technique defines
how each vertex of a path is sampled, and has an associated
probability density function (pdf). See other sources for
more details about path sampling [14, p. 1003].

Given a path sampling technique (e.g. path tracing, see
Fig. 4, or light tracing or any of the techniques used in
bidirectional path tracing [10]) that generates N random
paths xi according to the probability density function (pdf)
p(xi), we can estimate the path integral using a general
Monte Carlo estimator

〈Ij〉 =
1

N

N∑
i=1

hj(xi)f(xi)

p(xi)
. (14)

Note that a different estimate is computed for each pixel of
the image (indexed by j). Since the pixel integrals all share
the path contribution function f , using MCMC to compute
all estimates simultaneously is advantageous (they all have
the same normalization factor b, see Sec. 2.4).

3.2 Multiple Importance Sampling
As per the importance sampling principle, a path sampling
pdf roughly proportional to the path contribution function
f reduces the variance of the estimator in Eq. (14). While it
may be difficult to find such a pdf, we can often construct
multiple path sampling techniques with pdfs that approx-
imate f locally. These path sampling techniques differ in
the way they sample different vertices of the path (Fig. 4).
We can then reduce the variance if we combine path sam-
pling techniques into one weighted sum

〈Ij〉 =
∑
m∈M

1

Nm

Nm∑
i=1

wm(xm,i)
hj(xm,i)f(xm,i)

pm(xm,i)
. (15)

Here we estimate the pixel value Ij using a set of path sam-
pling techniquesM. A technique m generates Nm samples
xm,i ∝ pm(xm,i). The multiple importance sampling (MIS)
weight wm(xm,i) of the technique m for the path xm,i is an
arbitrary positive function. The weights across the different
techniques must sum up to one (

∑
m∈M wm(xm,i) = 1) to

ensure unbiased estimation. For an ordinary Monte Carlo
estimator, setting the weight according to the balance heuris-
tic results in close-to-optimal variance [13].

As an example, the bidirectional path tracing algo-
rithm [10] employs MIS to combine path sampling tech-
niques corresponding to generating different-length sub-
paths from lights and the camera, respectively.

3.3 Metropolis Light Transport
Veach and Guibas have introduced MCMC to computer
graphics [2] in their algorithm Metropolis light transport

Fig. 5: In Metropolis light transport (Sec. 3.3), the lens pertur-
bation (a) creates a new path by changing the direction from
a selected vertex x3 towards the next vertex closer to a light
source x2, the vertex x1 is then connected to x2. The caustic
perturbation (b) works in the opposite way by changing
the direction towards the camera from a vertex closer to
a light source x1 and connecting x3 to a new vertex x2.

(MLT). MLT uses Metropolis-Hastings (Sec. 2.2) and applies
it directly in the path space (i.e. state space of the Markov
chain is equal to the path space, one state corresponds to one
full light transport path). The target function is proportional
to the scalar luminosity of the light path contribution to
the image f∗(x) = lum(f(x)). This leads to the following
estimator of the light transport equation

〈Ij〉 =
Pb∗

N

N∑
i=1

hj(xi)f(xi)

f∗(xi)
, (16)

where P is the number of pixels and the start-up weight
b∗ (see Sec. 2.5) is computed from the set of initial samples
generated by bidirectional path tracing [10].

Veach and Guibas have devised three different local
mutations (which they refer to as perturbations). The lens
perturbation can be effectively used for perturbing paths
containing specular surfaces directly visible from the cam-
era, while the caustic perturbation is more suited for caustics
(i.e. path where light is concentrated via specular reflections
before hitting a diffuse surface directly visible from the cam-
era). Fig. 5 illustrates lens and caustic perturbations. Finally,
the multi-chain perturbation performs lens and caustic per-
turbations at once in order to handle difficult to sample
paths (such as reflected caustics).

The ergodicity is ensured by the bidirectional mutation,
which effectively replaces any subpath of the current path.
To improve stratification on the image plane, MLT uses
the lens-subpath mutation which changes the path by starting
it on a different pixel. MLT was later improved [15] to
better handle participating media and two new mutations
were introduced: one that perturbs the path by changing
the scattering direction and another that changes the length
of a path segment in a medium. Fig. 6 compares MLT against
a popular classic Monte Carlo method.

reference BDPT

MLT

Fig. 6: Equal-time comparison (12 min.) of MLT (Sec. 3.3)
and bidirectional path tracing (BDPT) [10]. In this case, MLT
produces much less noise thanks to its ability to generate
more paths that pass through the door ajar and can thus con-
tribute to the image. Scene courtesy of Lehtinen et al. [16].



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

PART II: MCMC ALGORITHMS FOR LIGHT TRANS-
PORT SIMULATION

Before we discuss the individual MCMC methods, let us
briefly summarize important aspects of an MCMC algo-
rithm effective at light transport simulation. First, it is
important to ensure that once MCMC sampled a path, it can
then generate similar paths to effectively sample a local area
of the path space. This property is called local exploration.
However, excessive local exploration results in high sample
correlation, which is then visible in the image as groups of
overly-bright pixels.

To avoid this issue, an MCMC algorithm should be able
to quickly discover other contributing areas of the path
space. This global exploration is enabled by propos-
ing paths further away from the current path. However
given the usual target function with many local max-
ima/discontinuities, if such a path is not selected carefully, it
will likely have lower contribution and thus lower chance of
acceptance (Eq. 2). This will result in the algorithm “getting
stuck” in one mode of the target function, while completely
failing to discover other modes. The resulting image may
thus miss much of the light transport (Fig. 7).

In light transport, multiple integrals are estimated at
once, thus it is important for an MCMC algorithm to ensure
uniform error reduction. This way the user can clearly
see how the image estimation progresses. The methods
described in the following text are divided into categories
based on which MCMC aspect they try to improve and how
they approach that goal.

Reference MCMC

Fig. 7: The image rendered by an example MCMC algorithm
with poor global exploration (right) contains overly-bright
regions of pixels. They are caused by the MCMC chain
getting stuck in narrow peaks of the target function.

4 SIMPLIFIED STATE SPACE

We have described the Metropolis light transport (MLT)
algorithm that directly uses the path space Ω as the Markov
chain state space. While mutating paths directly in the path
space can be effective, it also results in a rather complex al-
gorithm that has to rely on a number of mutation strategies,
each fine-tuned to handle different transport features.

In this section we describe algorithms that use a simpli-
fied state space. Not only does it lead to simpler algorithms,
it also allows to use a simple mutation that is effective at
local exploration of many types of paths, while improving
global exploration as well.

4.1 Primary Sample Space Metropolis Light Transport
Primary sample space MLT (PSSMLT) [17] by Kelemen et al.
utilizes the fact that each light path x is uniquely defined

Fig. 8: A random vector u from the primary sample space
P is mapped to a path x in the path space. The mapping
m is done by sampling vertices of x with a given path
sampling technique using u as random numbers (see e.g.
[14, p. 1003] for more details on path sampling). Changing
u (green arrow) results in a different path x being sampled.

by a vector of random numbers u ∈ P = [0, 1]O(k) (i.e.
given a path sampling technique, a path of length k can be
generated usingO(k) random numbers). Unlike the original
MLT, which mutates light paths directly in the path space,
path mutation in PSSMLT is achieved by mutating these
random vectors u and then mapping them to the path space.
The mapping m : P → Ω is performed by sampling path
vertices using the u as random numbers (Fig. 8) given a fixed
path sampling technique (Fig. 4).

4.1.1 Estimating the light transport equation
In order to solve the light transport equation using PSSMLT,
the authors start by making a substitution in the path
integral (Eq. (13)) that changes the integration domain from
the path space Ω to the primary sample space P

Ij =
∫
Ω hj(x)f(x)dµ(x)

=
∫
P
hj(m(u))f(m(u))

pm(m(u)) du.
(17)

The change of variable requires the Jacobian |dµ(x)/du| =
1/pm(m(u)) of the mappingm, which corresponds to the in-
verse of the probability density of sampling the path x using
the sampling technique m. If we define C(u) = fm(m(u))

pm(m(u)) ,
Eq. (17) can be estimated using MCMC as follows

〈Ij〉 =
Pb∗

N

N∑
i=1

hj(m(ui))C(ui)

C∗(ui)
, (18)

where the target function C∗ is the scalar luminosity of C .
The start-up weight b∗ is computed as discussed in Sec. 2.5

4.1.2 Mutations
Only the random vectors u are mutated in PSSMLT (the
paths change as a consequence). Two simple mutations
are used: Small step, which handles local exploration by
slightly perturbing the entire random vector u and large step
which ensures ergodicity by generating a new independent
vector u. The small step is implemented by independently
perturbing each component of the vector u representing the
current Markov Chain state. The perturbation relies on a
distribution with exponential falloff centered at the current
state. Both mutations are chosen to be symmetric and thus
the mutation probability densities q(v → u) and q(u → v)
are equal and they cancel out in the acceptance equation
(Eq. (2)).2 The mutation type (small, large) is selected ran-
domly at each step with a probability either given by the
user or automatically tuned [18].

2. In the original MLT the mutations are not symmetric and therefore
the mutation probability must be always computed.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 9: Primary sample space MLT (Sec. 4.1) with many
mappings treats u as a vector of random numbers to gen-
erate a camera subpath (blue) and a light subpath (red).
The subpaths are combined (dashed line) in various ways
yielding several full paths. Each combination corresponds
to one mapping mi.

In the original MLT different type of paths require
different type of mutations to ensure efficiency, while in
PSSMLT the mutation effectiveness depends mostly on how
well the mapping m distributes paths to the path space.
The mapping (path sampling) is often performed by local
importance sampling at each vertex and thus the mutations
are good at local importance sampling, but are not optimal
for non-local features (e.g. a chain of highly glossy interac-
tions). Note that due to importance sampling the large step
is better at global exploration compared to the bidirectional
mutation of the original MLT.

4.1.3 Utilizing many mappings

We can combine several sampling techniques using MIS
(Sec. 3.2) in order to reduce estimator variance. The same
principle can be applied in PSSMLT. Each sampling tech-
nique corresponds to a different mapping from the primary
sample space to the path space, and thus given a set of
path sampling techniques we can map one sample u to
several different paths. PSSMLT relies on MIS to combine
the contributions of all paths created from a single sample u

C(u) =
∑

m∈M(u)

wm(m(u))
f(m(u))

pm(m(u))
, (19)

where M(u) are all the available mappings for a given
random vector u and wm is the MIS weight. With this modi-
fication of the definition of C(u), the final pixel estimator in
Eq. (18) remains the same.

