Monte Carlo Methods for Physically Based Volume Rendering Advanced methods

Wojciech Jarosz wjarosz@dartmouth.edu

Advanced methods

Photon tracing/mapping Many-light methods Radiance caching

Advanced methods

Photon tracing/mapping

Many-light methods

Radiance caching

More from Jaroslav & Johannes...

Volumetric photon mapping

- 1. Photon tracing
- Simulate scattering of photons
- 2. Rendering
- Reuse photons to estimate multiple scattering

void vPT(\mathbf{x}, ω, Φ)

void vPT(\mathbf{x}, ω, Φ)

 $tmax = nearestSurfaceHit(x, \omega)$

void vPT(x, ω , Φ)

 $tmax = nearestSurfaceHit(x, \omega)$

 $\mathbf{x} += tmax * \omega // propagate photon$

void vPT(\mathbf{x}, ω, Φ)

- $tmax = nearestSurfaceHit(x, \omega)$
- **x** += *tmax* * ω // propagate photon
- storeSurfacePhoton(\mathbf{x}, ω, Φ)

void vPT(x, ω , Φ)

- $tmax = nearestSurfaceHit(x, \omega)$
- $\mathbf{x} += tmax * \omega // propagate photon$
- storeSurfacePhoton(\mathbf{x}, ω, Φ)
- $(\omega_i, pdf_i) = sampleBRDF(\mathbf{x}, \omega)$

 ω_{i}

void vPT(\mathbf{x}, ω, Φ)

- $tmax = nearestSurfaceHit(x, \omega)$
- $\mathbf{x} += tmax * \omega // propagate photon$
- storeSurfacePhoton(\mathbf{x}, ω, Φ)
- $(\omega_i, pdf_i) = sampleBRDF(\mathbf{x}, \omega)$
- return vPT(x, ω_i , Φ * BRDF(x, ω_i) / pdf_i)

void vPT(\mathbf{x}, ω, Φ)

- $tmax = nearestSurfaceHit(x, \omega)$
- $\mathbf{x} += tmax * \omega // propagate photon$
- storeSurfacePhoton(\mathbf{x}, ω, Φ)
- $(\omega_i, pdf_i) = sampleBRDF(\mathbf{x}, \omega)$
- return vPT(x, ω_i , Φ * BRDF(x, ω , ω_i) /

Basic Volumetric Photon Tracer

void vPT(\mathbf{x}, ω, Φ)

- $tmax = nearestSurfaceHit(x, \omega)$
- $t = freeFlightDistance(x, \omega)$
- if (t < tmax) // media scattering
 - $\mathbf{x} += t * \omega$ // propagate photon
 - storeVolumePhoton(\mathbf{x}, ω, Φ)
- **return** vPT(x, samplePF(), $\Phi * \sigma_s / \sigma_t$) else // surface scattering
 - $\mathbf{x} += tmax * \omega // propagate photon$
 - storeSurfacePhoton(\mathbf{x}, ω, Φ)
 - $(\omega_i, pdf_i) = sampleBRDF(\mathbf{x}, \omega)$
 - return vPT(x, ω_i , Φ * BRDF(x, ω,ω_i) / pdf_i)

Basic Volumetric Photon Tracer

void vPT(\mathbf{x}, ω, Φ)

- $tmax = nearestSurfaceHit(x, \omega)$
- $t = freeFlightDistance(x, \omega)$
- if (t < tmax) // media scattering
 - $\mathbf{x} += t * \omega$ // propagate photon
 - storeVolumePhoton(\mathbf{x}, ω, Φ)
- **return** vPT(x, samplePF(), $\Phi * \sigma_s / \sigma_t$) else // surface scattering
 - $\mathbf{x} += tmax * \omega // propagate photon$
 - storeSurfacePhoton(\mathbf{x}, ω, Φ)
 - $(\omega_i, pdf_i) = sampleBRDF(\mathbf{x}, \omega)$
 - return vPT(x, ω_i , Φ * BRDF(x, ω,ω_i) / pdf_i)

