
Eurographics Symposium on Rendering - Industry Track (2019)
T. Boubekeur and P. Sen (Editors)

Implementing One-Click Caustics in Corona Renderer

Martin Šik1 and Jaroslav Křivánek1,2

1Chaos Czech a.s., Czech Republic
2Charles University, Prague

a) No caustics (21 min) b) With caustics (38 min)

Figure 1: Our caustics solver automatically renders directly and indirectly visible caustics without requiring the user to set any technical
parameters. The image on the left is rendered using path tracing that allows next event estimation across the water surface in 21 minutes.
The full caustics solution on the right is rendered in 38 minutes with no such approximations. Image courtesy 3Darcspace studio.

Abstract
This paper describes the implementation of a fully automatic caustics rendering solution in Corona Renderer. The main re-
quirement is that the technique be completely transparent to the user, should not need any parameter setting at all, and be fully
integrated into the interactive and progressive rendering workflow. We base our approach on an efficient subset of the vertex
connection and merging algorithm, specifically a multiple importance sampling combination of path tracing and photon map-
ping. We rely on Metropolis sampling to guide photon paths into the relevant parts of the scene. While these underlying ideas
have appeared in existing research work, numerous previously unaddressed issues and edge cases arise when one applies these
ideas in practice. These include unreliable convergence of the Metropolis sampler in scenes with many light sources of different
sizes and intensities, the “caustic in a stadium” problem (i.e., efficient rendering of small caustics in extremely large scenes),
etc. We present the solutions we have developed to address such issues, yielding what we call “one-click caustics rendering”.
User feedback suggests that our approach substantially improves usability over methods previously implemented in comercially
available software, all requiring the user to set various technical parameters.

1. Introduction

Caustics are an important visual phenomenon contributing to
the perceived realism of scenes involving reflective and re-
fractive surfaces. They are an important effect in rendering
for VFX, product design, automotive industry, and – impor-
tantly for our use case – architectural visualization. Numerous
solutions for rendering caustics in a Monte Carlo rendering frame-
work have been proposed in the past, notably photon mapping
[Jen96, HOJ08, HJ09], bidirectional path tracing [VG95, PLW98],

and algorithms that achieve improved robustness by combining
both these approaches [VKŠ∗14, GKDS12, HPJ12, KGH∗14].
But such combined solutions usually come with signif-
icant implementation complexity and run-time overhead
over the much simpler unidirectional path tracing. As a
result, they are rarely adopted in production rendering
[KCSG18, CFS∗18, FHL∗18, GIF∗18, BAC∗18, KKK∗18].
To address these issues, Grittmann et al. [GPGSK18] have recently
proposed the lightweight photon mapping algorithm with the aim

c© 2019 The Author(s)



M. Šik & J. Křivánek / Implementing One-Click Caustics in Corona Renderer

to enable caustics rendering without compromising the efficiency
of simple path tracing.

Our goal is to implement a caustics rendering solution that is
completely transparent to the user, does not rely on any user-
settable parameters, has minimum overhead, and is fully integrated
into our interactive and progressive rendering workflow. The im-
plementation is based on Grittmann et al.’s work, where path trac-
ing is combined with selective photon tracing using multiple im-
portance sampling. We, however, depart from the original work
in several important ways and we additionally resolve the var-
ious edge cases encountered in production rendering. These in-
clude namely issues with the convergence of a Metropolis pho-
ton tracer [HJ11, GRŠ∗17] in scenes with many light sources of
very different sizes and intensities, the “caustic in a stadium” prob-
lem (i.e., efficient rendering of small caustics in extremely large
scenes), Our solution yields what we call “one-click caustics ren-
dering”, substantially improving usability over methods previously
implemented in commercially available rendering software. It is
now being shipped as an integral part of Corona Renderer.

2. Related Work

Existing caustics rendering solutions can be categorized into four
groups: Bidirectional methods, Metropolis light transport, Path
guiding, and Manifold next event estimation.

