Monte Carlo Methods for physically based Volume rendering SIGGRAPH 2018 Course Advanced methods and acceleration data structures

Johannes Hanika Karlsruhe Institute of Technology Weta Digital

content

rainbows and heroes

- spectral tracking
- hero wavelengths

emissive volumes

fires, explosions, forward next event estimationacceleration data structures

adaptive storage for heterogeneous media

- example material: human skin, insanely complex layered structure
 - expensive to model and trace through
- often used in graphics: approximate by homogeneous chromatic medium captures main look features: red blur

 - low path vertex count for more efficient simulation

- a problem often encountered in skin: chromatic media
 - ho collision coefficients μ depend on wavelength λ
 - for instance free flight distance much longer for long wavelengths:

- makes path invalid for different wavelength?
- can we still exploit coherence?

- a problem often encountered in skin: chromatic media
 - ho collision coefficients μ depend on wavelength λ
 - for instance free flight distance much longer for long wavelengths:

- makes path invalid for different wavelength?
- can we still exploit coherence?

hero wavelength sampling [WND *****14]

- sample perfectly for one single wavelength λ_0
- evaluate path for a stratified set of wavelengths λ_i at the same time
- optimally weighted combination via **MIS (balance heuristic)**
 - limited to **regular tracking** because it requires explicit evaluation of PDF

$$rac{f(ar{\mathbf{x}},\lambda_i)}{\sum_j p(ar{\mathbf{x}},\lambda_j)}$$

[WND*14] Wilkie A., Nawaz S., Droske M., Weidlich A., Hanika J.: Hero wavelength spectral sampling. CGF (Proc. EGSR) 33, 4 (June 2014), 123–131.

image comparison 64spp

skin material with 1 wavelength

image comparison 64spp

skin material with 4 wavelengths (SSE)

image comparison 64spp

skin material with 8 wavelengths (AVX)

note that all these images are using the exact same paths!

spectral tracking without PDF [KHLN17]

- sample fictitious event by common majorant $ar{\mu}$
- how do decide for null collision, scattering, or absorption at next vertex x?
- probability P_{\star} according to

$$egin{aligned} \mu_\star(\mathbf{x},\lambda) &\in \mu_n(\mathbf{x},\lambda), \mu_s(\mathbf{x},\lambda), \mu_a(\mathbf{x},\lambda) \ P_\star(\mathbf{x}) &= ext{reduce}(|\mu_\star(\mathbf{x},\lambda)|)c \end{aligned}$$

c is a normalisation constant such that the P_{\star} sum to one

[KHLN17] Kutz P., Habel R., Li Y. K., Novák J.: Spectral and decomposition tracking for rendering heterogeneous volumes. ACM TOG (Proc. SIGGRAPH) 36, 4 (July 2017)

spectral tracking without PDF [KHLN17]

- htarrow probability P_{\star} according to $\mu_{\star}(\mathbf{x},\lambda)\in \mu_n(\mathbf{x},\lambda), \mu_s(\mathbf{x},\lambda), \mu_a(\mathbf{x},\lambda)$
- \blacktriangleright pick by maximum over λ_i (always follow densest material)

$$P_\star(\mathbf{x}) = \max(|\mu_\star(\mathbf{x},\lambda)|)c$$

ho pick by average weighted by spectral path throughput history $ar{w}(ar{\mathbf{x}},\lambda)$

 $P_{\star}(\mathbf{x}_j) = \operatorname{reduce}(|ar{w}(ar{\mathbf{x}},\lambda)\mu_{\star}(\mathbf{x},\lambda)|)c$

[KHLN17] Kutz P., Habel R., Li Y. K., Novák J.: Spectral and decomposition tracking for rendering heterogeneous volumes. ACM TOG (Proc. SIGGRAPH) 36, 4 (July 2017)

spectral tracking without PDF [KHLN17]

- ightarrow sample by common majorant $ar\mu$
- how do decide for null collision, scattering, or absorption?
- \blacktriangleright probability according to $\mu_n(\lambda), \mu_s(\lambda), \mu_a(\lambda)$
 - \blacktriangleright pick by maximum over λ_i
 - pick by average weighted by spectral path throughput history
 - results in different noise patterns:

a few differences:

- sampling optimal for hero wavelength
- sampling carfully balanced for all wavelengths

most important difference:

- require PDF
- cannot provide PDF
- means considering one or the other you need to balance requirements of your system
 - do you need to mix in other importance sampling strategies?
 - for instance equi-angular sampling?

thin/dense media make a difference

no event inside the medium means we cannot pick up emission:

thin/dense media make a difference

follow the idea of beams, collect emission along a ray

particularly well suited for regular tracking, touching all voxels anyways

thin/dense media make a difference

direct MIS combination with NEE [VH13] **introduces noise**:

Point + NEE

Line + NEE

- reason: NEE cannot create paths with end point outside the medium
- forward scattering PDF is poor, however, and now it picks up line emission!