The use of multiple mappings decreases the total varia-
tion of the target function C∗, which in turn means the pro-
posed samples will be less often rejected and the sampler
will be more efficient. On the other hand, constructing
several paths from each sample can be costly.

PSSMLT usually defines its mappings using sampling
techniques from bidirectional path tracing [10]. This means
that a camera subpath (generated from the camera) and
a light subpath (generated from a light source) is generated
separately using the random numbers u and then they are
combined in various ways yielding several full paths. Each
combination then corresponds to one mapping (Fig. 9). All
paths generated from a single u are then treated as one
sample and are thus accepted or rejected together.

Note that primary sample space has also been used in
different scenarios, e.g. in a finite-element global illumina-
tion algorithm [19].

... ...

Fig. 10: Multiplexed MLT (Sec. 4.2) uses the extended primary
sample space P ′, where the first dimension is used to
determine a mapping from the rest of P ′ to the path space
Ω. Here two mappings mi and mj map u to different paths.

4.2 Multiplexed Metropolis Light Transport
Multiplexed Metropolis light transport (MMLT) [20] improves
on PSSMLT by using just one mapping for each sample.
The mapping is sampled randomly as a part of the MCMC
mutation in such a way that mappings generating higher-
throughput paths are preferred.

As in PSSMLT, the state space in MMLT is a unit cube
of random numbers. However, here the first component of
u is used to determine the mapping, while the remaining
components are actually mapped to the path space (Fig. 10).

4.2.1 Sampling the mapping
In order to efficiently sample the mapping mi, MMLT mod-
ifies the PSSMLT target function (Sec. 4.1.1) by including the
MIS weight

C∗i (u) = wmi(mi(u))
f∗(mi(u))

pmi
(mi(u))

. (20)

Since the MIS weight wmi
is now part of the target function,

MCMC will distribute more samples to mappings with
higher wmi

, which are exactly those that are more effective
at sampling the given path type. The MMLT estimator
differs from PSSMLT (Eq. (18)) by using just one mapping
per primary sample u. Furthermore, we need to multiply by
the number of available mappingsM(u).

4.2.2 Comparison to PSSMLT
MMLT prefers mappings that generate paths with high
contribution, unlike PSSMLT which always uses all possible
mappings. Imagine an extreme case, where in PSSMLT one
sample is mapped to many very long paths with zero
contribution and one short path that has a high contribution.
The target function value for such a sample will be high
and thus the MCMC algorithm will then generate similar
samples and waste time by mapping them to many long
paths with possibly no contribution.

On the downside, MMLT cannot effectively apply Rus-
sian roulette (RR) [7]. RR is a method to terminate sampling
new path vertices if the current path throughput is below
certain threshold, while ensuring the estimator remains
unbiased. When RR is applied in PSSMLT, the subpaths
generated from a sample are possibly shorter and thus
the various mappings yield fewer paths. In MMLT, one
selects a mapping a priori and thus determines subpaths’
length before generating them. RR can therefore only reject
a whole subpath rather than shorten it. Fig. 11 shows
a comparison of PSSMLT, MMLT and the original MLT.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

reference MLT

PSSMLT

MMLT

Fig. 11: The original MLT (Sec. 3.3) effectively mutates some
types of paths, however paths with many specular/glossy
interactions are handled poorly. Primary sample space MLT
(PSSMLT, Sec. 4.1) maps its samples to the path space using
numerous mappings and thus PSSMLT handles effectively
more types of paths than MLT. Multiplexed MLT (MMLT,
Sec. 4.2) improves upon PSSMLT by using only one map-
ping per sample. All methods ran for 10 minutes. Scene
courtesy of W. Jakob.

4.3 Fusing state spaces
Recently, two papers [21], [22] independently proposed fus-
ing of state spaces, a framework in which the mutations from
both the primary sample space and the path space can be
combined in one algorithm. This allows to use the simple
primary sample space mutations for efficient global explo-
ration and local exploration of many types of paths, while
also utilizing specialized path space mutations (such as
those described in Sec. 5) leading to a more robust algorithm
(see Fig. 12 for a comparison). Note that the framework
introduced later by Bitterli et al. [23] allows fusing of state
spaces, but the authors have left the actual combination of
mutations from both state spaces for future work.

4.3.1 Inverse mapping
In order to utilize both kinds of mutations to generate one
Markov chain, we must be able to convert paths/samples
between the state spaces. Mapping from the primary sample
space to the path space is defined by a given path sampling
technique mi as in PSSMLT and MMLT. To map paths from
the path space back to the primary sample space, one must
define an inverse mappingm−1

i such thatm−1
i (x) = u implies

mi(u) = x. As an example, consider a path tracing sampling
technique that generates a new direction at each path vertex
using random numbers from u. Given a resulting path, we
must be able to convert the sampled directions back to the
vector of random numbers. Unfortunately, not all mappings
are bijections, which complicates the definition of inverse
mapping. However, even some non-bijective mappings can
be handled as discussed in the original papers [21], [23].

4.3.2 Mutating in both spaces
Since the different frameworks for fusing state spaces are
mathematically equivalent, we base our description on the
work of Otsu et al. [21]. The authors build their algorithm on
MMLT and thus utilizing primary sample space mutations is
straightforward. To apply path space mutation, the current
state u is mapped to the path space x = mi(u) using
the current mapping mi and then x is mutated by any path

space mutation. The resulting path x′ is converted back
to the primary sample space using the inverse mapping
u′ = m−1

i (x′) and u′ is either accepted or rejected. Note
that the transition between the spaces must be reflected
in the mutation probability when computing acceptance
probability, see the original paper [21] for more details.

4.3.3 Improving MMLT efficiency
When MMLT switches from one mapping to another, the re-
sulting path can often be very different from the previous
one despite only a minor change of the random vector u
(Fig. 10). This may lead to a low acceptance probability.
One can utilize the inverse mapping to alleviate this prob-
lem [22], [23]. Consider a sample u that is mapped to the
path space x = mi(u) using the mapping mi. When a new
mapping mj is selected, one can first convert x using the
inverse mapping m−1

j to the primary sample space yielding
u′ = m−1

j (x). Mutating u′ using the small step and mapping
it back to the path space using mj then results in a small
perturbation of x.

reference MLT

MMLT

COMBINATION

Fig. 12: Combination of MMLT and MLT mutations (Sec. 4.3)
leads to a more robust algorithm, which overall performs on
par with the best of the two algorithms in each scene. Image
courtesy of H. Otsu et al. [21].

5 BETTER LOCAL EXPLORATION:
DIFFERENTIAL METHODS

In this section we describe methods that use differentials
of scene geometry or of the target function to design new
mutations effective at local exploration.

5.1 Manifold Exploration Light Transport
While the original MLT has three specialized mutations that
effectively sample local subspace, they do not handle all
path types equally well. Especially paths that contain chains
of specular/glossy interactions are sampled poorly. To han-
dle such paths more efficiently, Jakob and Marschner [24]
introduced Manifold exploration light transport (MELT).

5.1.1 Specular manifold
MELT differs from MLT by its manifold exploration mutation,
which is specifically tailored to sample effectively the so
called specular manifold. Let us first realize that when ray hits
a specular surface, the next direction is fully determined by
the law of reflection or Snell’s law of refraction. If a path
contains a whole chain of specular interactions, changing
incoming direction to the first/last vertex in the chain results



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 13: The specular manifold (blue), discussed in Sec. 5.1.1,
contains all subpaths created from the original subpath (red)
by perturbing position of either xi−1 or xi+1, while keeping
the constraint cSi (Eq. (21)) on the specular vertex xi equal
to zero, corresponding to fulfilling the law of reflection.

in a deternimistic change of positions of all of the specular
interactions.

More formally, we can associate with each specular inter-
action a constraint that involves its position and the position
of the preceding and following vertices:

cSi (xi−1, xi, xi+1) = 0. (21)

This constraint is equal to zero only if the generalized
half-vector [25] defined by these vertices is aligned with
surface normal, which corresponds to obeying the law of
reflection/refraction. Given a subpath x of k + 2 vertices
that contains a chain of k specular vertices and starts and
ends with non-specular vertices (x0 and xk+1, respectively)
we can define a specular manifold as

S = {x|cS1 (x0, x1, x2) = 0 ∧ . . . ∧ cSk (xk−1, xk, xk+1) = 0}.

An example of a specular manifold is shown in Fig. 13.

5.1.2 Manifold mutation
To explore the specular manifold S the authors propose
the so called manifold walk, where one endpoint of a subpath
is moved to a new location and the specular vertices are
moved accordingly so the constraints hold. To achieve this,
manifold walk works in iterations which include computing
geometry differentials and raytracing, thus the algorithm is
quite computationally expensive.

Using the manifold walk, a mutation can be performed
for a subpath with three non-specular vertices xa, xb, xc as
follows (Fig. 14). Sample a new direction from xa, update
specular vertices up to a new position of xb. The rest of
the vertices up to xc is then updated using the manifold
walk. Fig. 15 shows how the manifold exploration mutation
can improve the original MLT algorithm.

To preserve detailed balance Eq.(8) one must ensure that
the mutation is reversible. For this reason, after the path
has been updated using the manifold walk, the manifold
walk is executed again, but in the opposite direction (i.e. xb
is moved to its original location). If the reverse manifold

Fig. 14: The manifold exploration mutation (Sec. 5.1.2) first
changes the direction from xa and then raytraces the path
up to the first diffuse vertex xb. The manifold walk then
updates all specular vertices after xb up to xc (green).

reference MLT

MELT

Fig. 15: The original MLT (Sec. 3.3) does not handle paths
with many glossy/specular vertices effectively. Manifold
exploration light transport (MELT, Sec. 5.1) adds a new
mutation to MLT that is effective at generating such paths.
Both methods were run for 10 minutes. Scene courtesy of
W. Jakob.

walk fails or converges to a different than the original
configurations (due to discontinuities), the whole mutation
must be rejected. This step, along with the high cost of
the manifold walk, makes the mutation much more time
consuming than standard MLT mutations.