Bidirectional methods. In addition to tracing paths from the cam-
era, bidirectional methods also trace paths from the light sources,
to form the so called photon paths. Various bidirectional methods
then utilize these paths in different ways. For example, the bidirec-
tional path tracing [VG95, PLW98] uses a) unidirectional path trac-
ing technique that randomly hits the light sources; b) path tracing
technique that connects a camera path to the light sources; c) bidi-
rectional connection between a camera subpath and a photon sub-
path; and d) and direct connection of photon paths to the camera.
Caustics can be handled by some of these techniques, for instance
by the direct connection of photon paths to the camera.

Bidirectional methods have their issues, though. Apart from the
conceptual and implementation complexity, probably the most im-
portant one is determining where to trace the photon paths so as
to achieve efficient rendering. This issue is especially important in
larger scenes, where – without additional care – only a small frac-
tions of photon paths reach the region visible by the camera. This is
one of the main reasons why most rendering systems rely primar-
ily on path tracing, which traces paths from the camera, effectively
sidestepping the issue.

Metropolis light transport (MLT). MLT [VG97, ŠK19] utilizes
the so called Metropolis sampling algorithm. It randomly searches
for a path with a substantial contribution and once it finds it, it
will slightly modify (or “mutate”) this path to create several dif-
ferent contributing paths. This way, once the algorithm manages to
sample one caustic path, it can efficiently explore the entire caus-
tic. Metropolis light transport, however, produces some disturbing
visual artifacts, especially conspicuous as distracting flickering in
animations [ŠOHK16].

Path guiding. Path guiding applies machine learning methods to
learn from the previous samples where to trace the subsequent sam-
ples [Jen95, VKŠ∗14, HEV∗, MGN17, KKN∗18, MMR∗18]. In-
stead of selecting the path directions at random, a guided path tracer
utilizes a continuously trained distribution to choose more samples
in the important directions. Training of the guiding distributions is,
however, often slow and imprecise, and path guiding will thus often
fail to find all the caustics.

Manifold next event estimation. The manifold next event esti-
mation method [HDF15] uses differential geometry to iteratively
find a connection path between a light source and a given surface
point through a refractive interface. This method can be used to ef-
ficiently render caustics due to light refraction, but it will not help
when caustics are created by reflection.

In summary, none of the existing solutions comes without issues.
But the bidirectional methods currently produce the best caustics
and their issues are the easiest to resolve; for this reason we have
chosen them as the basis of our work.

3. Our Approach

Requirements. Our goal is to present the Corona Renderer users
with a caustics solver capable of efficiently resolving any type of
caustics: reflective and refractive, seen both directly or indirectly.
To ensure good usability, we want this solver to have a minimum
number of parameters, ideally just a single checkbox that turns the
solver on and off. While we realize that the solver will certainly
generate some overhead over an ordinary path tracer, our goal is
to keep the overhead at a minimum. Finally, to prevent the solver
from being “in the way”, it is necessary that it behaves as if turned
off in scene regions without caustics.

Solution overview. We take a robust bidirectional method known
as Vertex Connection and Merging (VCM) [GKDS12, HPJ12] as a
basis of our implementation. VCM uses all the path sampling tech-
niques from bidirectional path tracing and combines them with ra-
diance estimates from photon mapping [Jen96, HOJ08, HJ09]: As
a path is traced from the camera, photon map lookups are per-
formed at each intersection point (i.e. camera path vertex). The
photon mapping technique is essential for rendering indirectly vis-
ible caustics, such as the ones seen at the bottom of a swimming
pool. The full VCM algorithm can handle all kinds of caustics well
and provides a solid basis for our work.

However, baseline VCM suffers from some issues that are in a
direct contradiction with the requirements listed above:

Computational overhead. Baseline VCM can be easily several
times slower than path tracing. Not only does it need to trace
paths from both the light sources and the camera, it also needs
to compute weights for their combinations, and perform the pho-
ton lookups. Using VCM in scenes that are well handled by path
tracing is an overkill and would not be accepted by the users.