[VH13] Villemin R., Hery C.: Practical illumination from flames. Journal of Computer Graphics Techniques 2, 2 (2013).

where do the additional firefly samples come from?

- example of a problematic path
 - NEE cannot create these paths
 - forward scattering is same bad as usual, but now has a contribution from the segment!

[SHZD17] Simon F., Hanika J., Zirr T., Dachsbacher C.: Line integration for rendering heterogeneous emissive volumes. CGF (Proc. EGSR) 36, 4 (June 2017).

forward next event estimation (FNEE)

next event estimation which also considers line emission [SHZD17]:

Point + NEE

Line + NEE

Line + FNEE

- NEE picks point in medium but only uses the direction to it
- line segment sampling completed by distance sampling

[SHZD17] Simon F., Hanika J., Zirr T., Dachsbacher C.: Line integration for rendering heterogeneous emissive volumes. CGF (Proc. EGSR) 36, 4 (June 2017).

naive grid

- store coefficients $\mu_\star(\mathbf{x},\lambda)$ per voxel
- only single (half) float density $\rho(\mathbf{x})$ and global cross sections σ_{\star} ? If you can!
- motion blur?

motion blur

- store time resolved volume in 4D [Wre16]
- rasterise temporal output of simulation directly

[Wre16] Wrenninge M.: Efficient rendering of volumetric motion blur using temporally unstructured volumes. Journal of Computer Graphics Techniques (JCGT) 5, 1 (January 2016), 1–34.

motion blur

- store time resolved volume in 4D [Wre16]
- Ramer Douglas Peucker line compression per voxel supports non-linear motion
 - for instance up: density $\rho(\mathbf{x}, t)$, right: time t:

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm

motion blur

- store time resolved volume in 4D [Wre16]
- supports non-linear motion better than Eulerian motion blur [KK07]

[Wre16] Wrenninge M.: Efficient rendering of volumetric motion blur using temporally unstructured volumes. Journal of Computer Graphics Techniques (JCGT) 5, 1 (January 2016), 1–34.

[KK07] Kim D., Ko H.-S.: Eulerian motion blur. In Eurographics Workshop on Natural Phenomena (2007).

hierarchical grid (aka super voxels [SKTM11])

- hierarchical traversal, local memory access
- well suited for null collision based trackers:
 - store majorants on coarse grid, fine data on fine level

[SKTM11] Szirmay-Kalos L., Tóth B., Magdics M.:

Free path sampling in high resolution inhomogeneous participating media. CGF 30, 1 (2011), 85–97.

regular tracking

- multi-level 3D DDA/Bresenham to enumerate all voxels pierced by ray
- example: free flight distance sampling

regular tracking

- multi-level 3D DDA/Bresenham to enumerate all voxels pierced by ray
- walk along ray direction

regular tracking

- multi-level 3D DDA/Bresenham to enumerate all voxels pierced by ray
- memory access to super voxel block

regular tracking

- memory access to voxels stored in brick
- all voxels are typically local in memory now

regular tracking

- if no intersection is found in this block
- continue to next block

regular tracking

- accumulate optical thickness $au \leftarrow au +
 ho(\mathbf{x}) \cdot \sigma_t$
- if $\tau >= -\log{(1-\xi)}$ found free flight distance, sub voxel accuracy by assuming homogeneous voxel

null collision tracking

- perform regular tracking on the coarse level [SKTM11]
- start of the algorithm very much the same as regular tracking

null collision tracking

- perform regular tracking on the coarse level [SKTM11]
- ightarrow accumulate fictitious optical thickness $au \leftarrow au + ar{
 ho}(\mathbf{x}) \cdot \sigma_t$

null collision tracking

- perform regular tracking on the coarse level [SKTM11]
- $if au >= -\log(1-\xi)$ found free flight distance inside this block

null collision tracking

- $if \tau > = -\log(1-\xi)$ found free flight distance inside this block
- find voxel position **x** assuming homogeneous fictitious matter in this block

null collision tracking

- find voxel position **x** assuming homogeneous fictitious matter in this block
- terminate if actual collision, i.e. $\zeta < \mu_t(\mathbf{x})/ar{\mu}_t(\mathbf{x})$ (else restart tracking)

this last point is critical for performance, we'll get back to this!

is a uniform grid the best we can do?