The authors also modify the mutation to handle paths
with glossy vertices (instead of specular ones). While they
show that the modified mutation works well on glossy
surfaces compared to the original MLT mutations, there is
still room for improvement as discussed next.

5.2 Half-vector Space Light Transport
Kaplanyan et al. [26] introduced the Half-vector space light
transport (HSLT) algorithm, which builds upon the original
MLT. Unlike the manifold exploration, it allows effective
sampling of all manifolds (not just specular ones) by intro-
ducing the natural constraints space (NCS).

5.2.1 Natural constraints space
The natural constraints space is based on the fact that every
light path x = (x0, . . . , xk) can be represented by its end
vertices (x0, xk) and by a projected half vector h⊥i (a half-
vector hi projected to the tangent plane at xi) instead of
each inner vertex. A path h in the NCS is defined as

h = (x0, h
⊥
1 , . . . , h

⊥
k−1, xk) ∈ Ω(h) ⊂ Ω. (22)

The manifold Ω(h) is a subspace of the path space in which
each path is uniquely represented by the half vectors at
the inner vertices (Fig. 16).

Operating with paths in the NCS has two major advan-
tages compared to using the classical representation by a se-
quence of vertex positions. First, all interactions (specular,
glossy, and diffuse) can be treated in the same way (i.e. there
is no need to treat specular interactions differently). Second,
the path integral in the NCS is decomposed into weakly

Fig. 16: The blue area represents the manifold that contains
all paths with the end vertices x0 and x2 that are uniquely
represented by the half-vectors (h1).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 17: Half-vector space mutations (See 5.2.2) perturb all
half-vectors (green) of inner vertices at once. This results in
a change of position of all inner vertices.

connected 2D integrals at each half-vector. Therefore each
half-vector can be perturbed independently and the change
in the path contribution can be predicted from the local
change reducing the effective dimensionality of the path
integral in this space.

5.2.2 Half-vector space mutation

The HSLT mutation takes a path h in the NCS and perturbs
all the half-vectors resulting in h

′
(Fig. 17). Once the half-

vectors are perturbed, an iterative algorithm similar to
the manifold walk determines the actual vertex positions
corresponding to the perturbed half vectors h

′
in NCS.

As in MELT, the iteration may fail due to discontinuities
(i.e. if the local neighborhood is not smooth) or if the mu-
tation cannot be reversed. The authors point out that HSLT
is more sensitive to these discontinuities than manifold ex-
ploration. Thus to improve efficiency when the reversibility
check fails, the path is not rejected but instead it is proposed
as a result of a mutation that jumps between two manifolds.
Fig. 18 shows a comparison of HSLT and MELT.

5.2.3 Improved HSLT

The HSLT mutation was later improved [27] in two impor-
tant aspects. First, instead of using half-vectors projected to
the tangent space h⊥, the improved algorithm uses plane-
to-plane projection of half-vectors h‖ (Fig. 19). This allows
better sampling of the perturbation, since h‖ is valid in all
R2 (unlike h⊥ which requires clamped distributions) and
corresponds to the domain used for sampling microfacet-
based bidirectional reflection functions.

Second important contribution is the improvement of
HSLT performance in scenes with many geometric dis-
continuities (such as finely tessellated and/or displaced
objects). The improved HSLT breaks the path to subpaths
that are perturbed separately in the NCS. This break down
is done at carefully selected vertices in order to avoid

reference MELT

HSLT

Fig. 18: Equal time comparison (30 min) of Manifold explo-
ration light transport (MELT, Sec. 5.1) and Half-vector space
light transport (HSLT, Sec. 5.2)) demonstrates that the HSLT
mutation is better at local exploration of glossy paths. Scene
courtesy of Kaplanyan et al. [26].

Fig. 19: Half-vector h can be mapped to a plane using either
(a) projection to the tangent plane (|h⊥| ∈ [0, 1]) or (b) plane-
to-plane projection (|h‖| ∈ [0,∞)).

iterating/walking over geometrical discontinuities (which
often leads to reversibility check failure).

5.3 Hamiltonian Monte Carlo
While the methods so far discussed in this section used
the path space geometry to improve local exploration, we
can approach the same objective using a general MCMC
algorithm Hamiltonian Monte Carlo (HMC) [28]. HMC adapts
the mutations according to derivatives of the target function
and thus has the potential to achieve better local exploration
(the previous methods only used geometry differentials).
Furthermore, HMC can lead to higher acceptance rate com-
pared to Metropolis-Hastings thus reducing the chance of
a chain getting stuck in local maxima. In the following text,
we describe the algorithm that introduced HMC to light
transport simulation.

5.3.1 Hessian-Hamiltonian Monte Carlo
To ensure effective local exploration, the general HMC
algorithm generates proposals by simulating Hamiltonian
dynamics of a point mass (equivalent of the current state)
over the landscape of the graph of the target function (see
Sec. 3.1 of the supplemental material for more details).
Li et al. [29] point out that fully simulating Hamiltonian
dynamics in light transport algorithm would require costly
numerical integration that would likely involve raytracing
a new path at each integration step and thus would be
unfeasible. Therefore they choose a different approach in
their Hessian-Hamiltonian Monte Carlo (H2MC) algorithm.

To avoid the costly integration, H2MC locally approxi-
mates the target function using Taylor series while utilizing
automatic differentiation [30] (see Sec. 3.2 of the supplemen-
tal material). This approximation then allows Hamiltonian
dynamics to be solved analytically.

The authors show that this analytical solution of Hamil-
tonian dynamics results in the proposal distribution being a
Gaussian that captures local features of the path space and
thus allows for efficient sampling of the local subspace (see

Fig. 20: In Hessian-Hamiltonian Monte Carlo (H2MC,
Sec. 5.3.1), the target function π (left) is locally approximated
using a Taylor series (green line, middle) around the current
sample u. Hamiltonian dynamics are computed using this
approximation and result in a Gaussian distribution (green
ellipse, right) that is used to generate a proposal v.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 20). The distribution is used to generate new proposals
in the primary sample space, which are mapped like in
MMLT to the path space (Sec. 4.2).

It is important to point out that while HMC was used
in the derivation of the proposal distribution, the resulting
algorithm uses standard Metropolis-Hastings and differs
from MMLT mainly by using the anisotropic mutation in-
stead of the isotropic small step mutation. This also means
that the acceptance rate is usually lower than in the full
HMC algorithm. Fig. 21 shows a comparison of H2MC with
MELT and HSLT. Compared to the previous two methods,
the H2MC mutation is usually cheaper to compute (it does
not require iterative raytracing of vertices) and it also adapts
to the derivatives of the target function, not just geometry.
However, since H2MC works in the primary sample space,
it lacks the information about geometry and thus it can
underperform on highly glossy or specular paths, where it
is important to mutate with respect to all narrow constraints
along the path. Furthermore, H2MC requires the Taylor ap-
proximation of the target function, which may be difficult to
achieve in practice (automatic differentiation is not always
feasible, especially in production renderers).

reference MELT

HSLT

H2MC

Fig. 21: Equal-time comparison (10 min) of differential
MCMC methods. While Manifold exploration light trans-
port (MELT, Sec 5.1) and Half-vector space light transport
(HSLT, Sec 5.2) use geometry differentials to effectively
explore some types of paths, Hessian-Hamiltonian Monte
Carlo (H2MC, Sec 5.3.1) adapts the mutations according
to the target function derivatives and thus delivers better
performance in this case. Image courtesy of Tzu-Mao Li.

6 ADAPTIVE MARKOV CHAIN MONTE CARLO

Defining well-balanced mutations is one of the crucial fac-
tors for fast convergence of any MCMC algorithm. It is,
however, almost impossible to design a set of mutations that
is good for all possible scenes. Usually, the user of an MCMC
algorithm must hand-tune some mutation parameters, for
example the shape of the small step proposal distribution
in PSSMLT (Sec. 4.1). This is however not always possible,
since the optimal parameter can differ for various types
of paths. To avoid hand tuning of these parameters, one
can employ the so called Adaptive Markov chain Monte Carlo
(AMCMC) [31]. AMCMC learns from the past proposals
(both accepted or rejected) and automatically tunes the pa-
rameters of the mutations. In the following text, we first dis-
cuss theory and then describe an algorithm that introduced
AMCMC to light transport.

Fig. 22: Stochastic progressive photon mapping (SPPM) [35]
works in two passes: (a) First, it generates a set of mea-
surement points (blue) from the camera. (b) Second, a set
of photon paths (red) from the light sources is generated
and the image is computed by splatting photons (vertices of
photon paths) onto nearby measurement points (red ellipse).
This corresponds to performing density estimation over
photons at each measurement point. The generation of mea-
surement points and photon paths is iteratively repeated
and the image estimates from each iteration are averaged.
To ensure consistency of the method the density estimation
radius is shrunk in each iteration.

6.1 General AMCMC
We give here a brief description of one of the AMCMC meth-
ods, Controlled Markov chain Monte Carlo [32]. For a more
comprehensive overview of AMCMC, we refer readers to
a survey by Andrieu and Thoms [33].

Unlike the classical MCMC, in the AMCMC algorithm
the transition function t (Sec. 2.1) changes with each step.
In controlled MCMC, this change is condensed into one
parameter θi of an otherwise fixed transition function
t(θi, u→ v). Given an initial value of the parameter θ0,
the value for i-th step θi is computed from the previous
samples as

θi+1 = H(i, θi, u0, . . . ui). (23)

Here u0, . . . ui are all samples generated up to the i-th step
and the function H updates the parameter according to
the history of samples and the current parameter value.

Introducing the adaptivity results in the chain no longer
being Markovian. This means that the proof of convergence
towards the stationary distribution no longer holds (and
the algorithm may diverge [33]). To ensure convergence we
have to impose a diminishing adaptation condition [33]

lim
i→∞

|H(i, θi, u0, . . . ui)− θi+1| = 0. (24)

In other words, the adaptation must diminish over time.

6.2 Robust Adaptive Photon Tracing
The AMCMC was first introduced to light transport
by Hachisuka and Jensen [34]. Their method improves
the Stochastic progressive photon mapping (SPPM) algo-
rithm [35], described in the caption of Fig. 22, by using
MCMC to distribute photons into the scene.