Photon guiding. Without guiding the photon paths to the rele-
vant parts of the scene, the algorithm may converge very slowly.
This issue is especially serious in architectural interior render-
ing, where skylight often reaches the interior through relatively
narrow windows.

c© 2019 The Author(s)



M. Šik & J. Křivánek / Implementing One-Click Caustics in Corona Renderer

Number of photon paths. VCM traces the same number of pho-
ton paths as camera paths, but this can be quite wasteful for
scenes featuring just one small caustic. Letting the users tweak
the number of paths manually is not an option, as it interferes
with good usability.

As a part of a general exploration before implementing the
caustics solver in Corona, we have collaborated with Saarland
university to develop the Lightweight Photon Mapping algo-
rithm [GPGSK18]. This algorithm already addresses some of the
issues of VCM mentioned above, and it served as a starting point
of our Corona caustics solver implementation. However, a number
of specific technical solutions had to be adapted to the challenges
and requirements of production rendering as described below.

3.1. Overhead minimization

Let us start with the issue of computational overhead. While the
users are willing to accept some overhead compared to ordinary
path tracing, it needs to be limited to a minimum.

Path sampling techniques. First, as in Lightweight photon map-
ping, we drop bidirectional connections from full VCM. While us-
ing bidirectional connections can somewhat reduce overall noise,
it significantly increases overhead. The remaining path sampling
techniques can still handle the same light transport phenomena as
the bidirectional connections fairly well, so the inclusion of the lat-
ter usually does not pay off.

Furthermore, direct connection of photon paths to the camera
(i.e. the light tracing technique) can be memory consuming. When
using a path tracer with screen-space adaptivity, the direct connec-
tion requires a separate image buffer for each render element (aka
render pass), thus doubling the memory consumption of the entire
frame buffer – which can already be fairly high given that archi-
tectural rendering often targets 8k or 16k image resolution. For this
reason, we drop the direct connections of the photon path as well.

This leaves us with the usual path tracing techniques combined
with photon lookups at the camera path vertices. This mix of sam-
pling techniques is still able to efficiently render all light phenom-
ena that can be rendered by vertex connection and merging.

Selective photon mapping. We adopt the idea of selective photon
mapping from the Lightweight Photon Mapping algorithm. Con-
sider a full light transport path, connecting a camera to a light
source, that can be created either by a photon lookup or by path
tracing. If the probability density of generating the path by the
path tracing technique is high enough, no photon lookup is nec-
essary [GPGSK18].

To further reduce memory and computation overhead, we only
store photons where they may be relevant. First, we only store pho-
tons after the first interaction with a specular or highly glossy ma-
terial, as in the caustics photon map in the original photon map-
ping technique [Jen96]. Second, we stop the photon path after two
consecutive diffuse bounces, because the light distribution then be-
comes blurred and can usually be well sampled by path tracing.

1

PATH TRACING

SIMPLIFIED VCM

Figure 2: Dragon statuette made of a highly glossy material illu-
minated by a uniform environment map. Computing illumination on
the floor by path tracing only (top inset) is more efficient than using
our simplified VCM, i.e. a combination of path tracing with photon
lookups (bottom).

Environment map emission. Even after considering all the above
cases, photons may still be used or stored in some places needlessly.
One notable case is uniform environment illumination. Consider a
photon path that starts at the environment and bounces off a spec-
ular surface before hitting a diffuse floor, as shown in Figure 2. As
we can see in the insets, computing illumination on the floor by path
tracing produces a less noisy image than by using the combination
of photon lookup and path tracing.

To address this issue, we further prune emission of photon paths
from the environment. First, we completely suppress photon path
emission from a uniform environment, since caustics due to such an
environment are easily handled by path tracing. Furthermore, we
avoid photon emission from low-value parts of any environment
map. Consider the environment map in Figure 3 (left). Emission
from such a map would traditionally be based on the intensity of
each pixel, resulting in a the emission probability map illustrated in
Figure 3, middle. We further reduce the emission probability of the
low-intensity parts of the environment map, while increasing the
emission from the high-intensity parts (Figure 3, right).