Two-pass Algorithm

- 1. Photon tracing
- Simulate scattering of photons
- 2. Rendering
- Reuse photons to estimate multiple scattering

Monte Carlo Methods for Physically Based Volume Rendering

[Jensen & Christensen 98]

Monte Carlo Methods for Physically Based Volume Rendering

[Jensen & Christensen 98]

Monte Carlo Methods for Physically Based Volume Rendering

[Jensen & Christensen 98] Density/radiance estimation on surface

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Density estimation as you ray march

Density estimation as you ray march

Monte Carlo Methods for Physically Based Volume Rendering

Density estimation as you ray march

Radiance estimation

Density estimation as you ray march

A Volume Caustic

Subsurface Scattering

Henrik Wann Jensen

Radiance estimation

Radiance estimation

Drawbacks

Large Step-size

Monte Carlo Methods for Physically Based Volume Rendering

[Jensen & Christensen 98]

Drawbacks

Large Step-size

Monte Carlo Methods for Physically Based Volume Rendering

[Jensen & Christensen 98]

Drawbacks

Large Step-size

Very Small Step-size

Monte Carlo Methods for Physically Based Volume Rendering

[Jensen & Christensen 98]

Radiance estimation

Monte Carlo Methods for Physically Based Volume Rendering

Radiance estimation

How to find the photons?

Monte Carlo Methods for Physically Based Volume Rendering

Fixed radius

Monte Carlo Methods for Physically Based Volume Rendering

Fixed Radius Comparison

[Jarosz et al. 08]

Beam Estimate

Fixed Radius Comparison

Traditional Estimate

Beam Estimate

Fixed Radius Comparison **Traditional Estimate**

(4:21)

[Jarosz et al. 08] **Beam Estimate**

Fixed Radius Comparison

Traditional Estimate

Traditional Estimate

(4:21)

[Jarosz et al. 08] **Beam Estimate**

Volumetric Photon Mapping

Fixed Radius

[Jarosz et al. 08]

Nearest Neighbor

(Defining the kernel support by finding k nearest photons)

Varying Radius

Monte Carlo Methods for Physically Based Volume Rendering

Varying Radius

Monte Carlo Methods for Physically Based Volume Rendering

[Jarosz et al. 08]

How to implement this efficiently?

Monte Carlo Methods for Physically Based Volume Rendering

Dual

Monte Carlo Methods for Physically Based Volume Rendering

Dual

k-nearest neighbor

Monte Carlo Methods for Physically Based Volume Rendering

Dual

Primal

k-nearest neighbor

Monte Carlo Methods for Physically Based Volume Rendering

VS

Dual

allow kernel radius to vary: adaptive kernel method

Primal

k-nearest neighbor

Monte Carlo Methods for Physically Based Volume Rendering

VS

Dual

allow kernel radius to vary: adaptive kernel method

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Monte Carlo Methods for Physically Based Volume Rendering

Cars on Foggy Street

Cars on Foggy Street

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

So Far...

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Query

Point

So Far...

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Query x Data

Point x Point

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Query x Data Blur Point x Point (3D)

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Query x Data Blur Point x Point (3D)

The Beam Radiance Estimate (BRE) [Jarosz et al. 08]

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

QueryxDataBlurPointxPoint(3D)

The Beam Radiance Estimate (BRE) [Jarosz et al. 08]

Beam

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Query x Data Blur Point x Point (3D)

The Beam Radiance Estimate (BRE) [Jarosz et al. 08]

Query x Data

Beam x Point

Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Query x Data Blur Point x Point (3D)

The Beam Radiance Estimate (BRE) [Jarosz et al. 08]

Query x Data Blur Beam x Point (2D)

Other possibilities

Monte Carlo Methods for Physically Based Volume Rendering

Query x Data Blur Point x Point (3D) Beam x Point (2D)

Other possibilities

- Query x
- Point x Point

- Beam x
- Beam x
- Beam x

Monte Carlo Methods for Physically Based Volume Rendering

[Jarosz et al.