6.2.1 Guiding photons in SPPM
The original SPPM suffers in scenes where only a small por-
tion of photons contributes to the image. In the new method,
MCMC is used to generate only photons that contribute to
the image (Fig. 23). This is achieved by defining the so called
visibility target function. The visibility function is a binary
function, which is non-zero for photon paths where at least
one photon contributes to the image. Such a target function
is easily explored by MCMC (a contributing photon path is



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

always accepted) and thus the chain quickly converges to
the stationary distribution.

6.2.2 Mutation adaptation

The algorithm operates in the primary sample space and
adapts the small step mutation (Sec. 4.1). The mutation is
adapted using a single parameter θ ∈ [0, 1] that controls
the width of the proposal distribution. For θ equal to zero,
the proposal will always be equal to the current sample,
while for θ equal to one the proposal will be a uniformly
selected vector from the whole state space. θ is then adapted
based on the acceptance rate Ai of the states proposed so far

θi+1 = θi +
1

i
(Ai −A∗) (25)

If the acceptance rate is below the optimum A∗ (23.4% is
considered optimal under certain conditions [36]), then θ
will decrease and thus proposals will be closer to the current
state and will likely have similar target function value (and
will more likely be accepted). Otherwise, θ increases and
therefore proposals will be farther from the current state.

6.2.3 Discussion

While the algorithm certainly outperforms the original
SPPM, the photon distribution in the visible regions can be
highly nonuniform and thus the resulting error distribution
in the image may be far from uniform. This issue is ad-
dressed by some of the methods discussed later (Sec. 9.3).
The algorithm efficiency could be further improved by
adapting the mutations independently for different parts of
the state space [37].

reference SPPM

MCMC w/o adapt.

Adaptive MCMC

Fig. 23: The scene is lit from the outside and thus only
few photons in Stochastic progressive photon mapping
(SPPM) [35] reach the visible part. While using the method
by Hachisuka and Jensen (Sec. 6.2) without adapting the
mutations helps to alleviate this problem, the same method
with adaptive MCMC is even more efficient. All algorithms
ran for 10 minutes.

7 BETTER GLOBAL EXPLORATION I:
TEMPERING AND REPLICA EXCHANGE

In this section we describe a more robust MCMC algorithm
Replica exchange (RE) [38] which builds on top of Metropolis-
Hastings (Sec. 2.2). First, we show how RE achieves better
global exploration than the original Metropolis-Hastings. Af-
ter that we discuss two light transport algorithms that use
RE in different ways.

7.1 The Replica exchange algorithm in general
The Replica exchange algorithm (a.k.a. Parallel tempering)
improves global exploration of the state space by runningM
chains in parallel (each is updated as in MH) that influence
each other by a special step called replica exchange. This step
exchanges the current state of one chain with the current
state of another chain (Fig. 24). In order to be able to swap
the states without changing the stationary distribution of
these chains, the swap between a chain ci and a chain cj
must be performed with the probability

s(i, j) =
πi(uj)πj(ui)

πi(ui)πj(uj)
, (26)

where ui is the current state of the chain ci and πi is its
target function (similarly for the chain cj).

The swapping makes the chains become dependent and
they are no longer Markov. However, the whole process of
M -chains forms one Markov chain that will converge to
the distribution of Π = π1×. . .×πM . If the mutations ensure
ergodicity, then each chain ci will generate a distribution
that converges to the desired distribution π∗i .

7.2 Choosing target functions for Replica exchange
To enable better exploration of the state space, each chain
should have a differently modified target function. The com-
mon strategy in general MCMC is to use function temper-
ing [39]. One takes the original target function, which is hard
to explore and then the function is flattened as follows

πi = π1/Ti , (27)

where Ti ≥ 1 is the temperature of the chain ci. The higher
the temperature, the flatter the target function and the more
easily can the algorithm explore the state space (Fig. 25).

The chains are usually sorted according to their temper-
atures: T1 ≤ T2 ≤ . . . ≤ TM to the highest. The swaps
are then commonly only performed between neighboring
chains, so that the swap probability s(i, j) is kept high. One
also sets T1 equal to one (i.e. first chain uses the original
target function) in order to get good importance sampling
of high contributing areas of the state space.

The number of chains and their temperatures are set so
that the chain with the highest temperature is flat enough
and so the swap probability is around 23.4% (which is
considered to be ideal [40]). One can set the temperatures
manually or use automatic methods [41].

7.3 Replica Exchange Light Transport
Replica exchange was first introduced into light transport
in Replica exchange light transport (RELT) [42]. RELT uses
several chains that operate in the primary sample space

Fig. 24: Replica exchange (Sec. 7.1) between two chains c1
and c2. After several standard mutations their states u3 and
v3 are exchanged. The chains then again continue mutating
these states independently.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Fig. 25: The figure shows target functions with increasing
temperature. The target function π1 with the lowest temper-
ature (blue) has the tallest peaks and the lowest valleys and
thus is much harder to explore than the target function π3

with the highest temperature (red).

(Sec. 4.1) and differ only in which mappings they use to
map samples to the path space. Each chain is therefore
more effective at exploring different parts of the path space.
As in any RE algorithm, the chains exchange their states
(i.e. the current sample of one chain becomes the current
sample of the neighboring chain and vise versa). The state
exchange helps to explore local subspace with the chain that
uses a mapping better suited for this subspace.3 Therefore
it behaves similarly as a change of mapping in MMLT
(Sec. 4.2) with all its advantages and disadvantages.

Like MMLT, RELT reduces overhead compared to
PSSMLT by not computing all possible mappings for each
sample. Unfortunately, exchanging states may also severely
change the resulting path and thus limits the acceptance
probability of such an exchange. This problem could be alle-
viated by applying inverse mappings similarly as in MMLT
(Sec. 4.3.3), but it would involve changing the exchange
acceptance probability to account for the inverse mapping.

Unfortunately, some types of paths (such as reflected
caustics) cannot be effectively sampled by any of the chains
(no mapping handles them well) and thus the possibility of
a chain getting stuck is not entirely eliminated.

7.4 Path space regularization

To alleviate the problems with the hard-to-sample paths,
Kaplanyan et al. [43] introduced the concept of path space
regularization. A path that was previously difficult or even
impossible to sample due to presence of specular/highly-
glossy interactions (or due to point light source, etc.), can
be more easily sampled after one or two of the specular
interactions is regularized as shown in Fig. 26. To ensure
consistency, the regularization must be gradually dimin-
ished with a carefully chosen rate. Note that fast dimin-
ishing of regularization leads to under-sampling of difficult
to sample paths, while the opposite causes oversampling
of these paths. Kaplanyan et al. further show under which
conditions will a MCMC-based algorithm converge in the
presence of regularization.

7.5 Tempering of the path contribution

Šik et al. [44] borrowed the idea of regularization and com-
bined it together with Replica exchange. More specifically,

3. Imagine that one state randomly discovers a path which it can not
effectively exploit due to its mapping, however it may exchange the
state with a chain that uses better suited mapping and which can thus
effectively sample the subspace around the discovered path.

Fig. 26: (a) Kaplanyan et al. (Sec. 7.4) introduced regulariza-
tion that allows connection of the two specular vertices. (b)
Šik et al. (Sec. 7.5) propose increasing roughness of a BRDF
(from the blue narrow peak to the red wide lobe) to improve
exploration since paths like x are more likely to be accepted.

they modify the MMLT algorithm (Sec. 4.2) by introducing
chains with increasingly flatter target functions. The flat-
tening (tempering) is achieved by the regularization, in
this case performed by increasing the roughness of bidi-
rectional reflectance function (BRDF) (Fig. 26). The authors
point out that increasing roughness of all surfaces changes
the simulation result too much, which results in low proba-
bility of Replica exchange moves. Thus they only change
the roughness of BRDFs at the vertices that are not im-
portance sampled by the sampling technique corresponding
to the current mapping to the path space. Unlike in RELT,
using this approach flattens the target function for all types
of paths including reflected caustics.

The authors introduced two new strategies for Replica
exchange moves:

• Equi-energy moves. Swaps between chains are per-
formed for any two chains whose current target func-
tion value is equally high. This strategy theoretically
increases the probability of swapping [45].

• Importance-sampled permutations. Instead of
a swap between two chains, permutation of all
current states of all chains is used. The permutations
are proposed based on the resulting target function
value of all chains and are always accepted.

The authors show that the classical swapping of states
between neighboring chains achieves similar results as
the permutations, while Equi-energy moves are less ef-
fective. Fig. 27 shows a comparison of this method with
the original MMLT.

reference Original

Replica exchange

Fig. 27: Equal-time comparison of the original Multiplexed
MLT (MMLT, Sec. 4.2) and the MMLT with Replica exchange
(Sec. 7.5). The original MMLT under-samples some parts of
the image, while over-sampling others due to poor global
exploration. Replica exchange improves global exploration
and thus its result has a more uniform error.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Fig. 28: Instant radiosity [47] computes the image in two
steps: (a) Light paths (red) are traced from the light sources,
at each vertex of these paths a virtual point light (VPL) is
deposited. (b) Rays (blue) are shot from the camera, at each
hit point with a scene the illumination is computed from
every VPL which acts as a light source. The basic method
only handles diffuse surfaces.

8 BETTER GLOBAL EXPLORATION II:
MULTIPLE-TRY METROPOLIS

In this section we introduce the Multiple-try Metropolis
(MTM) [46] algorithm that improves the distribution of
MCMC samples by considering a whole set of propos-
als V mutated from the current sample (unlike standard
Metropolis-Hastings that uses just one proposal). The fi-
nal proposal is selected from the set of proposals V by
importance sampling and thus has higher chance of accep-
tance compared to the one proposal used in Metropolis-
Hastings. This in turn decreases the chance of MTM getting
stuck in a local maximum. Note however that each iteration
of MTM is quite expensive since not only a whole set of
proposals V is generated, but a set of competitors U∗ must
be generated as well (see Sec. 4 of the supplemental material
for more details). In the following text we describe two light
transport algorithms that benefit from MTM despite its high
computational cost.

8.1 Metropolis Instant Radiosity

MTM was introduced to light transport in an algorithm
called Metropolis instant radiosity (MIR) [48]. MIR builds on
light transport algorithm Instant radiosity [47], described in
the caption of Fig. 28. The advantage of the algorithm is
that a small set of virtual point lights (VPLs) is enough to be
used for a quick rendering of the scene. To ensure that the
VPLs capture illumination of a scene as closely as possible,
they must be well distributed. This is were MIR steps in.