In summary, thanks to the above modifications of the original
Vertex Connection and Merging [GKDS12], we have significantly
reduced its overhead over path tracing. Our solver is roughly three
times faster than the original VCM in scenes featuring many caus-
tics, and the speedup is much higher in scenes featuring small or
no caustics. This is achieved by activating the caustics solver only
when it is really necessary, while using regular path tracing to han-
dle the rest of the light transport as before.

3.2. Photon guiding

Let us now discuss the issue of photon path guiding in large or com-
plex scenes. Figure 4 shows renderings of an example test scene,
where a building with many apartments is lit from the outside. The
camera is in one of the apartments and the light coming through
the window creates a caustic on the floor. There is a pool next to
the building that creates another set of caustics on the apartment’s
ceiling. Figure 4 (a) shows a reference rendering.

c© 2019 The Author(s)



M. Šik & J. Křivánek / Implementing One-Click Caustics in Corona Renderer

a) Environment map b) Intensity-based emission probability c) ‘Sharpened’ emission probability map

Figure 3: The usual approach to determine emission probabilities from an environment map (a) is to use the pixel intensities as the emission
probabilities (b). This leads to wasteful sampling of photons that origin from uniform parts of the environment. We lower the emission
probability of the low-intensity parts of the environment map, while increasing the emission from the high-intensity parts, ensuring that the
generated photons are more likely to generate caustics (c).

In the same figure (b), we can see that with completely random
emission of photon paths, only few will actually reach the visible
region, leading to extremely slow convergence. Lightweight photon
mapping [GPGSK18] approaches this issue by utilizing adaptive
emission. The algorithm emits more photon paths in such direc-
tions, where previously emitted photon paths contributed to the im-
age. The emission map for each light source is represented as a grid
that is populated based on the results of previous render iterations.
The result achieved with this approach is shown in Figure 4 (c).
Adaptive emission significantly improves the result, but some parts
of the caustics are less converged than other.

Metropolis photon guiding. Based on our previous experi-
ence [ŠOHK16], we have decided to utilize Metropolis photon path
sampling to guide the photons. To define which paths are important,
and should be mutated by the Metropolis sampler, we utilize a data
structure which stores the photons visibility [HJ11] to the camera
paths. More specifically, the data structure recursively subdivides
the scene and marks the visible regions of the scene that contain
any camera vertex. When tracing a photon path using Metropolis,
we look if any of its vertices lie in the visible regions. If a path has
at least one vertex in the visible region, the Metropolis sampler will
mutate the path and generate several similar photon paths. On the
other hand, if a path has no vertex in the visible region, the path is

a) Reference rendering b) Unguided photon path tracing

c) Adaptive emission map d) Our Metropolis guiding

Figure 4: Photon path guiding. a) Reference rendering. b) No
photon path guiding. c) Guiding based on an adaptive emission
map [GPGSK18]. d) Our Metropolis-based guiding.

rejected. This way we ensure that many of the photon paths are gen-
erated in the important regions of the scene. We further improve the
Metropolis sampling by only marking places in the structure where
successful photon lookup occurred in the previous iterations. Using
the Metropolis sampling with such definition of important photon
paths gives the result shown in Figure 4 (d). We can see that the
quality is much better than with any of the previous approaches.
Furthermore, we have been able to verify that our Metropolis sam-
pler does not suffer from any flickering artifacts.

Handling large caustics. There are cases where the distribution
of photon generated by the above algorithm is not effective. As
an example, consider the ocean scene shown in Figure 5 (left). In
this case, the above approach considers the whole visible region as
equally important. An equal density of photon paths is therefore
distributed across the entire vast visible ocean region, which results
in a suboptimal convergence (Figure 5 middle). The regions near to
the camera would require denser sampling [GRŠ∗17]. We improve
the result by decreasing the importance of photon paths according
to the distance from the camera. As a result, the Metropolis sampler
will generate more photon paths near the camera, and it results to
less noisy image, as shown in Figure 5 (right).