Blur Data (3D)Beam x Point (2D) Beam x Point (3D) Point x Beam (3D) Point x Beam (2D) Beam (3D) Beam (2D) Beam (2D) Beam x Beam (1D)

	1	1	٦
•			

	1	1	٦
•			

	1	1	٦
•			

Photon Beams

	1	1	1
•			

Photon Beams x Point Query

	1	1	1
•			

	1	1	1
•			

Underwater Sun Beams

Photon Points

100K Photon **Points** ~ 204 seconds/frame Roughly Equal Time

Photon Beams

25K Photon **Beams** ~ 200 seconds/frame

Underwater Sun Beams

Photon Points

100K Photon **Points** ~ 204 seconds/frame Roughly Equal Time

Photon Beams

25K Photon **Beams** ~ 200 seconds/frame

[Jarosz et al. 11b]

[Jarosz et al. 11b]

[Jarosz et al. 11b]

Pass 1

[Jarosz et al. 11b]

Pass 2

[Jarosz et al. 11b]

Pass 4

[Jarosz et al. 11b]

Pass 8

[Jarosz et al. 11b]

Pass 16

[Jarosz et al. 11b]

Pass 32

[Jarosz et al. 11b]

Pass 64

[Jarosz et al. 11b]

Pass 128

[Jarosz et al. 11b]

Pass 256

[Jarosz et al. 11b]

Pass 512

[Jarosz et al. 11b]

[Jarosz et al. 11b]

100K beams per pass 51.2M beams total

100K beams per pass 51.2M beams total + progressive surface photon mapping

[Jarosz et al. 11b]

Pass 1

CARS 1280x720, Depth-of-Field

Homogeneous

Heterogeneous

Pass 2

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

CARS 1280x720, Depth-of-Field

Homogeneous 14.55M Photon Beams 9.5 minutes

Heterogeneous 15.04M Photon Beams 16.8 minutes

CARS 1280x720, Depth-of-Field

Homogeneous 14.55M Photon Beams 9.5 minutes

Heterogeneous 15.04M Photon Beams 16.8 minutes

alpha = 0.5 R = 0.037695 Shadow map resolution: 64 × 64 pass number: 14 average render time per pass: 33 ms

R

OCEAN OpenGL Rasterization-only Implementation

alpha = 0.5 R = 0.037695 Shadow map resolution: 64 × 64 pass number: 14 average render time per pass: 33 ms

R

OCEAN OpenGL Rasterization-only Implementation

Photon Points

Photon Points

Photon Points

3D Blur

1D Blur

(Long) Photon Beams

"Long" Beams [Jarosz et al. 11] (expected value est.) [Spanier & Gelbard 69]

(Short) Photon Beams

"Short" Beams [Jarosz et al. 11]

1D Blur

(Short) Photon Beams

"Short" Beams [Jarosz et al. 11] (track-length est.) [Spanier & Gelbard 69]

1D Blur

Beyond Photon Beams?

Beyond Photon Beams?

We can keep going to higher dimensional "photons"!

Photon Planes

[Bitterli & Jarosz 17]

Photon Volumes

[Bitterli & Jarosz 17]

•	1	7]
	•		

•	1	7]
٦	<u>а</u>	† <i>c</i>	٦r

Beam Marching

Monte Carlo Methods for Physically Based Volume Rendering

-	1	7]	