MIR combines Instant radiosity with the original MLT
(Sec. 3.3), while replacing the standard Metropolis-Hastings
algorithm with Multiple-try Metropolis. MCMC is only used
here to distribute the VPLs. The target function is equal to
path contribution as in MLT, so the VPLs are distributed
according to how much energy they contribute to the im-
age. Compared to other VPL-based methods, using MLT to
distribute VPLs will result in VPLs being placed in areas
that are more important for the current camera position.
The disadvantage is however that once the camera moves,
the VPLs should be generated again.

Since MCMC samples are usually heavily correlated,
illuminating a scene from a small set of correlated VPLs
would lead to some serious artifacts. The authors have
therefore decided to trade efficiency of generating VPLs for
their better distribution and applied the MTM algorithm.
Generating the VPLs is usually much cheaper than accu-
mulating their illumination. Thus using MTM is advanta-
geous. To further improve the distribution of VPLs, only

MTM referenceMH

Fig. 29: Multiple-try Metropolis (MTM, Sec. 8) improves
the distribution of 128 VPLs compared to Metropolis-
Hastings (MH). The reference was computed using MH
with 12800 VPLs. Image courtesy of B. Segovia.

bidirectional mutations from MLT are used (so as to avoid
the correlation caused by the local exploration mutations).
Fig. 29 shows a comparison of VPL-based methods where
VPLs are distributed using MTM and MH.

8.2 Coherent MLT
Segovia et al. [49] point out that MTM can serve a different
purpose than improving sample distribution. In their work
MTM is utilized in the original MLT to generate coherent
paths that are more easily raytraced by massive parallel
hardware or wide instruction sets. As required by MTM,
a set of proposed states V and a set of competitors U∗ is
generated. The states are generated using local exploration
mutations (e.g. lens perturbation of MLT, Sec. 3.3) to ensure
their coherency. While only one state is accepted, contribu-
tion from all the tentative states V ∪U∗ is accumulated using
the expected value optimization (Sec. 2.6). Using MTM
in this way exploits path coherency, but it also increases
sample correlation.

9 MODIFYING TARGET FUNCTION FOR UNIFORM
IMAGE ERROR

Usually the target function is proportional to the path
contribution and thus brighter pixels receive more samples
than the darker ones. While this approach decreases overall
variance of the image estimate, the human eyes are simi-
larly sensitive to relative variance in both bright and dark
regions. Thus undersampling dark regions may result in
longer rendering times, while the user waits till the dark
regions have less visible noise. In this section we discuss
methods that change the target function in order to reduce
the overall error visible to the human visual system.

9.1 Two-stage and Multi-stage algorithm
Veach in his thesis [7, p. 357] points out that since the human
eye is sensitive to contrast differences, each pixel should
have the same relative error – in other words each pixel
should receive approximately the same number of samples.
To achieve this, he modifies the original MLT algorithm
by running it in two stages. In the first stage, an image is
computed with a low number of samples, from that we get
the estimate for j-th pixel I ′j . In the second stage, a modified
target function is used

π′(x) =

{
π(x)/I ′(x) if I ′(x) > 0
π(x) otherwise (28)

where I ′(x) returns an estimate from the first stage for
a pixel to which x contributes.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

If the estimate from the first stage is accurate, in the sec-
ond stage each pixel will have approximately the same
number of samples. However, since the first stage was run
with a low number of samples, in practice this will hardly be
the case. The unconverged estimates I ′j may cause that some
pixels will be heavily undersampled. Two-stage MLT may
therefore converge more slowly than the original MLT [50].

9.1.1 Multi-stage and Noise-aware MLT
Hoberock et al. [50] improves on the two-stage MLT by
proposing a multi-stage algorithm. Here in the first stage,
the original MLT is executed on an image with drasti-
cally reduced resolution. Thus the image should converge
quickly and I ′j estimates should be accurate. The following
stage uses a slightly larger resolution and applies the mod-
ified target function Eq. 28 using up-sampled estimates
from the previous stage. This way the algorithm contin-
ues through several stages until the last stage which uses
the original resolution of the image. While the algorithm
surpasses the two-stage version (Fig. 30), denoising the first
stage without reducing the resolution could potentially
work even better.

Furthermore, Hoberock et al. propose Noise-aware MLT,
which estimates from the previous stage which pixels are
more noisy according to a psychovisual method. While
the samples are not distributed uniformly, the image should
get noise-free more quickly when observed by a human.

reference Original

Two-stage

Multi-stage

Fig. 30: Equal-time comparison (30 min) of renderings of
a canyon lit through a narrow opening. The original MLT
(Sec. 3.3) under-samples the dark regions. The two-stage
method (Sec. 9.1) improves the sample distribution but fails
to correctly modify the target function and thus often deliv-
ers worse result than the original. The multi-stage version
(Sec. 9.1.1) modifies the target function more robustly and
therefore achieves superior results.

9.2 Gradient domain MLT
The two/multi-stage algorithm adapts the target function
based on a noisy image and thus can never be optimal. To
avoid this issue, Lehtinen et al. [16] approach the uniform
image error differently. They propose Gradient domain MLT
(GDMLT) which builds on the original MLT with manifold
exploration (MELT) (Sec. 5.1) and exploits the similarity in
paths that contribute to neighboring pixels. More concretely,
they use MCMC to compute both the original image IO but
also two difference images Idx, Idy that hold the information
about finite difference of image contributions of paths that
contribute to neighboring pixels. The resulting image is then
computed from IO, Idx, Idy via screened Poisson reconstruc-
tion (Fig. 31). In the case of L2 Poisson reconstruction [51]
GDMLT is an unbiased algorithm as proven by the authors.

horizontal difference Idx

reconstructed image

vertical difference Idy

original image Io

Fig. 31: Poisson reconstruction computes the final image in
Gradient domain MLT (Sec. 9.2) from images with finite hor-
izontal Idx and vertical Idy differences and from the original
image IO. Image courtesy of Lehtinen et al. [16]

.
9.2.1 Computing the difference images

To compute the difference images Idx, Idy , GDMLT uses
MCMC to generate an original path x and a shifted path
xs together. The shifted path xs is constructed from x as
illustrated in Fig. 32. The same paths are used to compute all
three images IO, Idx, Idy . To ensure samples are distributed
well in all images (i.e. in bright regions, but also in dark re-
gions with high-frequency content), MCMC generates pairs
of paths x and xs using the following target function

π(x, xs) = |f∗d (x, xs)|+ β
1

4
f∗(x), (29)

where f∗ is a scalar value of the path contribution and
similarly f∗d is a scalar difference of the contribution of x
and xs. The user-defined factor β scales which component
is deemed more important.

9.2.2 Comparison to MELT

Compared to MELT, the method usually needs fewer sam-
ples to get similar results (i.e. IO can be quite noisy, while
the reconstruction result will still be noise-free, see Fig. 31).
On the other hand, GDMLT suffers more from poor global
exploration caused by the higher variation of the target func-
tion (mainly coming from the scalar difference |f∗d (x, xs)|).
The authors therefore propose to use L1 reconstruction
instead of L2 to limit the occurrence of the overly-bright
pixels caused by insufficient global exploration. While the
use of L1 reconstruction makes the method biased, it re-
mains consistent.

Fig. 32: Offset path sampling in Gradient domain MLT
(Sec. 9.2). The shifted path xs (green) is computed from
the original path x (red) by first moving the first hit point
from the camera xb to x′b so that xs goes through a neigh-
boring pixel. The algorithm then generates xs vertices until
it can connect to the original path at xc.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

Fig. 33: According to Gruson et al. (Sec. 9.3.1), the desired
target function for photon tracing is proportional to the in-
verse of the probability of receiving photon at a given point
in the scene. This can be approximated by spatially dividing
a scene and counting how many photons (red circles) fall in
each bin (marked by green numbers).

9.2.3 Improved sampling for GDMLT
Besides other improvements of GDMLT, Manzi et al. [52]
propose several orthogonal enhancements that reduce
the variation of the target function. First, they propose
two new path-shifting methods that are combined using
multiple importance sampling. Second, to further increase
the correlation between two neighboring paths, the shifted
path is constructed from a pixel that is deemed to be closely
correlated to the original path pixel not only by proximity
but also by comparing multiple features (such as texture
color, normals etc) that are computed for each pixel in a pre-
process. The authors show that while these improvements
lead to better global exploration, the method is still prone to
artifacts due to the chain getting stuck.

9.3 Guiding photons for uniform image error

While the two/multi-stage and GDMLT algorithms improve
sample placement where MCMC is used to generate whole
paths, MCMC can be applied to just generate photons as in
SPPM (Sec. 6.2).4 To ensure that image converges uniformly,
different approach must be taken for such methods.

Fan et al. [53] uses the vertices of paths generated by
the original MLT as photons. While they are distributed
mainly in important regions, their distribution is not ideal
for photon mapping methods. Chen et al. [54] enhances
the visibility target function used by Hachisuka and Jensen
(Sec. 6.2) by incorporating the approximate density of pho-
tons contributing to each image pixel. The approximation
uses an ad-hoc formula and is computed in a pre-pass from
a limited number of samples and thus may not be optimal.

Zheng et al. [55] improves the previous method by
utilizing visual importance [56] as a target function to guide
the photons. Measurement points that are deemed to con-
tribute less to the image by a pre-pass receive lower target
function value and thus a light path that only contributes to
them is less likely to be accepted. Gruson et al. [57] point out
that while the other methods tend to distribute photons to
important regions, the resulting error in the image is highly
non uniform. We discuss their method in the following text.

9.3.1 Spatial Target Function
Gruson et al. [57] prove that an image has uniform relative
error if each measurement point G has the same probability
of receiving a non-zero contribution from any photon path

4. Since the density estimation radius is gradually shrinked in SPPM
(Fig. 22), the target function of the MCMC algorithms based on SPPM
changes during the rendering.

reference Hachisuka&Jensen

Gruson et al.

Fig. 34: Equal-time comparison of algorithms that improve
photon guiding. While the method by Hachisuka and Jensen
(Sec. 6.2) delivers photons to the visible regions, their dis-
tribution is highly non-uniform. The method by Gruson
et al. (Sec. 9.3.1) generates photons in such a way that
the resulting image has a more uniform error distribution.