Light source selection. The last aspect of our photon path guid-
ing approach is the selection of the light source from which to emit
a photon path. Traditionally photon path emission is based on the
emitted power (flux) of the light source. Therefore light sources
with high power will generate more photon paths, with the overall
goal of making all photons carry the same amount of flux [Jen96].
This approach works well for simple scenes featuring a few light
sources with similar power, such as in Figure 6 (left). However,
adding more light sources including sun and sky, which have much
higher power compared to e.g. a light bulb, causes weaker light
sources to emit only few photon paths and caustics generated by
them to disappear (Figure 6, middle). To solve this issue we add a
factor of inverse squared distance to the camera to the light selec-
tion probability, as in the case of the definition of important photon
paths for the Metropolis sampler. Since the sun and environment
are infinitely far away, we can not apply the distance modulation on
them. Instead, we initially generate half of the photon paths from
the sun and environment and half from the rest of light sources. To
robustly handle scenes with a high number of light sources, we fur-
ther adapt the emission probability of each light source by counting
how many photon paths generated from that light source have been
able to contribute to the image in previous passes. Our final solu-

c© 2019 The Author(s)



M. Šik & J. Křivánek / Implementing One-Click Caustics in Corona Renderer

a) Reference rendering b) Binary visibility Metropolis sampling c) Our solution

Figure 5: Handling of large caustics. a) Reference. b) Binary visibility based importance produces suboptimal photon distribution: too
many photons are concentrated far away from the camera, while the region near camera is underpopulated. c) Our solution modulates the
importance by the inverse squared distance from the camera, producing a more equalized photon distribution.

tion can robustly handle even the difficult case with thousands of
light sources of very different power (Figure 6 right).

3.3. Number of photon paths

The last issue we address is determining the total number of photon
paths to trace. Again, we take inspiration from Lightweight photon
mapping [GPGSK18]. The algorithm compares the overall image
contribution from all the path sampling techniques with the contri-
bution coming only from photon lookup. If the contribution from
photon lookup in a given pixel is high enough compared to over-
all contribution, the lookup is deemed to be useful in that pixel.
The number of photon paths is then directly equal to the number of
pixels where photon lookup was useful.

This approach, however, does not always work well with
Metropolis sampling, which requires to send photons in large
batches to be effective. For instance, consider a scene that requires
good guiding of photon paths and where we want to render just a
small region. The number of photons paths is limited by the small
region resolution and thus guiding by the Metropolis sampler will
be ineffective and the image will converge slowly.

We avoid this issue by setting a fixed maximum number of pho-
ton paths, which is not limited by the image resolution. We com-

pute ratio of useful pixels and total number of pixels similarly
to Lightweight photon mapping. We then multiply the maximum
number of photon paths with this ratio to get the number of traced
photon paths. Since such a number can be much higher than the
resolution of the image, we further balance the tracing of the paths
from the camera and from the light sources across multiple render-
ing iterations.

More specifically, if we need to trace, say, 4× more photon paths
than paths traced from the camera (such as when rendering small
render regions), we follow each photon tracing batch by four path
tracing batches and utilize the same set of photons for all of them.
On the other hand, if the caustics are present only in a small part of
the scene, we may trace 4× fewer photon paths than camera paths.
In this case, we interleave the photon tracing with path tracing, lim-
iting the overhead of the caustics solver compared to ordinary path
tracing.

3.4. Other implementation details

Of course, there is more to our implementation, besides solving the
issues of Vertex Connection and Merging. We mention some of the
finer details in this section.