- regular tracking:
 - minimise visible integration error:
 - larger voxels in uniform areas, out of frustum, and in depth
- null collisions:
 - minimise amount of fictitious matter
 - means minimise steps taken until a real event is found
- end result:
 - fewer, larger voxels in uniform areas, empty space culled away
 - null collisions only care about coarse level

kd-trees

space partitioning scheme by finding *largest empty rectangle* [YIC*11]

[YIC * 11] Yue Y., Iwasaki K., Chen B., Dobashi Y., Nishita T.:

Toward optimal space partitioning for unbiased, adaptive free path sampling of inhomogeneous participating media. CGF (Proc. Pacific Graphics) 30, 7 (2011), 1911–1919.

combine super voxels [SKTM11] and kd-trees [YIC *****11] with adaptive blocks

- adaptivity driven by
 - pixel footprint / camera tessellation
 - heterogeneity / variation
- just as super voxels: kd nodes store majorants $\bar{\mu}$ in coarse blocks

combine super voxels [SKTM11] and kd-trees [YIC *****11] with adaptive blocks

adaptivity driven by

- pixel footprint / camera tessellation
- heterogeneity / variation
- just as super voxels: kd nodes store majorants $\bar{\mu}$ in coarse blocks perform regular tracking on coarse blocks [SKTM11]

combine super voxels [SKTM11] and kd-trees [YIC *11] with adaptive blocks

adaptivity driven by

- pixel footprint / camera tessellation
- heterogeneity / variation
- just as super voxels: kd nodes store majorants $\bar{\mu}$ in coarse blocks
 - perform regular tracking on coarse blocks [SKTM11]
 - access $\mu_s(\lambda), \mu_a(\lambda)$ on fine levels to sample collision type

regular tracking

- needs to step through every voxel, bad for fine tessellations
- well chosen tessellation is a big advantage!

null collision-based tracking

- independent of tessellation
- efficient in tightly bounded, thin media (mean free path longer than voxel width)

null collision-based tracking

- independent of tessellation
- inefficient for loose bounds, avoid during hierarchy construction!

null collision-based tracking

- independent of tessellation
- high number of events in dense media, regardless of tessellation!

- accessing the memory within the same voxel is still expensive
- alleviated by decomposition tracking [KHLN17]

decomposition tracking [KHLN17]

- \triangleright separate coefficients μ into sum of components:
 - coarse voxels for homogeneous parts
 - sparse fine details added on top

track through coarse part first and use for early out also profits regular tracking

end of my part

up next:

Jaroslav to present future work and outlook

summary

free flight distance sampling

- woodcock/delta tracking transmittance estimation
 - track-length
 - residual ratio
 - free flight versions

path sampling

- path space formulation
- summary of advanced methods

acceleration structures

- for regular tracking
- for null collisions (bottom-level)

null collision algorithms and MIS

- missing link to integrate into powerful framework for instance combine with equi-angular sampling
- can we estimate the PDF?
 - expectation and division do not commute!

$$X = rac{f(ar{\mathbf{x}})}{p(ar{\mathbf{x}})}$$

leverage recent advances in machine learning

- special purpose denoising
 including a volume prior?
- path guiding for volumes?
 joint importance sampling for multiple vertices?

joint handling of surfaces and geometry

- still often surface transport is handled separately
 makes inclusion of all interreflections hard

 - custom-cut algorithms increase maintenance cost
- represent surfaces as volumes, too?
 - and then ideally jointly downscale for LOD!

generalisation to correlated scatterers

- core assumption of exponential path length: uncorrelated particles!particle repulsion such as in cell growth is very correlated

 - really, no collision can be found inside the current particle (min distance)
 - some existing work

[d'Eon 2018, Jarabo et al. 2018, Bitterli et al. 2018]

thank you!

any questions?

acknowledgements:

- Peter Kutz
 - for tracing down many of early delta tracking papers
- reviewers
 - for feedback on the paper draft
- Maurizio Nitti
 - for help w/ illustrations