(under simplifying assumptions, such as a diffuse BRDF).
This is achieved if the target function value for photon path
contributing to a measurement point G is equal to 1/P (G),
where P (G) is the probability of generating a photon path
by uniform sampling of the primary sample space.

The authors use an approximation of the above target
function based on statistics of previously generated photons
(Fig. 33). This leads in practice to uniform image error, with
the exception of pixels that display highly glossy materials.
To improve the approximation over time, the method is split
into iterations and each iteration uses target function based
on statistics from all previous iterations.

Gruson et al. further propose several improvements to
increase the efficiency of their method, namely they apply
Replica exchange (Sec. 7). Fig. 34 shows a comparison with
the method by Hachisuka and Jensen (Sec. 6.2).

10 BETTER GLOBAL EXPLORATION III:
STRATIFICATION

Stratified sampling is another approach to improving global
exploration. Stratification is a Monte Carlo variance reduc-
tion technique that divides the sampled domain into subdo-
mains where each receives the same number of samples and
thus the whole domain is well-explored. In this section we
discuss two methods that aim at improving the poor strati-
fication of the usually highly correlated samples generated
by MCMC.

10.1 Energy redistribution path tracing
Cline et al. [58] introduced Energy redistribution path tracing
(ERPT) that aims at combining good stratification properties
of regular Monte Carlo path tracing with efficient sam-
pling of local high-contributing subspaces using the original
local exploration mutations from MLT (Sec. 3.3). To do
that they first generate a set of paths using a path tracer
with a stratified sampler. Then the energy carried by each
of these paths is redistributed to the surrounding pixels
using MCMC sampling. In the following text we discuss
the energy redistribution in more detail.

10.1.1 Energy redistribution
Using the rather non-standard ERPT notation and termi-
nology, the energy of each path x is defined as e(x) =
f(x)/p(x), where f(x) is the contribution to the image



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

reference MLT

ERPT

Fig. 35: Equal-time comparison of the original MLT (Sec. 3.3)
and Energy redistribution path tracing (ERPT, Sec. 10.1).
While MLT delivers less noisy image due to high sample
correlation, ERPT discovers more important paths (like re-
flected caustics) thanks to its better global exploration. Scene
courtesy of T. Hachisuka.

and p(x) is the probability density with which x was sam-
pled using the path tracer. To distribute this energy, nc(x)
Markov chains are initialized with x and each of them is
mutated using Metropolis-Hastings nm-times. To mutate
states, the authors use lens and caustic perturbations from
MLT (Sec. 3.3), but other path space mutations can be used
as well (e.g. manifold exploration, see Sec. 5.1). Each path
generated by MCMC then deposits ed(x) amount of energy
to the image

ed(x) =
b∗

n∗cnm
, (30)

where b∗ is the average energy of all initial paths and n∗c is
the average number of Markov chains per pixel. Note that
b∗ directly corresponds to the start-up weight (Sec. 2.5). In
order to give unbiased results, each path x uses a different
number of Markov chains

nc(x) = bξ +
e(x)

nmed(x)
c = bξ + n∗c

e(x)

b∗
c, (31)

where ξ ∼ U(0, 1) is a uniformly distributed random num-
ber. Note that the number of chains for a given initial path is
proportional to the path energy, thus more important initial
paths may deposit their energy to more samples and thus
decrease the chance of generating an overly-bright pixel.

10.1.2 Similarity to MLT

While ERPT may seem as very different from the original
MLT, it is actually quite similar. In fact, given a set of
initial path traced paths X , using ERPT is equivalent to
running

∑
x∈X nc(x) independent MLT algorithms without

bidirectional mutations. Each nc(x) independent MLT algo-
rithms are initialized with the same x ∈ X . The deposited
energy ed(x) is equal to the common multiplier of samples
in the original MLT (Eq. (16)).

However, due to the fact that ERPT uses many indepen-
dent chains initialized from well stratified paths, the strat-
ification is improved compared to the original MLT with
a single chain. On the other hand, the number of mutations
per each chain is decreased compared to the original MLT
and thus the chains will more likely fail to converge to
the desired distribution. This does not impair unbiasedness
of ERPT, but it reduces its efficiency when dealing with
hard-to-sample light paths. Fig. 35 shows a comparison
between the original MLT and ERPT.

Fig. 36: In Metropolized bidirectional estimators (MBE,
Sec. 10.2) a single light subpath (red) is created using a sam-
ple u from the primary sample space. This subpath is then
connected (dashed black lines) to a randomly chosen camera
subpath (opaque blue) using all mappings from bidirec-
tional path tracing (not all of them are shown). Density
estimation (red ellipse) is then performed at light subpath
vertices using all vertices from camera subpaths.

10.2 Metropolised Bidirectional Estimators
The Metropolised bidirectional estimators (MBE) algorithm [59]
improves upon Primary sample space MLT (PSSMLT,
Sec. 4.1). First, it achieves better path stratification by gen-
erating camera subpaths using a path tracer with a strat-
ified sampler, while using MCMC to generate only light
subpaths. Second, Replica exchange is applied (Sec. 7) to
improve global exploration. It uses two chains, one with
the original target function (the same as in PSSMLT) and one
with a binary visibility target function, where the visibility
is defined to be one if the original target function is non-zero
(similar to adaptive photon guiding, see Sec. 6.2.1). The au-
thors show that using just two chains is usually sufficient
(average swap probability is close to the ideal 23.4% [40]).
Finally, MBE uses additional mappings to the path space
and thus handles some hard-to-sample paths (e.g. reflected
caustics) more efficiently.

10.2.1 Additional mappings
Compared to PSSMLT, which utilizes all mappings (sam-
pling techniques) from bidirectional path tracing (Sec. 4.1.3),
MBE uses additional mappings from Vertex connection and
merging (VCM) [60] (a.k.a Unified path sampling [61]). These
mappings correspond to density estimation with brute force
path reuse, similarly to photon mapping (Fig. 22). To enable
all VCM mappings, MBE is split into iterations, in each of
them a set of stratified camera subpaths is generated first
and then a given number of light subpaths is generated
using MCMC sampling. Fig. 36 shows paths created using
various VCM mappings given one light subpath.

10.2.2 Comparison to previous techniques
Due to the MBE features, the algorithm handles both stratifi-
cation and difficult-to-sample paths. Fig. 37 shows compari-
son to ERPT and PSSMLT. The authors show that while their
algorithm does not impose temporal coherence, animations
generated by MBE do not suffer from the excessive temporal
artifacts typical from most other MCMC approaches (see
supplemental material of the original paper [59]). Further-
more, the authors point out that the MIS weights used in
MCMC based sampling are not optimal and derive im-
proved weights for the chain with visibility target function.

PART III: DISCUSSION AND CONCLUSION

In this last part, we summarize and compare the described
algorithms and offer possible directions for future work.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 18

reference ERPT+ME

PSSMLT

MBE

Fig. 37: Equal-time comparison (1 hour) of Energy redistri-
bution path tracing (ERPT, Sec. 10.1) with manifold explo-
ration (ME, Sec. 5.1), Primary sample space MLT (PSSMLT,
Sec. 4.1) and Metropolized bidirectional estimators (MBE,
Sec. 10.2). ERPT+ME enforces stratification by using many
short Markov chains, however the chains fail to properly
explore the complex glossy paths present in this scene.
PSSMLT lacks stratification and density estimation tech-
niques and thus delivers more noisy result than MBE.

11 DISCUSSION

In Part II, we point out some important aspects of an MCMC
algorithm: local exploration, global exploration, uniform
image error. Here we compare how different algorithm cat-
egories achieve these goals and we offer possible directions
for their combination and/or improvement.

11.1 Local exploration
Two categories of algorithms aim at improving local ex-
ploration. The algorithms discussed in Sec. 4 use a sim-
plified state space called primary sample space. A simple
mutation in this space is effective at sampling different
types of paths due to many mappings to the path space.
A different approach is taken by the algorithms introduced
in Sec. 5, which adapt their mutations based on differentials
of local geometry or of the target function. While these
mutations are computationally expensive, their effective-
ness usually outweighs the cost in the presence of difficult
glossy/specular transport.

None of the mutations is the best under all circum-
stances. Even the simple mutation in the primary sample
space can be the most efficient for some paths thanks to its
low cost. For this reason, it would be best to choose the most
appropriate mutation for each path automatically. While it
is possible to combine mutations from the path space and
the primary sample space (Sec. 4.3), it is still unknown how
to choose the best mutation from all the available ones.

A different approach to improve local exploration is
applied in Metropolized bidirectional estimators (Sec. 10.2),
where density estimation along with brute force path reuse
is used to efficiently handle paths that are otherwise difficult
to explore. The authors show that their approach in many
cases achieves better results than the complex mutations dis-
cussed above [59], but a more thorough analysis is needed
to confirm their empirical results.

Since all the discussed mutations depend on user param-
eters, one can use Adaptive Markov chain Monte Carlo
(Sec. 6) to automatically tune these. While it was shown
that this improves the effectiveness of simple mutations in

the primary sample space [34], this idea has never been
used for more complex mutations. Furthermore, the existing
methods adapt the mutations for the whole scene. Efficiency
could be improved if the adaptation was localized [37].

11.2 Global Exploration
In this survey we discuss two general MCMC techniques
that improve global exploration: Replica exchange (RE)
(Sec. 7) and Multiple-try Metropolis (MTM) (Sec. 8). Both
of them can be applied to improve performance of any of
the previously discussed algorithms.

The advantage of Replica exchange is its little overhead
compared to MTM. While it runs several Markov chains
with different target functions, all their samples can be used
for the quadrature and possibly weighted using MIS [59].
The main disadvantage of RE is that its performance highly
depends on the number of chains and on their target func-
tions. Tuning RE to run optimally is a difficult task.

On the other hand, Multiple-try Metropolis has only
one parameter: the number of proposals generated per one
sample. The disadvantage of MTM is its huge overhead
with increasing number of proposals. While one can apply
the expected value optimization to use all the proposals in
the quadrature (Sec. 8.2), the effectiveness of this approach
is reduced since the proposals are often heavily correlated
(they are mutated from the same sample). For this reason
MTM has so far been used mainly where the overhead is
not an issue (VPL generation, see Sec. 8.1); it remains to be
seen if the superior distribution of samples could outweigh
the additional cost in other use-cases. Another interesting
and yet to be explored option would combine MTM and
replica exchange to further improve global exploration.