Light bulb

Caustic
missing

Light bulb + sun & sky + 1000 additional light sources

Power based emission Corona Renderer caustics solver

Figure 6: Light source selection for photon path emission. Power-based emission works well in simple scenes with a few light sources (a)
but fails in more complex scenes with numerous light sources including sun and sky (b). Our approach robustly handles such complex cases.

c© 2019 The Author(s)



M. Šik & J. Křivánek / Implementing One-Click Caustics in Corona Renderer

a) Incorrectly handled motion blur b) Correct motion blur

Figure 7: Handling of motion blur in our caustics solver. a) Wrong
solution, which smears caustics reflected from a car tracked by the
camera. b) Correct solution that takes into account time associated
with both a camera path and a photon path.

Motion blur. First such detail is motion blur. Consider a scene
shown in Figure 7, where a moving car is being tracked by the
camera. When rendering with motion blur, we have to take special
care otherwise the caustic created by reflection of the sun from the
car would be smeared even though the car is tracked by the camera,
see Figure 7 (a). To correctly handle caustics in the presence of
motion blur, we independently randomly select an exact time for
the camera path and for the photon path. During photon lookup we
only consider photons that have similar time as the camera path.
This leads to the correct solution, see Figure 7 (b).

Dispersion. Dispersion caustics due to the wavelength-dependent
refraction index of a caustics-forming surface are rendered by as-
sociating photons with a specific wavelength. Photon lookup then
considers only photons with wavelengths similar to the wave-
length of the camera path – in case the latter had also undergone
wavelength-dependent refraction. The result is shown in Figure 8.

Light mix. Light mix is a popular feature that allows Corona users
to interactively adjust light source intensities and colors during ren-
dering. It is critical for good usability that the caustics solver sup-
ports this feature. This is trivially achieved by keeping track of the
light source from which each photon originates.

Caustics control. Finally, to allow users to have better control over
the caustics, we allow users to render the caustics in a separate
image buffer for better control in compositing.

Figure 8: Dispersion caustics due to the wavelength-dependent
refraction index of a caustics-forming surface. Image courtesy of
Rakete GmbH Munich.

Pool scene Ring scene Glasses scene
Image resolution 1440×810 1920×1080 1280×720
#iterations 80 100 100
Time - path tracing 21 min 4.8 min 3.5 min
Time - caustics solver 38 min 9.4 min 7 min
#photon paths/iter 3.8M 1.6M 2.2M

Table 1: Settings and statistics for scenes in Figures 1,9.

4. Results

We have tested our new caustics solver for Corona Renderer on a
PC machine with an AMD Ryzen Threadripper 1950X at 3.40 GHz
with 32 GB RAM using 32 logical cores. We compare the perfor-
mance of our new caustics solver with path tracing with next event
estimation (the default rendering algorithm in Corona Renderer).
All our comparisons are equal-iteration comparisons, see Table 1
for rendering statistics.

Figure 1 shows the pool scene, where path tracing fails to resolve
the caustics on the bottom of the pool and also caustics reflected on
the left wall. The result of path tracing has further clamped high
contributing samples to avoid fireflies and allows unhindered trans-
mission through water surface to sufficiently lit the pool interior. On
the other hand the caustics solver delivers correct solution without
any fakes with overhead compared to the path tracing around 81%.

The ring scene (Figure 9, top) shows both direct and indirect
caustics created by the reflection from the ring. Again, unlike our
new caustics solver, path tracing fails to resolve the caustics which
must be clamped to avoid fireflies. In this scene the overhead is
approximately 95%.

The glasses scene (Figure 9, bottom) illustrates that path tracing
that uses unhindered transmission through glass can generate fake
caustics, but they are very different from the correct ones produced
by our caustics solver. In this scene the overhead is roughly 99%.

Overall we can see that path tracing fails to resolve the caustics
without resorting to fake solutions in all the presented scenes, while
our caustics solver delivers the correct solution with less than 100%
overhead.

5. Conclusion

We have presented a new caustics solver implemented in Corona
Renderer version 4. While based on the rather heavy-weight Ver-
tex Connection and Merging algorithm, the judicious design of the
solver means a fairly low overhead over path tracing. Our solu-
tion is fully automatic, meaning the user does not have to setup
anything by hand. The solver will automatically guide the required
photon paths toward the important visible regions and determine
the required number of photon paths. Finally, the solver is compat-
ible with all other Corona settings and behaves the same way as
ordinary path tracing in the parts of the scene without caustics.