Beam Marching

Monte Carlo Methods for Physically Based Volume Rendering

•	1	7	']	
		C		
		7	8	

Beam Marching

Monte Carlo Methods for Physically Based Volume Fendering

17]	
\square	
78	

Photon Plane

•	1	7]
-	I	/	

Plane Marching

Monte Carlo Methods for Physically Based Volume Rendering

•	1	7]
-		/	

Plane Marching

Monte Carlo Methods for Physically Based Volume Rendering

[Bitterli & Jarosz

•	1	7]
•		/	

Photon Volume

Monte Carlo Methods for Physically Based Volume Rendering

[Bitterli & Jarosz

•	1	7]
•		/	

Photon Points (biased)

Photon Beams (biased)

Photon Planes (unbiased)

Photon Points (biased)

Photon Beams (biased)

Photon Planes (unbiased)

Photon Planes (unbiased)

Photon Planes (unbiased)

Full Light Transport

Photon Beams (1D blur)

Photon Planes (unbiased) 3.77× Speedup

Photon Planes (1D blur) 14.14× Speedup

Photon Beams (1D blur)

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

great caustics, multi-scattering slow

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Virtual Point Lights

great caustics, multi-scattering slow

Singularities or Energy Loss

VPLs - no clamping

Singularities or Energy Loss

Engelhardt et al. 2010

VPLs - no clamping

Singularities or Energy Loss

Engelhardt et al. 2010

VPLs - no clamping

VPLs - clamping

Reference

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Virtual Point Lights

suffers from singularities, flickering

great caustics, multi-scattering slow

[Jensen and Christensen 1998] [Jarosz et al. 2008]

requires a lot of photons

Virtual Point Lights

suffers from singularities, flickering

Fruit Juice

homogeneous anisotropic (HG g = 0.55) 512x512

Comparison

Comparison

Surface illumination (Photon Mapping)

Single scattering (Photon Beams)

Multiple scattering

Comparison

Multiple scattering

Multiple Scattering Only

Virtual Ray Lights **Progressive Photon Beams**

Multiple Scattering Only

Virtual Ray Lights **Progressive Photon Beams**

Temporal Stability Virtual Ray Lights Virtual Point Lights

1 minute/frame

1 minute/frame

Temporal Stability Virtual Ray Lights Virtual Point Lights

1 minute/frame

1 minute/frame

Illumination changes slowly

- Compute lighting and cache for reuse by nearby rays

Illumination changes slowly

- Compute lighting and cache for reuse by nearby rays

Illumination changes slowly

- Compute lighting and cache for reuse by nearby rays

Extension of (ir)radiance caching

- [Ward 88, Ward & Heckbert 92]
- [Křivánek 05a, b]
- [Jarosz et al. 12, Schwarzhaupt et al. 12]

Illumination changes slowly

- Compute lighting and cache for reuse by nearby rays
- Extension of (ir)radiance caching
- [Ward 88, Ward & Heckbert 92]
- [Křivánek 05a, b]
- [Jarosz et al. 12, Schwarzhaupt et al. 12]

[Jarosz et al. 08a, b]

Illumination changes slowly

- Compute lighting and cache for reuse by nearby rays
- Extension of (ir)radiance caching
- [Ward 88, Ward & Heckbert 92]
- [Křivánek 05a, b]
- [Jarosz et al. 12, Schwarzhaupt et al. 12]

[Jarosz et al. 08a, b]

[Marco et al. 18]

No gradients

[Jarosz et al. 2008a]

With gradients

[Jarosz et al. 2008a]

et al. 2008a] [Jarosz

[Jarosz et al. 2008a]

1st order radiance caching

(occlusion-unaware gradient) 1st order radiance caching

[Jarosz et al. 2008a]

(occlusion-aware gradient + hessian) 2nd order radiance caching

[Marco et al. 2018]

Reference

Advanced methods

Photon tracing/mapping Many-light methods Radiance caching

Monte Carlo Methods for Physically Based Volume Rendering

Advanced methods

Photon tracing/mapping Many-light methods Radiance caching

More from Jaroslav & Johannes...

Monte Carlo Methods for Physically Based Volume Rendering