MCMC literature lists other general techniques for im-
proving global exploration that have yet to be applied to
light transport. One example is Delayed rejection [62],
which allows to accept another proposal when the previous
one was rejected (without repeating the current sample).

The main reason why the current MCMC algorithms
may fail to fully explore the state space is their use of unin-
formed uniform mutations as a means of global exploration
(the large step mutation used in the primary sample space
is at least locally informed due to the inherent importance
sampling, see Sec. 4.1). While these mutations potentially
explore the whole state space, they are often rejected since
they only rarely find an important path. Adapting these
mutations using information either from previous samples
(e.g. using adaptive MCMC) or from some pre-process [63],
[64] could significantly improve their acceptance rate and
thus effectiveness of global exploration.

11.3 Uniform image error and stratification
We discuss several methods in Sec. 9 that aim to achieve
more uniform image error. Some (Sec. 9.3) are useful only
for photon mapping-based methods (Fig. 22), however
the Two/Multi-stage MLT or the Gradient domain MLT
could be potentially combined with all the algorithms from
the other categories. Since these algorithms modify the tar-
get function, a possible complication would arise only when
combining them with Replica exchange which already uses
modified target functions, though for a different purpose.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 19

Achieving better global exploration by improving strat-
ification of paths is discussed in Sec. 10. The Energy redis-
tribution path tracing approach (see Sec. 10.1), using many
short Markov chains initialized in different pixels, can be
applied to any other algorithm. However this may actually
hinder its efficiency, since the short chains will likely gener-
ate a distribution very different from the target distribution.
The Metropolized bidirectional estimators algorithm (see
Sec. 10.2) uses a more effective approach, since it generates
truly stratified camera subpaths. The disadvantage is that
it does not use MCMC for paths that are traced only from
the camera (such as pure specular paths). It is also unclear
how to apply such an approach to methods that mutate
whole paths (i.e. the path space algorithms).

The discussed methods improve the stratification indi-
rectly, but it would be beneficial if one could stratify directly
the samples generated by a single Markov chain. Since the
ability of MCMC to quickly explore important paths is due
to the correlated samples it generates, one would have to
find a balance between stratification and correlation.

11.4 Error analysis

Variance of the original MLT was analyzed by Ashikhmin
et al. [65] who prove that the variance of a pixel is Θ(1/N)
givenN samples. However, their work uses two simplifying
assumptions. First, variance is considered only for a single
pixel, correlation among neighboring pixels is ignored. Sec-
ond, the proof assumes that the Markov chain has already
reached its stationary distribution. Since these assumptions
are not true in reality, the analysis does not capture the
true behavior of MLT or other MCMC algorithms. One
possible approach to achieve more detailed and practical
error estimation is the work of Kaplanyan et al. [43], who
analyze the mixing rate of a Markov chain (i.e. how fast the
chain reaches its stationary distribution).

11.5 Temporal stability

Temporal instability is perhaps the thorniest issue of current
MCMC-based algorithms and it hinders their adoption in
production renderers. While the authors of Metropolized
bidirectional estimators (see Sec. 10.2) demonstrate the al-
gorithm’s superior temporal stability compared to other
MCMC algorithms, this result is achieved only through
better global exploration rather than by directly impos-
ing temporal stability. Some instabilities may therefore still
occur. Ensuring temporal stability comparable to ordinary
path tracing remains an important topic for future work.

12 CONCLUSION AND OPEN PROBLEMS

We have presented a survey of most of the MCMC-based
light transport algorithms known to date, while discussing
how each addresses various specific issues that emerge
in conjunction with the use of MCMC in light transport
simulation. While the existing methods are effective at some
aspects, such as local exploration (e.g. thanks to considering
geometry/target function differentials), numerous issues re-
main unresolved. Specifically, we identify three main prob-
lems that hinder a widespread adoption of MCMC-based
algorithms in practice.

First, global exploration is an open issue. Scenes with
many specular/glossy interactions separated by complex
geometry or visibility yield numerous small islands of high-
throughput in the path space. No current algorithm can,
however, guarantee discovering all the relevant ones. While
Replica exchange or Multiple-try Metropolis certainly im-
prove global exploration, they do not solve the issue com-
pletely. One direction could involve using informed global
mutations (e.g. utilizing path-guiding or adaptive MCMC).

Second, current MCMC algorithms suffer from severe
temporal instability. The noise is often of low-frequency na-
ture and as such, it is impossible to suppress by filtering.
Currently the only somewhat effective approach to improve
temporal stability is through improved global exploration,
thereby limiting the appearing and disappearing of image
features during an animation.

Finally, there is currently no reliable error metric to mea-
sure the algorithm progress and evaluate stopping criteria.

Despite the tremendous progress in MCMC light trans-
port in the last several years, the above issues still prevent
the use of MCMC-based algorithms in practice. This survey
has identified numerous interesting directions for future
research and it is our hope that these could eventually lead
to the development of a universal light transport method
based on MCMC.

ACKNOWLEDGMENTS

The authors thank W. Jakob for his renderer Mitsuba, which
was used to generate most of the images. We also thank
M. Pharr, J. Hanika, A. S. Kaplanyan, T.-M. Li, B. Segovia,
H. Otsu, T. Hachisuka, W. Jakob, and J. Lehtinen for per-
mission to use their examples/scenes/images/source code.
This work was supported by the grant SVV–2017–260452
and by the Czech Science Foundation grant 16–18964S.

REFERENCES

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fast computing
machines,” The journal of chemical physics, vol. 21, no. 6, 1953.

[2] E. Veach and L. J. Guibas, “Metropolis light transport,” in SIG-
GRAPH ’97, 1997.

[3] W. Jakob, Path Space Markov Chain Monte Carlo Methods in Computer
Graphics. Springer International Publishing, 2016.

[4] L. Tierney, “Markov chains for exploring posterior distributions,”
The Annals of Statistics, vol. 22, no. 4, pp. 1701–1728, 1994.

[5] W. K. Hastings, “Monte Carlo sampling methods using Markov
chains and their applications,” Biometrika, vol. 57, no. 1, 1970.

[6] S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, Handbook of
Markov Chain Monte Carlo. Chapman and Hall/CRC, 2011.

[7] E. Veach, “Robust Monte Carlo methods for light transport simu-
lation,” Ph.D. dissertation, Stanford University, 1997.

[8] E. Nummelin, General irreducible Markov chains and non-negative
operators. Cambridge University Press, 1984.

[9] L. Szirmay-Kalos, P. Dornbach, and W. Purgathofer, “On the
startup bias problem of Metropolis sampling,” Technical Univer-
sity of Budapest, Tech. Rep., 1999.

[10] E. Veach and L. Guibas, “Bidirectional estimators for light trans-
port,” in Proc. Eurographics Rendering Workshop, 1994.

[11] M. Schmidt, O. Lobachev, and M. Guthe, “Coherent Metropolis
light transport on the GPU using speculative mutations,” in Jour-
nal of WSCG. 2016, vol. 24, ser. Journal of WSCG. 2016, 2016.

[12] D. Blackwell, “Conditional expectation and unbiased sequential
estimation,” Ann. Math. Statist., vol. 18, no. 1, pp. 105–110, 03 1947.

[13] E. Veach and L. J. Guibas, “Optimally combining sampling tech-
niques for Monte Carlo rendering,” in SIGGRAPH ’95, 1995.

[14] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering
(Third Edition). Boston: Morgan Kaufmann, 2017.

http://www.mitsuba-renderer.org


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 20

[15] M. Pauly, T. Kollig, and A. Keller, “Metropolis light transport for
participating media,” in Eurographics Rendering Workshop, 2000.

[16] J. Lehtinen, T. Karras, S. Laine, M. Aittala, F. Durand, and T. Aila,
“Gradient-domain Metropolis light transport,” ACM Trans. Graph.
(SIGGRAPH 2013), vol. 32, no. 4, 2013.

[17] C. Kelemen, L. Szirmay-Kalos, G. Antal, and F. Csonka, “A simple
and robust mutation strategy for the Metropolis light transport
algorithm,” Comp. Graph. Forum (Eurographics), vol. 21, no. 3, 2002.

[18] K. Zsolnai and L. Szirmay-Kalos, “Automatic parameter control
for Metropolis light transport,” in EG 2013 Short Papers, 2013.

[19] L. Szirmay-Kalos, B. Benedek, and M. Sbert, “Metropolis iteration
for global illumination,” Journal of WSCG, vol. 12, no. 1-3, 2004.

[20] T. Hachisuka, A. S. Kaplanyan, and C. Dachsbacher, “Multiplexed
Metropolis light transport,” ACM Trans. Graph., vol. 33, no. 4, 2014.

[21] H. Otsu, A. S. Kaplanyan, J. Hanika, C. Dachsbacher, and
T. Hachisuka, “Fusing state spaces for Markov chain Monte Carlo
rendering,” ACM Trans. Graph., vol. 36, no. 4, Jul. 2017.

[22] J. Pantaleoni, “Charted Metropolis light transport,” ACM Trans.
Graph., vol. 36, no. 4, pp. 75:1–75:14, Jul. 2017.

[23] B. Bitterli, W. Jakob, J. Novák, and W. Jarosz, “Reversible jump
Metropolis light transport using inverse mappings,” ACM Trans.
Graph., vol. 37, no. 1, pp. 1:1–1:12, Oct. 2017.

[24] W. Jakob and S. Marschner, “Manifold exploration: A Markov
chain Monte Carlo technique for rendering scenes with difficult
specular transport,” ACM Trans. Graph., vol. 31, no. 4, 2012.

[25] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet
models for refraction through rough surfaces,” in Proceedings of the
18th Eurographics Conference on Rendering Techniques, 2007.

[26] A. S. Kaplanyan, J. Hanika, and C. Dachsbacher, “The natural-
constraint representation of the path space for efficient light trans-
port simulation,” ACM Transactions on Graphics, vol. 33, no. 4, 2014.

[27] J. Hanika, A. Kaplanyan, and C. Dachsbacher, “Improved half vec-
tor space light transport,” Comp. Graph. Forum, vol. 34, no. 4, 2015.

[28] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
Monte Carlo,” Physics Letters B, vol. 195, no. 2, pp. 216 – 222, 1987.