While shipped as a part of the product release, we consider the
caustics solver implementation as an initial attempt. Future work
includes fully automatic handling of caustics in participating me-
dia, where a carefully selected subset of the unified photons, beams

c© 2019 The Author(s)



M. Šik & J. Křivánek / Implementing One-Click Caustics in Corona Renderer

Ring

Path tracing (4.8 min) Caustics solver (9.4 min)
Glasses

Path tracing (3.5 min) Caustics solver (7 min)

Figure 9: Comparison of path tracing with fake handling of caus-
tics and our caustics solver in Corona Renderer. The ring model
(top) is courtesy of Free_opinion kindly provided by Turbosquid.

and paths (UPBP) algorithm can serve as a good basis [KGH∗14].
The Metropolis photon sampling still exhibits some undesirable
correlation artifacts in the image and more work is needed to elim-
inate those.

Acknowledgments

Many thanks to Corona Renderer users for stress-testing the caustic
solver throughout its development and for providing some of the
test scenes. This work was partially supported by the Czech Science
Foundation grant 19-07626S.

References
[BAC∗18] BURLEY B., ADLER D., CHIANG M. J.-Y., DRISKILL H.,

HABEL R., KELLY P., KUTZ P., LI Y. K., TEECE D.: The design
and evolution of Disney’s Hyperion renderer. ACM Trans. Graph. 37, 3
(2018), 33:1–33:22. 1

[CFS∗18] CHRISTENSEN P., FONG J., SHADE J., WOOTEN W., SCHU-
BERT B., KENSLER A., FRIEDMAN S., KILPATRICK C., RAMSHAW
C., BANNISTER M., RAYNER B., BROUILLAT J., LIANI M.: Render-
man: An advanced path-tracing architecture for movie rendering. ACM
Trans. Graph. 37, 3 (2018), 30:1–30:21. 1

[FHL∗18] FASCIONE L., HANIKA J., LEONE M., DROSKE M.,
SCHWARZHAUPT J., DAVIDOVIČ T., WEIDLICH A., MENG J.:
Manuka: A batch-shading architecture for spectral path tracing in movie
production. ACM Trans. Graph. 37, 3 (2018), 31:1–31:18. 1

[GIF∗18] GEORGIEV I., IZE T., FARNSWORTH M., MONTOYA-
VOZMEDIANO R., KING A., LOMMEL B. V., JIMENEZ A., ANSON
O., OGAKI S., JOHNSTON E., HERUBEL A., RUSSELL D., SERVANT
F., FAJARDO M.: Arnold: A brute-force production path tracer. ACM
Trans. Graph. 37, 3 (2018), 32:1–32:12. 1

[GKDS12] GEORGIEV I., KŘIVÁNEK J., DAVIDOVIČ T., SLUSALLEK
P.: Light transport simulation with vertex connection and merging. ACM
Trans. Graph. 31, 6 (2012), 192:1–192:10. 1, 2, 3

[GPGSK18] GRITTMANN P., PÉRARD-GAYOT A., SLUSALLEK P.,
KŘIVÁNEK J.: Efficient caustic rendering with lightweight photon map-
ping. Computer Graphics Forum 37, 4 (2018). EGSR ’18. 1, 3, 4, 5

[GRŠ∗17] GRUSON A., RIBARDIÈRE M., ŠIK M., VORBA J., COZOT
R., BOUATOUCH K., KŘIVÁNEK J.: A spatial target function for
Metropolis photon tracing. ACM Trans. Graph. (TOG) 36, 1 (2017),
4. 2, 4

[HDF15] HANIKA J., DROSKE M., FASCIONE L.: Manifold next event
estimation. Comput. Graph. Forum 34, 4 (2015), 87–97. 2

[HEV∗] HERHOLZ S., ELEK O., VORBA J., LENSCH H., KŘIVÁNEK J.:
Product importance sampling for light transport path guiding. Computer
Graphics Forum 35, 4, 67–77. 2

