PATH CONSTRUCTION

Iliyan Georgiev Solid Angle

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

Pixel estimator

path contribution path pdf

Path contribution

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left| \prod_i f_s(\mathbf{x}_i) \mathbf{x}_i \right|$$

Г

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

 $G(\mathbf{x}_i, \mathbf{x}_{i+1})T(\mathbf{x}_i, \mathbf{x}_{i+1}) \mid L_{e}(\mathbf{x}_k, \mathbf{x}_{k-1})$

Path contribution

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left| \prod_i f_s(\mathbf{x}_i) \mathbf{x}_i \right|_i$$
camera
response

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

 $G(\mathbf{x}_i, \mathbf{x}_{i+1})T(\mathbf{x}_i, \mathbf{x}_{i+1}) \mid L_e(\mathbf{x}_k, \mathbf{x}_{k-1})$

Path contribution

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

camera

response

Pixel value $I_j = \int_{\mathcal{D}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

 $f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left| \prod_{i=1}^{n} f_s(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right| L_e(\mathbf{x}_k, \mathbf{x}_{k-1})$

Path contribution

$$f_{j}(\overline{\mathbf{x}}) = W_{j}(\mathbf{x}_{0}, \mathbf{x}_{1}) \left[\prod_{i} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \right] L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1})$$
camera
response
geometry
geometry

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

Path contribution

$$f_{j}(\overline{\mathbf{x}}) = W_{j}(\mathbf{x}_{0}, \mathbf{x}_{1}) \left[\prod_{i} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \right] L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k})$$
camera
response
$$I_{phase} \text{ geometry transmittance}$$

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

8

Path contribution

$$f_{j}(\overline{\mathbf{x}}) = W_{j}(\mathbf{x}_{0}, \mathbf{x}_{1}) \left[\prod_{i} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \right] \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \right] \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \right] \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right] \\ \underset{\text{response}}{\text{camera}} \int_{\text{phase}} f_{s}(\mathbf{x}_{i}) G(\mathbf{x}_{i}, \mathbf{x}_{i+1}) T(\mathbf{x}_{i}, \mathbf{x}_{i+1}) \left[L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) \right]$$

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \begin{bmatrix} \prod_i f_s(\mathbf{x}_i) & \\ i & \text{BSDF/} \\ \text{response} & \text{phase} \end{bmatrix}$$

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

Pixel value $I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^N \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

 $G(\mathbf{x}_i, \mathbf{x}_{i+1})T(\mathbf{x}_i, \mathbf{x}_{i+1}) \mid L_e(\mathbf{x}_k, \mathbf{x}_{k-1})$ transmittance

emítted radíance

geometry

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_{i} f_s(\mathbf{x}_i) \mathbf{x}_i \right]$$
camera
response
$$\begin{array}{c} \text{camera} \\ \text{response} \end{array} \right]$$

$$p(\overline{\mathbf{x}}) \propto W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_s(\mathbf{x}_i)G(\mathbf{x}_i)\right]$$

EXPLICIT LIGHT SAMPLING

EXPLICIT LIGHT SAMPLING

EXPLICIT: TRANSMITTANCE

EXPLICIT: TRANSMITTANCE

EXPLICIT: EQUIANGULAR

EXPLICIT: EQUIANGULAR

Transmittance sampling, 16 spp

Equiangular sampling, 16 spp

Equiangular sampling

Transmittance sampling

MIS combination

UNIDIRECTIONAL + NEXT EVENT

Transmittance connections

Equiangular connections

UNIDIRECTIONAL + NEXT EVENT

TRADITIONAL: prescribes conditional pdfs, no explicit control over joint pdf **JOINT SAMPLING**: prescribe joint pdf, conditional pdfs derived from it

MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING – PATH CONSTRUCTION

 \mathbf{X}_3 \mathbf{X}_2 via tabulation $p(\mathbf{x}_1, \mathbf{x}_2) \propto G(\mathbf{x}_0, \mathbf{x}_1) G(\mathbf{x}_1, \mathbf{x}_2) G(\mathbf{x}_2, \mathbf{x}_3) f_s(\mathbf{x}_1) f_s(\mathbf{x}_2)$

Transmittance

path lengths 1-3 isotropic phase function

Joint sampling

Transmittance

path lengths 1-8 isotropic phase function

Joint sampling

Transmittance connections

path lengths 1-3 anisotropic phase function

Joint tabulated path sampling

Transmittance connections

path lengths 1-8 anisotropic phase function

Joint tabulated path sampling

SINGULARITY

SINGULARITY

Combined MIS pixel estimator:

$$\langle I_j \rangle = \sum_{s} \sum_{t} w_{s,t}(\overline{\mathbf{x}}_{i,j}) \frac{f_j(\overline{\mathbf{x}}_{i,j})}{p_{s,t}(\overline{\mathbf{x}}_{i,j})}$$
vertices
from light
vertices
from eye

METROPOLIS LIGHT TRANSPORT

METROPOLIS LIGHT TRANSPORT

METROPOLIS LIGHT TRANSPORT

SUMMARY

UNIDIRECTIONAL SAMPLING

Almost ideal on paper, rarely useful in practice

NEXT EVENT ESTIMATION

Improvement, but singularity in indirect lighting (reduced convergence rate)

JOINT PATH SAMPLING

Substantial improvement in the presence of singularities

BIDIRECTIONAL PATH TRACING

- Avoids singularities, more robust thanks to mixing many sampling techniques
- Difficult to implement

METROPOLIS SAMPLING

- Apply on top, great for very difficult illumination
- (Difficult to implement)²