[29] T.-M. Li, J. Lehtinen, R. Ramamoorthi, W. Jakob, and F. Du-
rand, “Anisotropic Gaussian mutations for Metropolis light trans-
port through Hessian-Hamiltonian dynamics,” ACM Trans. Graph.
(SIGGRAPH Asia 2015), vol. 34, no. 6, 2015.

[30] D. Piponi, “Automatic differentiation, C++ templates, and pho-
togrammetry,” Journal of Graphics Tools, vol. 9, no. 4, 2004.

[31] H. Haario, E. Saksman, and J. Tamminen, “An adaptive Metropolis
algorithm,” Bernoulli, vol. 7, no. 2, pp. 223–242, 04 2001.

[32] C. Andrieu and C. P. Robert, “Controlled MCMC for optimal
sampling,” Université Paris-Dauphine, Tech. Rep., 2001.

[33] C. Andrieu and J. Thoms, “A tutorial on adaptive MCMC,”
Statistics and Computing, vol. 18, no. 4, pp. 343–373, 2008.

[34] T. Hachisuka and H. W. Jensen, “Robust adaptive photon tracing
using photon path visibility,” ACM Tr. Graph., vol. 30, no. 5, 2011.

[35] ——, “Stochastic progressive photon mapping,” ACM Trans.
Graph. (SIGGRAPH Asia 2009), vol. 28, no. 5, 2009.

[36] J. S. Rosenthal, Optimal Proposal Distributions and Adaptive MCMC,
1st ed., ser. Handbooks of Modern Statistical Methods. Florida,
USA: Chapman & Hall, CRC, 2011, ch. 4.

[37] R. V. Craiu, J. Rosenthal, and C. Yang, “Learn from thy neighbor:
Parallel-chain and regional adaptive MCMC,” Journal of the Amer-
ican Statistical Association, vol. 104, no. 488, pp. 1454–1466, 2009.

[38] R. H. Swendsen and J.-S. Wang, “Replica Monte Carlo simulation
of spin-glasses,” Phys. Rev. Lett., vol. 57, pp. 2607–2609, 1986.

[39] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applica-
tions, and new perspectives,” Phys. Chem. Chem. Ph., vol. 7, 2005.

[40] Y. F. Atchadé, G. O. Roberts, and J. S. Rosenthal, “Towards opti-
mal scaling of Metropolis-coupled Markov chain Monte Carlo,”
Statistics and Computing, vol. 21, no. 4, pp. 555–568, 2010.

[41] B. Miasojedow, E. Moulines, and M. Vihola, “An adaptive par-
allel tempering algorithm,” Journal of Computational and Graphical
Statistics, vol. 22, no. 3, pp. 649–664, 2013.

[42] S. Kitaoka, Y. Kitamura, and F. Kishino, “Replica exchange light
transport,” Computer Graphics Forum, vol. 28, no. 8, 2009.

[43] A. S. Kaplanyan and C. Dachsbacher, “Path space regularization
for holistic and robust light transport,” Comput. Graph. Forum
(Eurographics 2013), vol. 32, no. 2, pp. 63–72, 2013.

[44] M. Šik and J. Křivánek, “Improving global exploration of MCMC
light transport simulation,” in ACM SIGGRAPH 2016 Posters, 2016.

[45] M. Baragatti, A. Grimaud, and D. Pommeret, “Parallel tempering
with equi-energy moves,” Stat. and Computing, vol. 23, no. 3, 2012.

[46] J. S. Liu, F. Liang, and W. H. Wong, “The Multiple-Try method and
local optimization in Metropolis sampling,” Journal of the American
Statistical Association, vol. 95, no. 449, pp. 121–134, 2000.

[47] A. Keller, “Instant Radiosity,” in Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, 1997.

[48] B. Segovia, J.-C. Iehl, and B. Péroche, “Metropolis instant radios-
ity,” Comput. Graph. Forum (Eurographics 2007), vol. 26, no. 3, 2007.

[49] B. Segovia, J.-C. Iehl, and B. Proche, “Coherent Metropolis
light transport with Multiple-Try mutations,” LIRIS UMR 5205
CNRS/INSA de Lyon, Tech. Rep. RR-LIRIS-2007-015, Apr. 2007.

[50] J. Hoberock and J. C. Hart, “Arbitrary importance functions for
Metropolis light transport.” Com. Graph. Forum, vol. 29, no. 6, 2010.

[51] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. Graph., vol. 22, no. 3, pp. 313–318, Jul. 2003.

[52] M. Manzi, F. Rousselle, M. Kettunen, J. Lehtinen, and M. Zwicker,
“Improved sampling for gradient-domain Metropolis light trans-
port,” ACM Trans. Graph., vol. 33, no. 6, Nov. 2014.

[53] S. Fan, S. Chenney, and Y.-c. Lai, “Metropolis photon sampling
with optional user guidance,” in Eurographics Symposium on Ren-
dering (EGSR ’05), 2005, pp. 127–138.

[54] J. Chen, B. Wang, and J.-H. Yong, “Improved stochastic progres-
sive photon mapping with Metropolis sampling,” Comput. Graph.
Forum (EGSR 2011), vol. 30, no. 4, 2011.

[55] Q. Zheng and C.-W. Zheng, “Visual importance-based adaptive
photon tracing,” The Visual Computer, vol. 31, no. 6, 2015.

[56] P. H. Christensen, “Adjoints and importance in rendering: An
overview,” IEEE Trans. Vis. Comput. Graphics, vol. 9, no. 3, 2003.

[57] A. Gruson, M. Ribardière, M. Šik, J. Vorba, R. Cozot, K. Bouatouch,
and J. Křivánek, “A spatial target function for Metropolis photon
tracing,” ACM Trans. Graph., vol. 36, no. 1, pp. 4:1–4:13, Nov. 2016.

[58] D. Cline, J. Talbot, and P. Egbert, “Energy redistribution path
tracing,” ACM Trans. Graph. (SIGGRAPH 2005), vol. 24, no. 3, 2005.

[59] M. Šik, H. Otsu, T. Hachisuka, and J. Křivánek, “Robust light
transport simulation via Metropolised bidirectional estimators,”
ACM Trans. Graph., vol. 35, no. 6, pp. 245:1–245:12, Nov. 2016.

[60] I. Georgiev, J. Křivánek, T. Davidovič, and P. Slusallek, “Light
transport simulation with vertex connection and merging,” ACM
Trans. Graph. (SIGGRAPH Asia ’12), vol. 31, no. 6, 2012.

[61] T. Hachisuka, J. Pantaleoni, and H. W. Jensen, “A path space ex-
tension for robust light transport simulation,” ACM Trans. Graph.
(SIGGRAPH Asia ’12), vol. 31, no. 6, 2012.

[62] A. Mira, “On Metropolis-Hastings algorithms with delayed rejec-
tion,” Metron - International Journal of Statistics, vol. 0, no. 3-4, 2001.

[63] H. W. Jensen, “Importance driven path tracing using the photon
map,” in Eurographics Workshop Rendering, 1995, pp. 326–335.

[64] J. Vorba, O. Karlı́k, M. Šik, T. Ritschel, and J. Křivánek, “On-
line learning of parametric mixture models for light transport
simulation,” ACM Trans. Graph., vol. 33, no. 4, 2014.

[65] M. Ashikhmin, S. Premože, P. Shirley, and B. Smits, “A variance
analysis of the Metropolis light transport algorithm,” Computers &
Graphics, vol. 25, no. 2, pp. 287 – 294, 2001.

Martin Šik is a Ph.D. candidate at the Charles
University, Prague, supervised by Jaroslav
Křivánek. His current research focuses on
Markov chain Monte Carlo algorithms for robust
light transport simulation. Besides his academic
research, he works as a researcher and devel-
oper at Render Legion, a.s., where he helps to
develop Corona Renderer. He received his Mas-
ter’s degree in computer graphics from Charles
University, Prague in 2012.

Jaroslav Křivánek is an associate professor
of Computer Science at Charles University,
Prague, and Director of Research at Chaos
Group. Jaroslav received his Ph.D. from INRIA
Rennes and Masters degree from Czech Tech-
nical University, Prague. His primary research
interest is in realistic rendering with the focus on
Monte Carlo methods for light transport simula-
tion.


	Introduction
	Markov chain Monte Carlo
	General MCMC algorithm
	Metropolis-Hastings algorithm
	Convergence of the Metropolis-Hastings algorithm
	Using MCMC for quadrature
	Start-up bias
	Common optimization

	MCMC in light transport
	Light transport equation
	Multiple Importance Sampling
	Metropolis Light Transport

	Simplified state space
	Primary Sample Space Metropolis Light Transport
	Estimating the light transport equation
	Mutations
	Utilizing many mappings

	Multiplexed Metropolis Light Transport
	Sampling the mapping
	Comparison to PSSMLT

	Fusing state spaces
	Inverse mapping
	Mutating in both spaces
	Improving MMLT efficiency


	Better local exploration:Differential methods
	Manifold Exploration Light Transport
	Specular manifold
	Manifold mutation

	Half-vector Space Light Transport
	Natural constraints space
	Half-vector space mutation
	Improved HSLT

	Hamiltonian Monte Carlo
	Hessian-Hamiltonian Monte Carlo


	Adaptive Markov chain Monte Carlo
	General AMCMC
	Robust Adaptive Photon Tracing
	Guiding photons in SPPM
	Mutation adaptation
	Discussion


	Better global exploration I:Tempering and Replica exchange
	The Replica exchange algorithm in general
	Choosing target functions for Replica exchange
	Replica Exchange Light Transport
	Path space regularization
	Tempering of the path contribution

	Better global exploration II:Multiple-try Metropolis
	Metropolis Instant Radiosity
	Coherent MLT

	Modifying target function for uniform image error
	Two-stage and Multi-stage algorithm
	Multi-stage and Noise-aware MLT

	Gradient domain MLT
	Computing the difference images
	Comparison to MELT
	Improved sampling for GDMLT

	Guiding photons for uniform image error
	Spatial Target Function


	Better global exploration III:Stratification
	Energy redistribution path tracing
	Energy redistribution
	Similarity to MLT

	Metropolised Bidirectional Estimators
	Additional mappings
	Comparison to previous techniques


	Discussion
	Local exploration
	Global Exploration
	Uniform image error and stratification
	Error analysis
	Temporal stability

	Conclusion and Open Problems
	References
	Biographies
	Martin Šik
	Jaroslav Krivánek