[HJ09] HACHISUKA T., JENSEN H. W.: Stochastic progressive photon
mapping. ACM Transactions on Graphics (TOG) 28, 5 (2009), 141. 1, 2

[HJ11] HACHISUKA T., JENSEN H. W.: Robust adaptive photon tracing
using photon path visibility. ACM Trans. Graph. (TOG) 30, 5 (2011),
114. 2, 4

[HOJ08] HACHISUKA T., OGAKI S., JENSEN H. W.: Progressive photon
mapping. ACM Trans. Graph. 27, 5 (2008), 130:1–130:8. 1, 2

[HPJ12] HACHISUKA T., PANTALEONI J., JENSEN H. W.: A path space
extension for robust light transport simulation. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 191. 1, 2

[Jen95] JENSEN H. W.: Importance driven path tracing using the photon
map. In Rendering Techniques 95. Springer, 1995, pp. 326–335. 2

[Jen96] JENSEN H. W.: Global illumination using photon maps. In Ren-
dering Techniques 96. Springer, 1996, pp. 21–30. 1, 2, 3, 4

[KCSG18] KULLA C., CONTY A., STEIN C., GRITZ L.: Sony Pictures
Imageworks Arnold. ACM Trans. Graph. 37, 3 (2018), 29:1–29:18. 1

[KGH∗14] KŘIVÁNEK J., GEORGIEV I., HACHISUKA T., VÉVODA P.,
ŠIK M., NOWROUZEZAHRAI D., JAROSZ W.: Unifying points, beams,
and paths in volumetric light transport simulation. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 103. 1, 7

[KKK∗18] KŘIVÁNEK J., KARLÍK O., KOYLAZOV V., JENSEN H. W.,
LUDWIG T., CHEVALLIER C.: Realistic rendering in architecture and
product visualization. In ACM SIGGRAPH 2018 Courses (2018). 1

[KKN∗18] KELLER A., KŘIVÁNEK J., NOVÁK J., KAPLANYAN A.,
SALVI M.: Machine learning and rendering. In ACM SIGGRAPH 2018
Courses (2018), ACM. 2

[MGN17] MÜLLER T., GROSS M., NOVÁK J.: Practical path guiding for
efficient light-transport simulation. Computer Graphics Forum (EGSR
‘2017) 36, 4 (2017), 91–100. 2

[MMR∗18] MÜLLER T., MCWILLIAMS B., ROUSSELLE F., GROSS
M., NOVÁK J.: Neural importance sampling. arXiv preprint
arXiv:1808.03856 (2018). 2

[PLW98] P. LAFORTUNE E., WILLEMS Y.: Bi-directional path tracing.
In Third International Conference on Computational Graphics and Visu-
alization Techniques (Compugraphics) (1998). 1, 2

[ŠK19] ŠIK M., KŘIVÁNEK J.: Survey of Markov chain Monte Carlo
methods in light transport simulation. IEEE Transactions on Visualiza-
tion and Computer Graphics (2019). 2

[ŠOHK16] ŠIK M., OTSU H., HACHISUKA T., KŘIVÁNEK J.: Ro-
bust light transport simulation via metropolised bidirectional estimators.
ACM Trans. Graph. 35, 6 (2016), 245:1–245:12. 2, 4

[VG95] VEACH E., GUIBAS L.: Bidirectional estimators for light trans-
port. In Photorealistic Rendering Techniques. 1995. 1, 2

[VG97] VEACH E., GUIBAS L. J.: Metropolis light transport. In ACM
SIGGRAPH ‘97 (1997), pp. 65–76. 2

[VKŠ∗14] VORBA J., KARLÍK O., ŠIK M., RITSCHEL T., KŘIVÁNEK
J.: On-line learning of parametric mixture models for light transport
simulation. ACM Trans. Graph. (TOG) 33, 4 (2014), 101. 1, 2

c© 2019 The Author(s)


